Publications:

Under review:

    [40] Y. Xia, A. Blumers, Z. Li*, L Luo, Y.H. Tang, K. Joshua, H. Huang, M. Andrew, M. Deo and J. Goral. A GPU-accelerated package for simulation of flow in nanoporous source rocks with many-body dissipative particle dynamics. Computer Physics Communications, 2019 (under review)

    [39] S. Wang, Z. Li and W. Pan. Implicit-solvent coarse-grained modeling for polymer solutions via Mori-Zwanzig formalism. Soft Matter, 2019 (under review)

    [38] A. Hemeda, S. Pal, A. Mishra, M. Torabi, M. Ahmadlouydarab, Z. Li, J. Palko and Y. Ma Effect of wetting and dewetting on the dynamics of atomic force microscopy measurements. Langmuir, 2019 (under review)

Year 2019:

    [37] L. Lu, Z. Li*, H. Li, P. Vekilov and G.E. Karniadakis. Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies. Science Advances, 2019 (accepted, in press).

    [36] A.L. Bluemer, Z. Li* and G.E. Karniadakis. Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics. Journal of Computational Physics, 2019, 393: 214-228.DOI: 10.1016/j.jcp.2019.05.016.

    [35] Z. Mao, Z. Li* and G.E. Karniadakis. Nonlocal flocking dynamics: Learning the fractional order of PDEs from particle simulations. Communication on Applied Mathematics and Computation, 2019 (Invited Paper for Special Issue, accepted). arXiv: 1810.11596.

    [34] K. Zhang, Z. Li*, M. Maxey, S. Chen and G.E. Karniadakis. Self-cleaning of hydrophobic rough surfaces by coalescence-induced wetting transition. Langmuir, 2019, 35(6): 2431–2442. DOI: 10.1021/acs.langmuir.8b03664. (Featured as Cover Article of Langmuir)

    [33] Y. Wang, Z. Li*, J. Xu, C. Yang and G.E. Karniadakis. Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces. Soft Matter, 2019, 15(8): 1747-1757. DOI: 10.1039/C8SM02170H. (Featured as Cover Article of Soft Matter)

    [32] B. Drawert, B. Jacob, Z. Li, T.-M. Yi and L. Petzold. Validation data for a hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) method. Data in Brief, 2019, 22: 11-15. DOI: 10.1016/j.dib.2018.11.103.

    [31] B. Drawert, B. Jacob, Z. Li, T.-M. Yi and L. Petzold. A hybrid smoothed dissipative particle dynamics spatial stochastic simulation algorithm for advection-diffusion-reaction problems. Journal of Computational Physics, 2019, 378: 1-17. DOI: 10.1016/j.jcp.2018.10.043.

Year 2018:

    [30] K. Kim, M.H. Han, C. Kim, Z. Li, G.E. Karniadakis and E.K. Lee. Nature of intrinsic uncertainties in equilibrium molecular dynamics estimation of shear viscosity for simple and complex fluids. The Journal of Chemical Physics, 2018, 149: 044510. DOI: 10.1063/1.5035119.

    [29] L. Zhao, Z. Li*, J. Ouyang, B. Caswell and G.E. Karniadakis. Active learning of constitutive relation from mesoscopic simulations for continuum modeling of non-Newtonian fluids. Journal of Computational Physics, 2018, 363: 116-127. DOI: 10.1016/j.jcp.2018.02.039.

    [28] Z. Li, X. Bian, Y.H. Tang and G.E. Karniadakis. A dissipative particle dynamics method for arbitrarily complex geometries. Journal of Computational Physics, 2018, 355: 534-547. DOI: 10.1016/j.jcp.2017.11.014

    [27] Z. Li, G. Hu and G.E. Karniadakis. Preface: theory, methods, and applications of mesoscopic modeling. Applied Mathematics and Mechanics, 2018, 39(1): 1-2. DOI: 10.1007/s10483-018-2260-6 (Organizer of Special Issue)

    [26] X. Bian, Z. Li and N.A. Adams. A note on hydrodynamics from dissipative particle dynamics. Applied Mathematics and Mechanics, 2018, 39(1): 63-82. DOI: 10.1007/s10483-018-2257-9 (Invited Paper for Special Issue)

Year 2017:

