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1. To The Readers of The North Squarolina Tribune

Gerrymandering is the act of unfairly dividing a region into districts so as to favor one
political party over another. While manipulation of the redistricting process has been used
as a key tool in partisan battles for power, it also severely undermines the very idea of
democracy.

As a country that vests electoral power into the hands of representatives chosen by its
people, to say that gerrymandering has caused damage to our political system would be a
gross understatement.

For example, as you may all be aware, in the 2012 North Carolina Congressional elections,
51% of the electorate voted for Democratic candidates, while 49% voted for Republicans. In
spite of this, nine Republican and four Democratic representatives were elected to the House.
Very recently, the United States Court of Appeals deemed North Carolina’s districting to
be unconstitutionally gerrymandered and ordered a re-districting of the state.

How do we detect such districting manipulations, and how can we confirm that a district
was purposefully gerrymandered to favor one party over another?

We present a mathematical model that attempts to detect partisan gerrymandering in a
potential districting scheme. We attempt to capture several natural notions of gerryman-
dering in our model, and use pre-existing gerrymandering-detection schemes to calibrate
our approach. Its performance is analyzed against several test-scenarios.

Finally, we verify that our model does indeed detect gerrymandering by successfully
replicating the results of the well-documented 2012 North Carolina Congressional Election
on a simplified representation of the same dataset.

2. Introduction

Voting systems and elections are an essential part of most democracies. Given the impor-
tance of these events in the political process, it is often the case that political parties or
members will try to skew the outcome of an election through various means. We focus on
one method in particular: that of affecting the election scheme by how countries or states
are split up into smaller districts for purposes of voting.

A natural question to ask, then, is whether it is possible to detect manipulative attempts
to district in ways that unfairly favor a political party? These so-called gerrymanders have
been a long-standing issue within the U.S. political system, and have received considerable
media attention in recent times. In a well-known example, North Carolina had 9 out of
13 Republicans from its district vote, although the popular vote favored the Democrats.
[Her+18] Yet, there appears to exist no standard approach to identify and evaluate gerry-
manders.

Formally, Black’s Law Dictionary defines a gerrymander as a name given to the process
of dividing a state or other territory into the authorized civil or political divisions, but with
such a geographical arrangement as to accomplish a sinister or unlawful purpose, as, for
instance, to secure a majority for a given political party in districts where the result would
be otherwise if they were divided according to obvious natural lines.
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Several novel attempts to quantify gerrymandering have been made in recent years, mak-
ing use of tools and techniques from discrete geometry, stochastic processes, and statistics.

In this report, we present a model that attempts to systematically detect partisan ger-
rymandering on arbitrary planar graphs. Specifically, given a partition of a graph into
several districts, we define a gerrymandering score to determine the likelihood of manipula-
tive districting. Our score incorporates several natural aspects of partisan districting, and
we analyze its performance in several different political landscapes as well as settings for
partisan districting. Given a partisan districting and its score, we can analyze how unlikely
this score is relative to a distribution we fix on the set of all districtings. We also discuss
other approaches to gerrymandering, use them to tune our method, and place our method
in the context of these other approaches.

2.1. Outline

• In Section 2.2, we briefly discuss existing approaches to detecting and quantifying a
partisan gerrymander.

• In Section 3, we discuss our model and the assumptions we make. In particular, we
assume two-party dominance in the government and the (weak) Pareto principle.

• In Sections 4–5, we present our approach to quantify gerrymandering, and analyze
its performance on several carefully-chosen and some randomly-generated districting
scenarios.

• In Section 6, we evaluate the performance of our model on a real-world instance of
gerrymandering, namely that of Congressional elections in North Carolina in 2012.

• In Section 7, we discuss the drawbacks of and potential improvements to our model.

Our model utilizes the GerryChain package (which can be found here), and our code is
included in Appendix B.

2.2. Previous Work

Given that gerrymandering is a topic of national interest, several research groups led by
scientists and mathematicians have worked on recent solutions to this problem, especially
at centers at Duke University, Tufts (Metric Geometry and Gerrymandering Group), and
at Princeton University. But even prior to this work, several metrics based on efficiency,
symmetry, and even geometry have been used to quantify gerrymandering.

