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1 Nontechnical Summary

The preparation for a math modeling competition is beginning at a large on-
line university. There are exactly 300 students who are participating, and 100
teams of 3 students will need to be formed by the competition organizer. Each
student has submitted their scores of Mathematics (M), Computer program-
ming (C), Writing skills (W ), and Personality (P ). When grouped together,
each team member’s score in the four sections will contribute to the overall
performance of their team, which can be positive or negative. Our goal is to
build a mathematical model which will allow us to predict the performance of
a team given the three members, to decide on the best team that can be put
together, and to strategically select a third person given two people in the team.

Our first step was to determine four functions for evaluating the overall team
scores in the four sections (M , C, W , and P ) given the individual scores of each
group members. These functions would take into account both the natures of
different attributes and the three facts presented by the problem. After finding
these functions, we created a probabilistic model, or the score predictor that
predicted the distribution of a team’s result given the team scores in each indi-
vidual section. The overall idea that we follow is that scores in Mathematics and
Computer programming serve as the base for a team’s performance, and scores
in Writing and Personalities will serve as multipliers for a team’s performance.

We therefore constructed an algorithm that models the above probabilistic
model. The algorithm was then run against the first dataset provided; and
the result of the test, predictions for the best team and proposals for sample
searches for a third team member were obtained.

In conclusion, we developed a mathematical model that provides a reasonable
estimate for a team’s performance given the attributes of each team member.
With this model, the on-line contest organizer will no longer struggle in assign-
ing the teams and will surely optimize its assignment decision to create a fun
and fair competition!
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2 Introduction

We attempt to find efficient and accurate methods to predict a team’s outcome
in the math modeling competition by considering the attribute scores (which
are deterministic and given) of each individual team member and how each
attribute contributes to the expected outcome.

1. M scores range from 0 to 10, with 10 being the highest.

2. C scores range from 0 to 10, with 10 being the highest.

3. W scores range from 0 to 10, with 10 being the highest.

4. P scores range from 0 to 29, indicating one of 30 personality types.

We don’t see a correlation between M and C scores, but it is apparent that
M + C is to some degree negatively correlated with W . That is, those who
are above average in mathematics and computer programming are typically not
above average in writing. P seems to be independent of W , M , and C.

M,C,P, and W seem to affect the team score in the following ways:

1. Greater M and C scores generally correlate with better team result, but a
single person seems to be able to ”carry” the team, but other members also
contribute with no negative contributions. That is, a single team member
with talent in mathematics or computer programming is able to handle
all the responsibilities in their respective skill area, but other teammates
can make marginal contributions.

2. High W act as a multiplier for M and C in the final score, and thus,
contribute a lot more to the score than M and C. And because multiple
people are expected to contribute to writing the report, the lowest W score
should bring down the team W score.

3. Teams with personality types that are very close together tend to do better
than teams with very distinct personalities. (Note: P values being ”close”
is in terms of modulo distance. I.e. 2 = dist(2, 4) = dist(1, 29) = 2)

We found that team M , C, and W scores were easily modeled by special cases
of generalized means1. We modeled personality with use of clever geometric
intuition, and we expressed team scores by a normal distribution whose mean
µ is a function of M , C, P , and W and whose variance is constant.

1The class of functions M(x1, x2 · · ·xn) = ( 1
n

∑n
i=1 x

p
i )

1
p
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3 Developing the Predictor Distribution

In the following sections we describe our methods for converting a team’s set
of math (M), computer (C), personality (P), and writing (W) scores to a de-
terministic mean score function and then to a stochastic distribution of actual
scored outcomes. This ”predictor function” takes as input each team member’s
M, C, P, and W scores (12 values) and outputs the distribution of that team’s
performance at a modeling competition.

3.1 Modeling M, C, P, and W

We seek to define team scores for M, C, P, and W as to simplify the process in
determining how M, C, P, and W affect the overall team score.