    [25] Y. Yoshimoto, Z. Li, L. Kinefuchi and G.E. Karniadakis. Construction of non-Markovian coarse-grained models employing the Mori-Zwanzig formalism and iterative Boltzmann inversion. The Journal of Chemical Physics, 2017, 147: 244110. DOI: 10.1063/1.5009041 (Selected as Editor's Pick featured article)

    [24] A.L. Blumers, Y.H. Tang, Z. Li*, X.J. Li and G.E. Karniadakis. GPU-accelerated red blood cells simulations with transport dissipative particle dynamics. Computer Physics Communications, 2017, 217: 171-179. DOI: 10.1016/j.cpc.2017.03.016

    [23] Z. Li, C.J. Lan, L.B. Jia and Y.B. Ma. Ground effects on separated laminar flows past an inclined flat plate. Theoretical and Computational Fluid Dynamics, 2017, 31(2): 127-136. DOI: 10.1007/s00162-016-0410-0

    [22] Z. Li, H.S. Lee, E. Darve and G.E. Karniadakis. Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: Application to polymer melts. The Journal of Chemical Physics, 2017, 146(1): 014104. DOI: 10.1063/1.4973347

    [21] H. Lei, X. Yang, Z. Li and G.E. Karniadakis. Systematic parameter inference in stochastic mesoscopic modeling. Journal of Computational Physics, 2017, 330: 571-593. DOI: 10.1016/j.jcp.2016.10.029

Year 2016:

    [20] M.G. Deng, Z. Li*, O. Borodin and G.E. Karniadakis. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. The Journal of Chemical Physics, 2016, 145(14): 144109. DOI: 10.1063/1.4964628

    [19] Z. Li, X. Bian, X. Yang and G.E. Karniadakis. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization. The Journal of Chemical Physics, 2016, 145(4): 044102. DOI: 10.1063/1.4959121

    [18] Y.H. Tang, Z. Li, X.J. Li, M.G. Deng and G.E. Karniadakis. Non-equilibrium dynamics of vesicles and micelles by self-assembly of block copolymers with double thermoresponsivity. Macromolecules, 2016, 49(7): 2895-2903. DOI: 10.1021/acs.macromol.6b00365

Year 2015:

    [17] Z. Li, X. Bian, X.T. Li and G.E. Karniadakis. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. The Journal of Chemical Physics, 2015, 143(24): 243128. DOI: 10.1063/1.4935490

    [16] X. Bian, Z. Li, M. Deng and G.E. Karniadakis. Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium. Physical Review E, 2015, 92(5): 053302. DOI: 10.1103/PhysRevE.92.053302

    [15] C.J. Lan, S. Pal, Z. Li and Y.B. Ma. Numerical Simulations of Digital Microfluidic Manipulation of Single Microparticles. Langmuir, 2015, 31 (35): 9636–9645. DOI: 10.1021/acs.langmuir.5b02011

    [14] Z. Li, A. Yazdani, A. Tartakovsky and G.E. Karniadakis. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. The Journal of Chemical Physics, 2015, 143: 014101. DOI: 10.1063/1.4923254

    [13] X. Bian, Z. Li and G.E. Karniadakis. Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition. Journal of Computational Physics, 2015, 297: 132-155. DOI: 10.1016/j.jcp.2015.04.044

    [12] Z. Li, Y.H. Tang , X.J. Li and G.E. Karniadakis. Mesoscale modeling of phase transition dynamics of thermoresponsive polymers. Chemical Communications, 2015, 51: 11038-11040. DOI: 10.1039/C5CC01684C

    [11] Y.H. Tang, S. Kudo, X. Bian, Z. Li and G.E. Karniadakis. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers.. Journal of Computational Physics, 2015, 297: 13-31. DOI: 10.1016/j.jcp.2015.05.004

    [10] S. Pal, C.J. Lan, Z. Li, E.D. Hirleman and Y.B. Ma. Symmetry boundary condition in dissipative particle dynamics. Journal of Computational Physics, 2015, 292: 287-299. DOI: 10.1016/j.jcp.2015.03.025

Year 2014:

    [9] Z. Li, X. Bian, B. Caswell and G.E. Karniadakis. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Soft Matter, 2014,10: 8659-8672. DOI: 10.1039/C4SM01387E

    [8] Z. Li, Y.H. Tang, H. Lei, B. Caswell and G.E. Karniadakis. Energy-conserving dissipative particle dynamics with temperature-dependent properties. Journal of Computational Physics, 2014, 265: 113-127. DOI: 10.1016/j.jcp.2014.02.003