The first and most well known method—the efficiency gap—is a way to quantify a com-
mon way of gerrymandering an election, namely “packing” and “cracking”. This is the idea
that most of the counties of the victim party are “packed” into a small number of districts,
forcing only a small number of large wins for this party; the remaining counties are then
“cracked” and spread out across many districts so that they are just shy of winning [Wan].
This notion can be quantified by the number of wasted votes for either party, which are
defined to be the number of votes beyond what is needed to win a district, as well as the

https://github.com/mggg/GerryChain
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votes that that spent in losing districts. Formally, we can define the number of wasted votes
for Party 1, and analogously for Party 2, in district di, i = 1, . . . , k as

W 1
i =

{
T 1
i − Ti/2, if di won by Party 1

T 1
i , if di won by Party 2

where T 1
i is the number of votes cast in district i for Party 1, and Ti is the total number of

votes in the district. Given this formula for the wasted votes, we define the Efficiency Gap
EG to be

EG =

k∑
i=1

W 1
i −W 2

i

T

with T =
∑k
j=1 Tj . The efficiency gap then gives a signed measure for how much one party

is favored over the other. If large and positive, the districting plan would be unfair to A
and conversely with B; in this case we can take the absolute value as the metric to assess
gerrymandering against any party. We then consider a districting plan to be gerrymandered
if the efficiency gap is greater than the threshold 0.08 [BD17b]. However, the efficiency gap
is known to be not good enough in many cases: see [BD17b] for several of shortcomings of
the approach. As one example, the efficiency gap actually tends to penalize the intuitively
desirable notion of proportionality, that the proportion of districts voting for Party One
should be equal to that of the population proportion. However, we will use this metric as a
standard of comparison for our method later on in our analysis, due to its widespread usage
in the literature.

A simpler idea, championed by Garry King, Andrew Gelman, and other researchers,
enforces a symmetry or fairness between two parties in an election. This so called partisan
symmetry, reviewed in [BD17b], requires that how one party performs given a certain share
of the vote should be identical how the other party performs in the same situation. One
way to quantify this is to use the notion of a uniform partisan swing [Duc18], which returns
a curve of how many seats of power a party obtains as a function of the proportion of votes.
The idea is that this curve should be symmetric around the midpoint (0.5, 0.5), and this
deviation can be measure by simple metrics, such as vertical distance from this point.

Another distinct body of work done in quantifying gerrymandering comes from a geo-
metric/ topological view, which characterize how unnatural some gerrymandered districting
plans appear to be. Approaches in this direction tend to use methods such as isoperime-
try, curvature, hyperbolicity, and compactness quantification [BS18]; [DT18b]; [DeF+18].
However, an argument against the use of geometric and topological measures for gerryman-
dering can be found in [AM17]. In this paper, Alexeev and Mixon argue the statement
that “a small efficiency gap is only possible with bizarrely shaped districts”, indicating that
geometric/topological approaches to quantifying gerrymandering may be ill suited. Indeed,
we can imagine that in some states, the political and geographical landscape may enforce
districting plans that have odd shapes. Therefore, we exclude the use of these methods
in our model, although we note that the extensions of our model can employ geometric
information if desired.
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3. Our Model and Assumptions

For our model, we consider a rather strong simplification of the political map into a planar
graph G = (V,E) where every node represents a county in a state, and edges enforce
adjacency of two counties. We call a districting plan D to be a partition of V with the
following conditions that are required by Black’s Law Dictionary:

1. Contiguity: Districting plans should have connected districts.

2. One Person, One Vote: Voting districts should have mostly equal populations.

3. Voting Rights Act: Voting districts must not dilute the votes of protected minorities.

Given this, we enforce the following further assumptions on our model.

4. Bipartisanism: We assume that there are only two political parties to vote for, which
we denote Party 1 and Party 2, or Blumocrats and Redublicans. We assume that every
v ∈ V prefers to vote for one party over the other, which is that county’s political
model. Such a mapping of nodes onto Party 1 or Party 2 is called a political leaning. In
this model, we do not consider quantify how much each each county prefers towards one
party over the other. This assumption is motivated by Arrow’s impossibility theorem
from social choice theory, which proves the non-existence of an ordinal voting scheme
satisfying some natural criteria in the event of three or more candidates. [MAS+14]

5. Uniformity: We assume every node in the graph represents the same population, and
so the districting plans should each have districts that are roughly of the same size, i.e.,
they have the same number of nodes in each district. We also assume populations of
protected minorities are homogeneous across each node, which allows us to disregard
the condition of the Voting Rights Act in our model.