Assumption 1: Team math and computer science scores are modeled by the
cubic mean of the individual math and science scores.

That is, for given M1, M2, M3:

C(M1,M2,M3) =
3

√
M3

1 +M3
2 +M3

3

3

Where C is the cubic mean function [2].

The cubic mean allows for a single person to ”carry” the team in the sense that
large values of Mi impact the mean more than small Mi.

To illustrate:

Define Ms(a, b, c) to be the team math score with individual math scores a,
b, and c.

Further define Cs(a, b, c) to be the team computer science score with individual
computer science scores a, b, and c.

Our model predicts the following relationships, though some of them might
not be intuitive:

1. Ms(10, 1, 1) > Ms(5, 5, 5) and Cs(10, 1, 1) > Cs(5, 5, 5)

2. Ms(10, 7, 1) > Ms(10, 5, 5) and Cs(10, 7, 1) > Cs(10, 5, 5)

3. Ms(10, 5, 5) > Ms(10, 1, 1) and Cs(10, 5, 5) > Cs(10, 1, 1)

It is assumed that the member with a high math/computer score can ”carry” the
respective responsibilities of the modeling competition and that the math/computer
quality of other teammates matters little, as illustrated in example 1. We
call this property ”best score bias.” Example 2 illustrates the assumption that
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math/computer talent spread across multiple team members is worth less then
talent concentrated among few team members. But it is also necessary to con-
sider the marginal contribution of team members who do not have the best
math/computer score, and example 3 illustrates this.

The cubic mean strikes a balance between the quadratic mean, which fails to
model the ability of a single individual to carry the team, and the quartic mean,
which discounts the ability of weaker team members to make a positive contri-
bution.

Assumption 2: Team personality scores are modeled by the function

F (P1, P2, P3) =
1

3

√
3 + 2 cos

(P1 − P2)π

15
+ 2 cos

(P2 − P3)π

15
+ 2 cos

(P3 − P1)π

15

where P1, P2, P3 ∈ {0, 1, · · · , 29} represent the respective personality score of
each member in the team.

We represent all personality scores by a triacontagon (30-gon) centered at the
origin in a Cartesian plane. We assume the score of 0 to be at the 1st vertex of
the polygon, or the point (0, 1). Subsequent scores rotate in the counterclock-
wise direction and a score n is represented by the (n+1)th vertex of the 30-gon.
It is easy to observe that the coordinate of the nth score is

P (n) = (sin
nπ

15
, cos

nπ

15
)

We therefore define the distance d (0 ≤ d ≤ 1) between the centroid of the tri-
angle formed by the points P (P1), P (P2), P (P3) and the origin to represent the
team score. Note that if P1, P2, P3 form an equilateral triangle, the centroid will
be at the origin and the d will be zero, which is at its smallest. This makes sense
because when the personalities of the three members are evenly spread apart,
they are the least efficient and the team score should be at its minimum. On
the other hand, if P1, P2, P3 are all at the same point, the theoretical centroid
will also be at that point, and d is at its maximum, 1. This also makes sense as
when the three teammates all have the same personalities, the team should be
the most efficient and the team score should thus also be the highest.

We will therefore derive the formula of d. Given P1, P2, P3, their coordinates are
(sinP1π