Year 2013 and before:

    [7] Z. Li, G.H. Hu, Z.L. Wang, Y.B. Ma and Z.W. Zhou. Three dimensional flow structures in a moving droplet on substrate: a dissipative particle dynamics study. Physics of Fluids, 2013, 25: 072103. DOI: 10.1063/1.4812366

    [6] Z. Li, G.H. Hu and Z.W Zhou. Dissipative particle dynamics simulation of droplet oscillations in AC electrowetting. Journal of Adhesion Science and Technology. 2012, 26: 1883-1895. DOI: 10.1163/156856111X600217

    [5] Z. Li, C.J. Lan and Y.B. Ma. Effects on dust emission from an inclined flat solar panel. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. 2012, 6: 619-624. DOI: 10.1115/IMECE2012-89463

    [4] C.J. Lan, Z. Li and Y.B. Ma. Numerical study of sand deposition and control by flat solar panels. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. 2012, 6: 643-649. DOI: 10.1115/IMECE2012-89648

    [3] Z. Li, G.H. Hu, J.J. Zhou and Z.W Zhou. Effects of elasticity of substrate on dewetting process of evaporable ultra-thin liquid film. Chinese Journal of Theoretical and Applied Mechanics. (in Chinese) 2011, 43 (4): 699-706. DOI: 10.6052/0459-1879-2011-4-lxxb2010-459

    [2] Z. Li, G.H. Hu and Z.W Zhou. A numerical method to impose slip boundary conditions in Dissipative Particle Dynamics. Journal of Shanghai University. (in Chinese) 2009, 15 (6): 628-633. DOI: 10.3969/j.issn.1007-2861.2009.06.014

    [1] Z. Li, G.H. Hu and Z.W Zhou. Floquet instability of a large density ratio liquid-gas coaxial jet with periodic fluctuation. Applied Mathematics and Mechanics (English Edition). 2008, 29(8):975-984. DOI: 10.1007/s10483-008-0801-y

Book/Chapters:

    [4] Z. Li, W. Pan and A.M. Tartakovsky. Particle-based methods for mesoscopic transport processes. In book: Handbook of Materials Modeling, Editor: W. Andreoni and S. Yip. Publisher: Springer, Cham, 2018. DOI: 10.1007/978-3-319-50257-1_64-1

    [3] Z. Li, X. Bian, X.J. Li, M.G. Deng, Y.H. Tang, B. Caswell and G.E. Karniadakis. Dissipative Particle Dynamics: Foundation, Implementation and Applications. In book: Particles in Flows, Editor: T. Bodnár, G.P. Galdi and Š. Nečasová. Publisher: Birkhäuser, Cham, 2017. DOI: 10.1007/978-3-319-60282-0_5

    [2] X.J. Li, Z. Li, X. Bian, M.G. Deng, C. Kim, Y.H. Tang, A. Yazdani and G.E. Karniadakis. Dissipative Particle Dynamics, Overview. In book: Encyclopedia of Nanotechnology, Editor: B.Bhushan, Publisher: Springer, 2016. DOI: 10.1007/978-94-007-6178-0_100954-1

    [1] Z. Li, G.H. Hu and Z.W Zhou. Dissipative Particle Dynamics for Complex Fluid. Mechanics and Engineering, SJTU Press (in Chinese), 2009, 385-397.

Professional Service:

Reviewer of

[1] Journal of Computational Physics (2017 Outstanding Reviewer)

[2] Physics of Fluids

[3] Physical Review E

[4] Physical Review Letters

[5] Physical Review Fluids

[6] RSC Advances

[7] The Journal of Chemical Physics

[8] Soft Matter

[9] Langmuir

[10]International Journal of Thermal Sciences

[11]International Journal of Heat and Mass Transfer

[12]Molecular Simulation

[13]IEEE Transactions on Nanotechnology

[14]Applied Mathematics and Mechanics

[15]Colloids and Surfaces A: Physicochemical and Engineering Aspects

[16]Fluid Dynamics Research

[17]Computational Materials Science

[18]Journal of Hydrodynamics

[19]Computer Methods in Applied Mechanics and Engineering

[20]Fluid Phase Equilibria

[21]SIAM Journal on Scientific Computing


Flag Counter