6. The (Weak) Pareto Principle: Our analysis is predicated on the interpretation
that political elections should reflect the will of the popular vote. That is, if the
majority of people prefer Party 1 to Party 2, then the election outcome should reflect
this. Our gerrymandering definition then reflects this principle.

The above conditions allow us to restrict to districting plans which are partitions of V into
districts, or components, which are connected and roughly of the same size; we’ll say that
each size of each district will be within two of one another.

4. Detecting Gerrymandering

Given the setup described in Section 3, we come up with a method for detecting whether
a given districting plan D is considered gerrymandered. The method proceeds by defining
a score S(D) describing how “gerrymandered” the districting plan D is, then analyzes
how extreme this score is relative to the distribution of districting plans with the above
conditions enforced. We model this distribution with a Gibbs measure and sample from it
using a Metropolis-Hastings-type sampler, which allows us to get Monte Carlo estimates of
the variance of the scoring function S on a typical districting plan. We then express how
extreme the observed score was using a metric analogous to a z-score. The advantage of
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this model over the methods we introduced previously is the generality of this model, which
we will detail in later sections.

4.1. Defining a Gerrymander Score

We recall that our definition for gerrymandering is motivated by the Pareto principle:
namely, that the outcome of the election based on the bipartisan proportion in a district-
ing plan should reflect the outcome dictated by the general population proportion. We
can capture this using a simple metric, namely the difference between the true population
proportion of Party 1 to Party 2.

Letting D = {D1, . . . , Dk} be a districting plan with Di denoting individual districts, we
will denote the population proportion pT to be the number of Party 1 counties to the total
number of counties, and the proportion of districts won by Party 1, denoted

pD =
#{Districts won by Party 1}

|D|

from which we can obtain our first scoring function:

S1(D) = |pT − pD|.

We first note that lower scores of the function S1 should be interpreted as lower indication
of gerrymandering. As an example of when this metric captures a perfect districting plan,
consider the following example, reproduced from [Ing15]:

Figure 4.1: Possible districtings in a 40-60 population. Note that red wins the rightmost election,
despite having a lower popular vote. We consider the rightmost diagram to be gerrymandered. The
score metric S1 will assign a perfect score of 0 to this districting plan.

The second image in the figure above gives a districting plan which most would agree
as a fair plan that is representative of the true population. The score S1 finds that the
proportion of districts belonging to Party 1 is equal to the total number of counties that
vote for Party 1, indicating S1 = 0. However, consider the third image in Figure 4.1 above.
Although we consider this districting plan not the ideal, we argue that this districting plan
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is a common occurrence that should not be considered gerrymandering. In this case, we
observe that every within every partition, the proportion of Party 1 counties is close to the
total proportion, but the proportion of Party 1 districts differs from the true population
proportion significantly.

In order to extend our metric to account for this case as well, we consider a scoring
function on the set of districts in our districting plan: recalling that D = {D1, . . . , Dk},
define the proportion of Party 1 counties in district Di to be pDi

. As the above example
shows, we would like most of the values pDi

to be roughly equal to pT . Given this, we define
a weighted L2 norm S2 of the vector (pDi

)i∈{1,...,k} to be

S2(D) =

(
k∑
i=1

(
pDi − pT

k

)2
) 1

2

.

Finally, to account for the fact that both examples above should not be considered ger-
rymandered, we define our scoring function

S(D) = min(S1(D), S2(D)) .

4.2. Our Sampling Approach

Given this scoring scheme, we want to take a statistical approach to analyzing whether
a given districting plan is gerrymandered. Throughout this section, fix a districting plan
D = {D1, . . . , Dk}, which we would like to test for gerrymandering. To do this, we analyze
how extreme the observed value of S(D) relative to the distribution of S(D) where D is
a random districting plan with the underlying Blumocrat/Redpublican preferences of the
nodes fixed.