15 , cos
P1π
15 ), (sinP2π

15 , cos
P2π
15 ), (sinP3π

15 , cos
P3π
15 ). Therefore, the coordinate

of the centroid [3] is,(
sin P1π

15 + sin P2π
15 + sin P3π

15

3
,

cos P1π
15 + cos P2π

15 + cos P3π
15

3

)
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Therefore,

d =

√(
sin P1π

15 + sin P2π
15 + sin P3π

15

3

)2

+

(
cos P1π

15 + cos P2π
15 + cos P3π

15

3

)2

Through algebraic manipulations, we will arrive at the solution

d =
1

3

√
3 + 2 cos

(P1 − P2)π

15
+ 2 cos

(P2 − P3)π

15
+ 2 cos

(P3 − P1)π

15

The above function represents the phenomenon that when P1, P2, P3 are very
close, then the results are better (d is larger), and when the individual scores are
distinct, the team’s results suffer (d is smaller). Let’s consider three teams with
personality scores team 1 (0, 10, 20), team 2 (2, 11, 27), and team 3 (1, 27, 29).
By intuition, team 1 should have the worst performance as they are evenly
separated, and team 3 should have the best performance as they are the closest.
Team 2 should fall somewhere in between team 1 and team 3. Our model also
predicts a similar outcome as F (1, 27, 29) > F (2, 11, 27) > F (0, 10, 20). This
can also be visualized in Figure 1 below. The dotted line is the longest in the
third 30-gon whereas the dotted line does not exist or has a length of 0 in the
first 30-gon.

Figure 1: Three teams with scores (0, 10, 10), (2, 11, 27), (1, 27, 29) are shown
below. The red dot represents the centroid, and the dotted line represents the
distance between the centroid and the origin.

0

10

20

11

2

27

1

29

27

Assumption 3: Team writing scores are modeled by the harmonic mean of the
individual writing scores.

That is, for a given W1,W2,W3

H(W1,W2,W3) =
3

1
W1

+ 1
W2

+ 1
W3
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Where H is the harmonic mean function.

Note: Wi is never zero, so there is no concern for undefined team writing scores.

The harmonic mean model seeks to provide a lower score for teams with a par-
ticularly poor writer, while at the same time limiting the upside of having a
single outstanding writer. [4] We want to model the need for a balanced team
of writers, as modeling competitions require.

For example, the following relations showcase our desired characteristics:

Defining W (a, b, c) to be the team writing score when the individual scores are
a, b and c.

1. W (5, 5, 5) > W (10, 3, 2)

2. W (6, 5, 4) > W (7, 5, 3)

3. W (10, 10, 1) > W (3, 3, 3)

In example 1, we show the property of ”worst score bias.” That is, the worst
score in team writing score calculation has disproportionate influence on the
outcome.

Example 2 also illustrates worst score bias, but in a less obvious way. Notice
that the arithmetic means of (6,5,4) and (7,5,3) are equivalent, but the nature of
the harmonic mean causes it to return lower values for inputs with small outliers.

Finally, example 3 shows us that worst score bias cannot overcome large differ-
ences in sample mean. Even though 1 is a massive outlier, the two writing score
10 teammates more than make up for the deficiency, at least when compared to
a mediocre (3,3,3) team.

3.2 The Predictor Distribution

Assumption 4: The score for the competition lies in [0, 100]

Assumption 5: The score for a team has a distribution ∼ N(µ, σ2)

We make Assumption 5 to incorporate a stochastic element into our model.
This accounts for potential conflicts amongst team members despite compatible
Personality traits and similar skills in Math, Computer Science, and Writing.
The normal distribution was chosen primarily due to its easily manipulable
mean and variance.

We first tackle the standard deviation (and hence, the variance) of the distri-
bution. Consider the following,
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P (|N(µ, σ2)− µ| ≤ kσ)

Note that when k = 2, the above probability evaluates to be approximately
95%., we decide on a standard deviation based on the above fact and the fol-
lowing assumption. [5]

Assumption 6: A team’s actual score will have a 95% chance of lying in the
range [µ− 5, µ+ 5]

This assumption implies that a team will perform consistently regardless of po-
tential conflicts that may emerge. This assumption is made to strike a balance
between the deterministic and stochastic aspects of our model. By reducing the
standard deviation of the predicted scores, our algorithms can work solely based
off the mean values of the predicted scores. [1]

Therefore for any team, we have the following,

2σ = 5 =⇒ σ = 2.5

With a constant standard deviation (and hence, variance) decided on, we pro-
ceed to obtain a mean value for the distribution. Note that given the specified
criteria, the team’s Math and Computer Science scores are ’additive’, while the
Writing score is ’multiplicative’. Note that the Personality parameter can mod-
ify the score, so we treat its effect as ’multiplicative’ given that our model for
personality differences produces a value in [0, 1]. We further make the following
assumption.