For clarity, we can interpret a districting plan as a partition of our graph G. We then
sample D from a Gibbs measure on the set of partitions of our graph G which satisfy the
conditions enforced in Section 3, which we can write generally as the distribution:

G(D) =
e−βJ(D)

Zβ

where J is the Hamiltonian characterized by our sampling algorithm given below. This
approach is similar to the one adopted by Herschlag et al. [Her+18] and other papers in
literature, except we specialize this approach to the case of our planar graph model with
equal populations at each node, and adopt an approach predicted on p-values. An informal
characterization of this Gibbs distribution is given by the sampling procedure below:
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The Markov Chain

The Markov chain we use has as its state space Σ the space of all valid districtings of the
given graph G = (V,E). The transition function is given as follows:

1. From a given state, determine the set S of all pairs (D,D′) where D refers to the
current districting, and D′ refers to the districting obtained by:
(a) Picking an arbitrary node that is on the boundary of some district, and swap it

into one of the neighboring districts

(b) Rejecting if any two districts vary in size (or area) by greater than a chosen
threshold (in this case we pick our threshold to be 2).

2. From S, choose one pair (D,D′) uniformly at random.

3. Transition D → D′ if D′ satisfies other desired criteria (if any; in this case, contiguity
of districts).

Note that the update rule forces the outputted partitions to satisfy the conditions we
impose. Additionally, the condition that the districts’ size have to be within two of each
other allows us to move between the states in the entire space of districting plans - we thus
formally have irreducibility of our chain.

We use a burn-in of 10, 000 runs and sample every 10, 000 iterations, producing N samples
{D̃i∈1,...,N} from our Metropolis Hastings algorithm. Using the samples of S(G), we define
the gerrymandering severity GS of the redistricting plan D as a quantity similar to a z-score:

GS =
|S(D)− ˆE[S(G)]|

ˆstdS(G)

which we estimate using simple Monte Carlo:

ˆE[S(G)] =
1

N

N∑
i=1

S(D̃i)

ˆstdS(G) =
1

N

√√√√ N∑
i=1

(S(D̃i)− ˆE[S(G)])2

Given the statistic GS , we declare D to be gerrymandered if GS exceeds some threshold
T. We detail experiments below giving ideas for how to choose this threshold T, in the
analysis section.

4.3. Possible Extensions to Our Scoring Scheme

Note also that we can adopt a non-parametric approach by approximating the distribution
S(G), the pushforward measure of this Gibbs measure by the functional S (our score func-
tion), using Kernel Density Estimation (KDE)—this is because as we increase the number
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of samples from our chain, the Glivenko-Cantelli theorem tells us this empirical measure
should converge to the desired one. We would then take GS as above to be the percentile of
S(D) among the values of S(D̃i) for all i = 1, . . . , N. This is similar to a p-value approach.

The issue with the KDE approach, is, of course, computational limitations. The advan-
tage of this approach over the z-score, however, is we utilize the entire distribution of S(G).
The p-value approach above utilizes only the first and second moments of the distribution
and doesn’t take into account the fact that S(G) may not be unimodal, or at the very least,
skewed. We check some of these assumptions in the appendix later on, but it would be
convenient if results from the literature on functionals of Gibbs measures could be applied
here to understand this distribution.

Other ideas were proposed in the literature to test whether given samples from this chain
are extreme, an alternate to the z-score test we detail above. In [CFP17], Chikina et al.
consider a test for assessing whether a sample from an MCMC sampler is sampled according
to π, the stationary distribution of the MCMC sample. The so called

√
ε test starts with

the districting plan D under question and evolves it according to the chain above to obtain
samples D = D0, D1, . . . , Dk. Then [CFP17] proves that given a functional f , the probability
that f(D) is an outlier of {f(Di)i≤k} (as some function of ε) is greater than

√
2ε under the

null hypothesis that D ∈ π.

5. Evaluation/Results

Throughout the section, we consider the performance of our model on two distinct simulation
cases, with differing political leanings for each node in the graph. We consider the political
map given by the square grid graph of side length 15.