Assumption 7: A team’s personality score that is closer to 1 will have a net
positive effect on their mean score and a team’s personality score that is closer
to 0 will have a net negative effect on their mean score.

This fairly simple assumption allows a personality score of 0.5 to have a ’neu-
tral’ effect on the mean score of a team. Now, to incorporate a team’s Math,
Computer Science, and Writing score, consider the following,

µ′ = λaWW (P + aP )(aMM + aCC)

The above statement incorporates our assumptions about the Probability score
of a team. Further, the team’s Writing score is used as a multiplier, while the
team’s Math and Computer Science scores are added together. The constant
λ allows us to modify the value to fit a specific range. To determine all the
required constants consider the following fringe case, where we have the perfect
team of (10, 10, 10, P ), (10, 10, 10, P ), (10, 10, 10, P ). Here (M,C,W,P ) is the
Math, Computer Science, Writing, and Personality value respectively. Given
that we use a distribution, we do not want this perfect team to have a mean
score of a 100%, but we want them to have a high chance of obtaining the
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perfect score. We take this aspect into consideration when we decide on a final
mean. We therefore have,

µ =
95

1.5

(
P +

1

2

)
W

10

(
M

20
+
C

20

)
This was chosen so that the maximum possible mean score is 95. This simplifies
to get,

µ =
19W (2P + 1)(M + C)

120

So the predictor distribution for Team (A,B,C) is modeled by,

Pred(A,B,C) ∼ N
(

19W (2P + 1)(M + C)

120
, 2.52

)
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4 The Algorithms

With the baseline methods for estimation established, it’s important to see that
our models can actually be applied to problem solving. To test this, we seek to
automatize the process of:

1. Finding the optimal member for a team when given two members already.

2. Constructing a set of 100 teams whose mean is greater than if the teams
were chosen randomly.

4.1 Algorithm 1: Optimizing the Third

Let Student-A = (Ma, Ca,Wa, Pa) Where Pa is the personality score of student-
A, Wa is the writing score of student A, and so on. (Student-A is given to be
part of the team)

Let Student-B = (Mb, Cb,Wb, Pb) Where Pb is the personality score of student-
B, Wb is the writing score of student B, and so on. (Student-B is given to be
part of the team)

Let M = Max(Pa, Pb) and m = Min(Pa, Pb).

Step 1: IF 3 ≤ M − m ≤ 15 RETURN the list of students with person-
ality scores x that satisfy m ≤ x ≤M in sorted order.

IF 3 > M −m RETURN the list of students with personality scores x that
satisfy m− 1 ≤ x ≤M + 2 in sorted order.

ELSE (If M −m > 15) RETURN the list of students with personality scores
x that do not satisfy M ≥ x ≥ m in sorted order.

Step 2: Apply the mean score function

µ =
19W (2P + 1)(M + C)

120

for Student-A with scores (Ma, Ca,Wa, Pa) , Student-B with scores (Mb, Cb,Wb, Pb),
and Student-i with scores (Mi, Ci,Wi, Pi) to produce µi for each Student within
the output list of step 2.

Step 3: Using the output µi

Max(µl, µj , µk · · · ) = µz

Where z is the index of the student who gives the team of Student-A and
Student-B the best projected overall score.
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The following is the pseudo-code for algorithm 1.