• For the first simulation procedure, we consider the case where each node’s political
leaning is sampled independently from Party 1 or Party 2 with a proportion of 0.45
for Party 1.

• The second simulation more closely reflects the true political landscape of the US,
where we have c small population clusters dominated by Party 1, while the rest of the
political landscape is mostly dominated by the other party. To simulate a political
leaning of this type, we work again on a 15×15 grid, and we generate clusters of Party
2 such that the total proportion of Party one to two is still 0.45. The simulations below
consider the case where the number of clusters is specified for a range of values.

5.1. Choosing the Threshold

To choose the threshold parameter at which we declare a districting plan to be gerryman-
dered, we do a cross validation procedure with this algorithm, where the true labels will be
given to us by the output of the efficiency gap score with threshold 0.08, a common number
used in the literature as mentioned in the previous work section. To set up the procedure,
we first fix a political leaning on the grid. Given this, we sample using our MCMC sampler
above - using a burning of 50,000 with 50,000 iterations per sample to generate N = 100
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sample districting plans {Di}Ni=1. On each of these, we test whether the efficiency gap is
greater than 0.08, which returns to us a ‘training set’ of gerrymandered districting plans.
We then pick the appropriate value of T that maximizes the accuracy of the labels given by
our procedure above. We implement this using a confusion matrix in our code.

We then perform the simulation above on two settings:

• A random political landscape described above. In this case, we take the number of
districts to be 9.

• A realistic political landscape case, which consists of a mostly Redpublican landscape
together with small “pockets” of Blumocrats. We take the number of districts to be
8.

Note: We will informally refer to these Blumocrat pockets as islands in the discussion
that follows.

This produces the plots that follow. We can then see from the results that in the random
political landscape case, we should take the threshold to be roughly T = 1.75. To reiterate
the significance of this threshold on our pipeline, given a districting plan D on this political
landscape, and if we have that GS(D) > T, we consider G to be a gerrymander. The plot
for the second simulation, the realistic political landscape case, suggests that we can take
our threshold value for significance to be 0.75. If we had more time to sample, we would
conduct this analysis on a given political landscape to find the best threshold T with which
to classify districting plans on this political landscape.
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Figure 5.1: The first simulation (top image) considers the case where the political leanings are drawn
uniformly at random, where the second simulation (bottom image) considers the realistic political
landscape case.

5.2. Score Robustness Testing

We now tackle a different question. As a check of the robustness of our scoring function S,
we want to answer if it is possible to flip an election while keeping our metric in question
arbitrarily low. Call an election flipped if the outcome is opposite to whichever party has the
majority population vote. We show in eight simulation examples that there do exist such
districting plans, although there are differences in the simulation cases considered above.
In particular, we show that in all cases, the mean value of S is lower for elections with the
popular vote as opposed to flipped elections, which falls in line with the fact that flipped
elections should be considered more gerrymandered than elections which are in line with
the popular vote. However, it is clear from the plots below that there are counterexamples
to this claim: we see examples of flipped elections with low scores.

In the following simulation examples, we again consider the random simulation case where
we generate political leanings independently at random for each county, with proportion
0.45. We then consider the case with realistic political landscape, for the values c = 1, 5, 15,
where recall c denotes the number of islands of Party 2. For each of these political leanings,
we consider the case of different numbers of districts d which we take to be equal to 5 and
9.

In particular, consider Figures 5.2, 5.3 below: we see that in the case of d = 5, the cases
where c = 1, 5, and 15 where the political landscape is city-like show the most difference in
the scores of flipped vote elections versus popular vote elections. It is interesting to note
that below some thresholds such as 0.02, 0.03 we have no flipped vote elections; hence taking
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one of these thresholds would serve as a conservative measure of gerrymandering. Only in
the random case is it difficult to distinguish the difference between these two distributions.
Similar observations can be made about Figures 5.4, 5.5, with the additional remark that
the variance of the scores seems to be smaller, making it slightly easier to separate the
distributions of flipped vote elections and popular vote elections.