Algorithm 1 Optimizing the Third Person

1: procedure FindThird
2: PA ← personality of Person A
3: PB ← personality of Person B
4: M← max(PA, PB)
5: m← min(PA, PB)
6: diff← M - m
7: if 3 ≤ diff ≤ 15 then
8: Arr[ ]← x,m ≤ x ≤ M

9: if diff < 3 then
10: Arr[ ]← x,m− 1 ≤ x ≤ M + 2

11: if diff > 15 then
12: Arr[ ]← x,¬(m < x < M)

13: loop
14: x← Arr[ ]
15: Max[ ]← ExpPred(A,B, x).
16: goto loop.
17: close;
18: Final← max(Max[0], Max[1], · · · ).
19: return Final

Assumption 8: It is unreasonable to expect the optimal teammate for a given
team of two to exist outside of a certain range of personality.

We conjecture that it’s possible to, given a two-person team, provide an per-
sonality interval (that is not the whole personality spectrum) for which we have
100% confidence in the interval containing the optimal teammate for the given
team of two. This conjecture goes unproven due to time constraints, but our
numerical testing leaves the conjecture unchallenged for the intervals we speci-
fied in algorithm 1.

Note: This is only true because P is independent of M , C, and W . It need
not be true in general. For example, it’s easy to imagine a world where people
of personality 12 through 20 tend to be better at computer programming than
those who have other personality scores. Assumption 8 should not apply to
situations such as those.
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Figure 2: Graphs of M vs P , C vs P , and W vs P show that people’s math,
CS, or writing scores are independent of their personality scores.

Table 1

# P  M  C  W

0 4.0142 4.28 6.6651

0 5.3921 4.8171 5.0191

0 1.301 6.9519 4.0992

0 4.5388 6.9941 5.0319

0 5.2553 7.4609 4.7536

0 2.7759 7.7651 3.5302

0 5.5054 8.7989 4.2391

0 7.4333 10 5.9775

1 6.1309 0.4613 5.4201

1 9.2513 0.6047 5.2283

1 2.2312 1.7755 7.4094

1 5.0244 2.2064 4.3028

1 8.8156 6.1111 2.8148

1 4.7617 6.1392 4.0182

1 2.8294 8.041 3.9546

1 1.249 8.7909 6.2218

2 2.7653 1.1833 5.3648

2 8.5748 2.5673 4.5165

2 3.7546 2.5866 4.347

2 5.3134 2.6438 7.2518

2 8.713 2.7524 3.8871

2 9.6751 3.7454 3.0004

2 8.5189 4.2801 4.6855

2 5.7249 4.9632 4.4492

2 3.3637 5.6411 5.9528

2 6.1159 6.0663 6.1173

2 6.7607 6.1611 3.8932

2 6.3894 6.9687 3.1612

2 2.4586 7.6583 3.7933

3 7.3166 0.7812 6.0194

3 2.3487 0.8974 6.177

3 1.6419 1.244 7.8225

3 4.58 2.3332 5.3941

3 6.6622 4.3886 4.8736

3 2.591 4.7116 6.6747

3 5.1159 5.0705 1.1997
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0

2.5

5

7.5

10

0 1 2 3 4 5 6 7 8 10 11 11 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29

 M

0

2.5

5

7.5

10

0 1 2 3 4 5 6 7 8 10 11 11 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29

 C

6.75

9

 W

�1

Table 1

# P  M  C  W

0 4.0142 4.28 6.6651

0 5.3921 4.8171 5.0191

0 1.301 6.9519 4.0992

0 4.5388 6.9941 5.0319

0 5.2553 7.4609 4.7536

0 2.7759 7.7651 3.5302

0 5.5054 8.7989 4.2391

0 7.4333 10 5.9775

1 6.1309 0.4613 5.4201

1 9.2513 0.6047 5.2283

1 2.2312 1.7755 7.4094

1 5.0244 2.2064 4.3028

1 8.8156 6.1111 2.8148

1 4.7617 6.1392 4.0182

1 2.8294 8.041 3.9546

1 1.249 8.7909 6.2218

2 2.7653 1.1833 5.3648

2 8.5748 2.5673 4.5165

2 3.7546 2.5866 4.347

2 5.3134 2.6438 7.2518

2 8.713 2.7524 3.8871

2 9.6751 3.7454 3.0004

2 8.5189 4.2801 4.6855

2 5.7249 4.9632 4.4492

2 3.3637 5.6411 5.9528

2 6.1159 6.0663 6.1173

2 6.7607 6.1611 3.8932

2 6.3894 6.9687 3.1612

2 2.4586 7.6583 3.7933

3 7.3166 0.7812 6.0194

3 2.3487 0.8974 6.177

3 1.6419 1.244 7.8225

3 4.58 2.3332 5.3941

3 6.6622 4.3886 4.8736

3 2.591 4.7116 6.6747

3 5.1159 5.0705 1.1997

3 3.241 5.3754 5.0966

0

2.5

5

7.5

10

0 1 2 3 4 5 6 7 8 10 11 11 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29

 M

0

2.5

5

7.5

10

0 1 2 3 4 5 6 7 8 10 11 11 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29

 C

�1

3 7.2458 5.4918 5.4547

3 6.8005 7.6396 3.6635

4 6.0784 3.3933 7.6701

4 9.9075 4.1936 3.8175

4 7.6127 4.6968 2.6982

4 2.5298 5.3188 7.5348

4 4.2119 5.3625 6.9696

4 4.7585 5.864 4.3759

4 3.5665 5.9248 4.8577

4 10 6.6933 3.5853

4 5.8506 6.7824 5.4771

4 4.9111 7.3838 3.3793

4 1.4146 7.927 6.1402

5 1.2575 1.7955 4.4732

5 5.5415 2.4603 5.0345

5 2.7949 2.5868 7.876

5 8.7299 4.4222 2.1971

5 6.2503 4.7635 3.8768

5 5.0235 5.3517 3.6796

5 7.0254 5.6866 4.8423

5 7.2327 5.8001 2.395

5 7.1192 5.8567 2.206

5 2.9464 5.9789 5.5502

5 4.2581 6.4207 5.6373

5 3.2929 6.7071 5.2286

5 7.536 8.2328 3.483

5 3.5294 8.4682 4.5072

6 5.2244 2.6543 8.7948

6 4.6869 2.7374 5.835

6 6.5509 2.9033 6.0826

6 6.29 3.5428 4.8776

6 8.3564 3.6287 3.9849

6 6.4515 4.0177 3.079

6 3.0149 4.2671 6.2032

6 4.2435 5.3167 5.3716

6 3.764 5.7481 4.7601

6 5.6798 6.7484 4.0627

7 1.9771 2.9869 5.6272

7 3.3803 3.5747 6.2997

0

2.25

4.5

6.75

9

0 1 2 3 4 5 6 7 8 10 11 11 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29

 W

2.5

5

7.5

10

�2

13



Modeling Optimal Teams BMCM 2017

4.2 Algorithm 2: Above Average Team-making

Step 1: Sort the list of the 300 students by their personality score in increasing
order

Step 2: Select the first two people in the sorted list, N . Name them Student-A
and Student-B.

Step 3: Invoke Algorithm 1 with Student-A and Student-B as inputs. Algo-
rithm 1 will return an index z. The student of index z will be teamed up with
Student-A and Student-B.

Step 4: Remove Student-A, Student-B, and Student-Z from the sorted list,
N , and store them in the first entry of a new list, say T . N should now have a
size of 297, and T should have a size of 1.

Step 5: Repeat Step 2 with list N until the size of N becomes 0 and the
size of T becomes 100.

The following is the pseudo-code for algorithm 2.