Figure 5.2: Quartile plot of gerrymander score in politically homogeneous regions in the 5-district
setting, with one island (i.e., c = 1; top) and five islands (i.e., c = 5; bottom).
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Figure 5.3: Quartile plot of gerrymander score in politically heterogeneous regions in the 5-district
setting, with 15 islands (i.e., c = 15; top) and random distribution (bottom).
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Figure 5.4: Quartile plot of gerrymander score in politically homogeneous regions in the 9-district
setting, with one island (i.e., c = 1; top) and five islands (i.e., c = 5; bottom).
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Figure 5.5: Quartile graph of gerrymander score in politically heterogeneous regions (c=15,∞) in the
9-district setting, where c = 1 (top) and c = 5 (bottom).

In conclusion, we note that in all of our simulations above, the score of a flipped vote (i.e.
an instance in which the vote obtained under a districting scheme differs from the majority
vote of the population) is on average higher than the score of a popular vote (i.e. an instance
in which the vote obtained under a districting scheme is identical to the majority vote of
the population).

While there do exist counterexamples to this claim as discussed earlier, we have strong
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evidence that our scoring scheme is, on average, robust with regard to classifying instances
of flipped votes and instances of popular votes.

6. The Case of North Carolina

In this section, we evaluate the performance of our model on real-world data; specifically, we
attempt to detect gerrymandering in the well-documented case of manipulative districting
in the Congressional elections of North Carolina in 2012.

In Section 6.1, we describe our discretization of the geography of North Carolina, and
our labelling of the political preferences on this discretized map. We then discuss the
performance of our model on this graph in Section 6.2.

All the data used in this section is taken from [Str12].

6.1. Basic Setup

North Carolina has 100 counties, each of which we will represent as a node in a 10×10 grid.
We account for uneven distribution in the population across counties in our discretization:
51% of the voter turnout was Blumocratic, which is represented by the 51 blue nodes in out
10× 10 grid.

Figure 6.1: Counties in North Carolina with political leaning (2012)
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Figure 6.2: Congressional Districting of North Carolina (2012)

Our discretization of North Carolina, which we will dub “North Squarolina”, is presented
below, together with a skewed map of North Carolina for motivating our grid graph. We
district it according to the 2012 Republican districting scheme (illustrated above).

Figure 6.3: North Squarolina

The above encoding and representation of North Squarolina in electronic format for use
with the code in Appendix B is available upon request.

6.2. Our Model’s Performance

Our model returns S1(D) = 0.078 and S2(D) = 0.088, resulting in a gerrymander score
of 0.078. To evaluate this result, we run our Markov chain on North Squarolina, sampling
according to the parameters defined above. With over 5000 samples, we measure a standard
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deviation of σ = 0.024 and mean E[S(G)] = 0.057. We use this to calculate Gerrymandering
severity:

GS =
|0.078− 0.057|

0.024
= 0.875

which is above the threshold we previously defined for gerrymandering in realistically defined
political districts. Therefore, our model correctly predicts the effects of gerryman-
dering in the 2012 North Carolina Congressional elections.

Note, however, that this is a weak effect relative to the threshold of GS = 0.75. While
there are several possible causes for the weakness of this effect, including the complicated
translation from North Carolina electoral districts onto a square grid, we consider one pos-
sibility to be particularly likely: the voting districts of North Carolina do not have equal
populations. This violates the “One Person, One Vote” assumption stated in Section 3.

Figure 6.4: Gerrymander quartile scores for North Squarolina

7. Drawbacks and Improvements

As mentioned throughout the report, the sampling approach to the gerrymandering problem
is a very general approach that can incorporate detailed information about the districting
plan. Although we restricted our model to a planar graph with the same population at each
node, we can extend this by directly placing more information in the Hamiltonian of the
Gibbs measure of the set of districtings. Herschlag et al. in [Her+18] took the Hamiltonian
to be a weighted sum information relevant to protecting minority voters, as well as geometry
of the district shape, and differing district populations. This allowed the model to weight
districting plans differently by these characteristics. However, the theoretical properties are
still not yet well characterized, so further work into this would be illuminating [CFP17].
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Given this assumption of having a Gibbs measure on the set of partitions of our graph, we
looked at a certain functional of this distribution given by the scoring function we designed,
although this can be swapped for any functional that measures other properties related to
the gerrymandering problem.