Algorithm 2 Above Average Team-making

1: procedure OptTeams
2: Sort Arr[Students] by Personality in 0 ≤ x ≤ 30
3: A1 ← Arr[0]
4: A2 ← Arr[1]
5: A3 ← FindThird(A1, A2)
6: Pred[ ]← ExpPred(A1, A2, A3)
7: Remove A1, A2, A3 from Arr[Students]
8: OptTeams(Arr[Students], Pred[Scores])

Algorithm 2 attempts to maintain simplicity by recycling the functionality of
algorithm 1. By nature, the first two teammates that algorithm two selects will
be of very similar (if not identical) personality. Furthermore, the third teammate
will be chosen in a near optimal matter. Thus, it is clear that algorithm 2 will be
at least better than random choice. We analyze the level of success for algorithm
1 and 2 in the next section.

14



Modeling Optimal Teams BMCM 2017

5 Evaluation and Results

Now we share the outcomes of numerous tests and simulations of all sorts:
ranging from easily interpretable raw data models, trends of our models with
random team assignment, tests for algorithm 1 and algorithm 2, and analysis
of their effectiveness.

5.1 Algorithm 1

Since we want to support the claim that algorithm 1 picks an optimal third
teammate when given two teammates, we compare its results to a procedure
which we know for certain will produce the optimal teammate, the ”brute force”
algorithm2. In the the figure below, we illustrate the result on our algorithm
operating on an array of two-person teams.

Figure 3:
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Figure 4:

2This is done by taking the maximum of the outputs of the mean function applied with
each of the other 298 students
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Figure 4 compares the outputs of the brute force algorithm and algorithm 1
given an array of examples. The leftmost column of figure 4 serves as an index
for the data points so that they can be easily identified in figure 3.

Notice that algorithm 1 produces a team score within machine precision (15
decimal places) of the brute force algorithm. It is, however, unclear if the al-
gorithms are actually selecting the same individual. Thus, we cannot say for
certain that algorithm 1’s result is strictly equal to the brute force algorithm’s,
but we can say without doubt that algorithm 1 is extraordinarily accurate in
its optimization.

Additionally, if the 20 sample inputs outlined in Figure 4 are examined closely,
one can observe that extreme cases towards the higher end (For instance, group
2), extreme cases towards the lower end (For instance, group 9), and average
cases were all included (For instance, group 17). Covering a wide range of sam-
ple cases better attests to the validity of our model, as it is proven to function
perfectly under all types of situations.

Based on this, algorithm 1 searches for an optimal third member in an in-
formed way. In most cases, we only check a small subset of the data, yet we
still achieve accuracy within 15 decimal places of the brute force algorithm3.

5.2 Algorithm 2

For this algorithm, we want to improve the mean of our overall team scores.
Before we do so, it is important to consider the distribution of overall scores in
randomly assigned teams.

Figure 5:
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3In a perfect world, we’d like to make sure that our third member algorithm always picked
out exactly the best member.
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In figure 5, each color represents a different randomized set of teams. We see
that, when we assign teams randomly,

E[X] ≈ 16.56

Where X is the score of a random team.

We see that our mean function is very harsh on non-coordinated teams. That is,
teams suffer more from a certain degree of dissimilarity than teams are helped
by the same degree of coercion. When considering the overall contest score
range (0,100) a mean of 16.56 is quite low, and is, in fact, a good model of the
importance of coercion in a competition team.

Now, using algorithm 2, we construct 100 teams of 3 from the 300 participant
sample. The mean scores for teams constructed using algorithm 2 and using
random assignments are compared (in increasing order) in figure 6.

Figure 6:
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The expected scores of the teams constructed using algorithm 2 have the prop-
erty,

E[Y ] ≈ 20.68

Where Y is the score of a team constructed by algorithm 2.

An expected value increase of 4.12 is not exceptional, but is quite large when
considered in ratio to the standard deviation of our random team assignment
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algorithm mean.

4.12

σ
=

4.12

2.5
= 1.648

In addition, it can be observed that the expected score line with Algorithm 2
(blue) lies completely above the other three lines. This property also reinforces
the strength of the algorithm, as it ensures that the mean team score of every
one of the 100 teams, ordered from smallest to largest, is equal to or greater
than the result of the corresponding indexed team in a random assignment.

Our algorithm certainly accomplishes the primary goal, but it’s degree of suc-
cess is under question. There appears to be great opportunity for improvement,
though we cannot make a justifiable conjecture on what an optimal solution
might be.
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6 Conclusion

6.1 Strengths and Weaknesses

Due to the time constraint and some overly simplified assumptions, our model
does possess several weaknesses in certain aspects.

Strength: Our methods compute the team scores in M , C, and W model
to surprising accuracy and with remarkable simplicity, and they also include
the properties of best score bias and worst score bias. For Mathematics and
computer programming, we capture the fact that a single high score is suffi-
cient to carry the team, while not discounting the contribution of other team
members. For W , we emphasize the importance for every team member to be
competent in writing , without undercutting the value of big individual writing
scores.

Weakness 1: In our Assumption 5, we assumed the variance of the normal
distribution of team results to be a constant, 2.5. We made this assumption
because with the limited time, we wanted to focus more on how each variable
attribute will affect the mean value of the normal model instead of the variance.
The variance was thus assumed to be constant to slightly reduce the complex-
ity. However, in reality, the variance of the teams’ performances will not be a
constant value. They can in fact be influenced by the variable attributes. For
instance, consider two teams with individual math scores (10, 1, 1) and (7, 7, 7).
By Assumption 1, the team math scores for these two teams will be the same.
They have a similar impact on the mean and do not impact the variance of
the distribution of the team results. However, by intuition, team 1 with scores
(10, 1, 1) should have a higher variance. If the person with the math score 10 is
sick or in an emergency, the this team will completely crash. In contrast, even
if one person is not performing as expected in team 2, the other two people can
still perform relatively well. If more time is permitted, the phenomenon stated
above should be accounted when setting up our variance.

Weakness 2: The four functions that we derive to determine the team scores
in individual sections are all deterministic. In other words, given the score of
each team member, we predict that the team score will be a specific value. How-
ever, this model is simplified, and in a more realistic situation, the team score
should contain a stochastic element. To illustrate this weakness, consider team
1 and 2 with personality score (0, 10, 20) and (1, 3, 5). By our Assumption 2,
team 2 has a team personality score that is strictly larger than that of team 1’s.
However, in reality, there might be occasions, although very rare, where a team
with very distinct personalities will perform better than a team with similar
personalities. Our deterministic functions failed to consider such a possibility.

Weakness 3: In our algorithm, we have filtered out a significant portion of
the sample by setting the personality scores of the two given team members as
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the bounds. However, there is a possibility that such a bound will filter out
the absolute best candidate for the third person. We believe that there exists
a bound which is close to the personality scores of the two given members and
which will for sure not exclude the absolute best candidate for the third per-
son. Due to the time limit, however, we cannot provide a rigorous proof for the
existence of such a bound.

6.2 Further Improvements

There are several other properties that would be expected concerning the im-
pact of the relationships between M , C, P , and W on the final score. For
example, we might want to implement a property of our model were having
large discrepancies between a team’s mathematics and computer programming
score has a negative effect on the overall score. The intuition is that much of
the math talent would ”go to waste” if there was nobody with the computer
knowledge to implement the mathematician’s ideas.

It also seems reasonable that, in a math modeling competition, M might have a
greater influence on the overall score than C. That is, deficiency in mathematics
is probably much more costly than an inability to program.

Finally, if time had permitted, we would have preferred to implement an ”ego
effect.” It seems logical that if a team had two members who were very good at
the same thing, two members with scores of 9 in computer programming for ex-
ample, there would be many arguments on how things should be done. Whereas,
if there was a single star computer programmer, the team would be more likely
to defer to him all the responsibilities of programming, without objection.
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