Some further extensions of our approach could include modeling the extent to which each
county leans towards Party 1 or Party 2. This model was approached by the Princeton group
on gerrymandering [Wan]. Another interesting extension is to add stochastic elements to
each county, with the possibilities of ties, or perhaps, low voter turnout—an issue which is
extremely relevant to our modern political times.

8. Conclusion

Gerrymandering is an old problem with a complicated definition, intricately tied up with the
law, as well as the political and geographic landscape. While this report gave an overview of
the numerous methods that quantify and analyze gerrymandering, we chose to focus on the
extremely general sampling approach, which can be recast as special cases of other models in
the literature. As a departure from these methods however, we chose a functional approach
to the problem, which summarized the samples from our Monte Carlo sampler using a
scoring function and an associated z-score characterizing the extremity of a given score. We
chose the scoring function in order to capture two different cases of districting plans which
we deemed were tolerable, but may have been considered gerrymandering according to other
metrics.

We then analyzed some aspects of this model, showing how to sample from a Gibbs
measure on the space of districting plans, how to calibrate our model against existing metrics,
and whether our scoring function was robust or not. Although we saw examples for which
an election flipped while having a low score, examples of these districting plans are not
common in the simulation case that mirrors the true American political landscape, which
suggests that our scoring function is robust in application.

As a successful application of our model, we were able to show that the 2012 North
Carolina House Election was indeed gerrymandered. We could make these results even
more powerful if we had more resources: we could have considered the full KDE approach
described in the model section, instead of defining the z-score of our quantity S, which
may not be representative in the case where this distribution is not unimodal or is heavily
skewed. This would likely have improved the significance of our results. But even with this
first approximation, our result still demonstrates the efficacy of our model.
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B. Code

B.1. Generating and Scoring Districtings

import networkx

import gerrychain.partition

from gerrychain.partition import Partition

from gerrychain.partition import GeographicPartition

from gerrychain.proposals import propose_random_flip

from gerrychain.defaults import Grid

from gerrychain import MarkovChain

from gerrychain.constraints import Validator , single_flip_contiguous ,

new_constraint

from gerrychain.proposals import propose_random_flip

from gerrychain.accept import always_accept

import numpy as np

from math import sqrt

import matplotlib.pyplot as plt

import math

from termcolor import colored

import random

# partition n into k distinct numbers

def partitionfunc(n, k, l = 1):

if k < 1:

raise StopIteration

if k == 1:

if n >= l:

yield (n,)

raise StopIteration

for i in range(l,n+1):

for result in partitionfunc(n-i,k-1,i):

yield (i,)+result

# return a random element from an iterable

def iter_sample_fast(iterable , samplesize):

results = []

for i, v in enumerate(iterable):

r = random.randint(0, i)

if r < samplesize:

if i < samplesize:

results.insert(r, v) # add first samplesize items in random

order

else:

results[r] = v # at a decreasing rate , replace random items

if len(results) < samplesize:

raise ValueError("Sample larger than population.")

return results

# generate political leanings that reflect cities

# and real -world political leanings

def bubble_leanings(size , proportion , number_bubbles):
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side_1 = size[0]

side_2 = size[1]

total_blue = int(math.floor(side_1 * side_2 * proportion))

city_sizes = iter_sample_fast(partitionfunc(total_blue , number_bubbles),

1)[0]

biggest_bubble = max(city_sizes)

leaning_matrix = np.zeros([side_1 , side_2]).flatten () # zero = red

positions = np.random.choice(side_1*side_2 - biggest_bubble ,

number_bubbles)

# one = blue

for i in range(number_bubbles):

size = city_sizes[i]

start = positions[i]

for j in range(size):

leaning_matrix[start + j] = 1

leaning_matrix = np.reshape(leaning_matrix[:side_1*side_2], (side_1 ,

side_2))

leaning_matrix[1::2, :] = leaning_matrix[1::2, ::-1]

return leaning_matrix.astype(int)

def get_political_leanings(size , num_classes=2):

# return np.random.randint(0, num_classes , size)

return np.random.choice([0, 1], size=size , p=[.45 , .55])

def get_polarity(grid , num_classes=2):

areas = np.zeros(num_classes)

for row in grid:

for value in row:

areas[value] += 1

if (num_classes == 2):

return areas[0]/(np.sum(areas))

# partition = districts

# grid = political leanings

def get_district_vote(assignment , leanings_grid , num_classes=2, num_districts

=4):

district_votes = np.zeros (( num_districts , num_classes))

for node in assignment:

district = assignment[node]

leaning = leanings_grid[node]

district_votes[district][leaning] += 1

return district_votes

def get_district_polarities(district_votes):

polarities = [areas[0]/np.sum(areas) for areas in district_votes]

return polarities

def delta_dvec(polarities , polarity):

running_sum = 0

for p in polarities:

running_sum += abs(p - polarity) ** 2

running_sum = sqrt(running_sum)
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return running_sum/len(polarities)

def get_vote(district_votes):

return [areas[0] > areas[1] for areas in district_votes]

def delta_d(votes , polarity):

return abs(sum(votes)/len(votes) - polarity)

def flipped_vote(votes , polarity):

# Returns true if district and popular votes are different :

if (( polarity < 0.5) and (sum(votes)/len(votes) > 0.5)) or (( polarity > 0

.5) and (sum(votes)/len(votes) < 0

.5)):

return True

else:

return False

def district_assignment(size , districts):

side_1 = size[0]

side_2 = size[1]

population = side_1 * side_2

district_size = math.floor(population/districts)

assignment_matrix = np.zeros([side_1 , side_2]).flatten ()

bonus = 1

for i in range(population):

assignment = math.floor(i/district_size) + 1

if assignment > districts:

assignment_matrix = np.insert(assignment_matrix , (bonus)*(

district_size + 1) - 1,

bonus)

bonus = (bonus + 1) % districts

else:

assignment_matrix[i] = assignment

assignment_matrix = np.reshape(assignment_matrix[:side_1*side_2], (side_1

, side_2))

assignment_matrix[1::2, :] = assignment_matrix[1::2, ::-1]

assignment_matrix -= np.ones(size)

assignment_dict = dict()

for i in range(side_1):

for j in range(side_2):

assignment_dict[(i, j)] = int(assignment_matrix[(i, j)])

return assignment_dict

def print_partition(partition , leanings , size):

matrix = np.zeros(size)

for key in partition.assignment:

matrix[key] = partition.assignment[key]

output = ""

for i, row in enumerate(matrix):
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for j, value in enumerate(row):

leaning = leanings[i, j]

if leaning == 0:

output += colored(int(value), ’red’)

else:

output += colored(int(value), ’blue’)

output += "\n"

print(output)

B.2. Calculating the Efficiency Gap

# political_leanings is dictionary with tuples of coordinates as keys , value

is the political leaning , zero or one

# districting_plan is dictionary with tuples of coordinates as keys , value is

the region.

def efficiency_gap(districting_plan , political_leanings):

total_votes = len(political_leanings)

# convert the districting plan into a dict

districts = {}

for (key , value) in districting_plan.items():

if value in districts.keys():

districts[value] = districts[value] + [key]

else:

districts[value] = [key]

efficiency_gap = []

# for each district calculate the wasted votes

for district , counties in districts.items():

district_size = len(counties)

votes = [political_leanings[county] for county in counties]

party_1_votes = (district_size - sum(votes))

party_2_votes = sum(votes)

# if party 1 wins

if party_1_votes >= party_2_votes:

party_1_wasted_votes = party_1_votes - district_size/2

party_2_wasted_votes = party_2_votes

else:

party_1_wasted_votes = party_1_votes

party_2_wasted_votes = party_2_votes - district_size/2

efficiency_gap = efficiency_gap + [party_1_wasted_votes -

party_2_wasted_votes]

return abs(sum(efficiency_gap))/total_votes

def compute_confusion_matrix(labels , values ,threshold):

thresholded_values = [1 if value > threshold else 0 for value in values ]
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return confusion_matrix(labels , thresholded_values)

def compute_performance_curve(labels ,values):

curve = []

for threshold in np.linspace(0,3,60):

cf = compute_confusion_matrix(labels ,values ,threshold)

performance = (cf[0,0] + cf[1,1])/sum(sum(cf))

curve = curve + [performance]

return np.array([np.linspace(0,3,60),np.array(curve)])
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