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In many areas of computer vision, such as multiscale analysis and shape descrip-
tion, an image or surface is smoothed by a nonlinear parabolic partial differential
equation to eliminate noise and to reveal the large global features. An ideal flow, or
smoothing process, should not create new features. In this paper we describe in detail
the effect of a number of flows on surfaces on the parabolic curves, the ridge curves,
and umbilic points. In particular we look at the mean curvature flow and the two
principal curvature flows. Our calculations show that two principal curvature flows
never create parabolic and ridge curves of the same type as the flow, but no flow is
found capable of simultaneously smoothing out all features. In fact, we find that the
principal curvature flows in some cases create a highly degenerate type of umbilic.
We illustrate the effect of these flows by an example of a 3-D face evolving under
principal curvature flows. C© 2002 Elsevier Science (USA)

Key Words: curvature flow; 3D shape analysis; parabolic curve; ridge curve; um-
bilic point.

1. INTRODUCTION

Geometry-driven flows have been proposed and studied for smoothing surfaces or getting
a hierarchical description of surfaces. It is believed that shape features are only meaning-
ful over a particular range of scale [1]. Some features are pure noise associated with the
measurement process, some are fine details (think of wrinkles on a face), some are of in-
termediate scale, and some are present on the coarsest scale (think of the nose as a feature
of facial shape). Therefore, in order to describe a shape, it is extremely important to get a
multiscale representation of it. This basic idea led to the development of scale-space theory
[2, 3]. Initially the work focused only on linear scale-spaces, but later on many nonlinear and
geometric scale-space methods were also developed (for example, the anisotropic diffusion
proposed by Perona et al. [4, 5], the level set method described by Osher and Sethian [6],
and Olver et al.’s work based on differential invariants [7], see also Gage and Hamilton [8],
Brakke [9], Alvarez and Mazzora [10], Alverez et al. [11], etc.).

Descriptions of a shape at different scales are obtained by continuously deforming it to
smoother ones. Ideally, this deformation process should be causal [1], in the sense that it
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should maintain a hierachical structure of geometric features and not introduce any new
ones. Usually, these features can be characterized as certain types of singularities of a
shape. The simplest example of a causal flow is given by the smoothing of a plane curve
by its curvature. The main features of a plane curve are its points of inflection where the
curvature is zero, and the “vertices” where the curvature has a local maximum or minimum.
Under curvature flows, these features are never created. For surfaces there are two principal
curvatures and the features we will be interested in are (a) the parabolic curves where one
of these curvatures is zero, (b) the ridge curves where one of them has a maximum or
minimum on its corresponding line of curvature, and (c) umbilic points where they are
equal.

Parabolic points are associated with inflections on object contours. It has also been shown
that they are closely related to pairs of specular points on surfaces [1]. Ridge curves are
highly significant features of a surface for shape recognition and analysis as they corre-
spond roughly to what we perceive as the convex and concave “edges” of a shape. Recent
applications include medical imaging, for example, the description of the cortical surface
in MRI scans using ridges [12, 13] and face recognition by ridges [14, 15], among others.
The last reference also contains a detailed exposition of the basic definitions and properties
of these special curves and points on surfaces.

While it has been proven that curvature flows always simplify the structure of plane
curves [8], it is not fully understood how geometric flows, as smoothing processes, sim-
plify surface features. In this paper, we will consider the class of curvature flows based
on the functions of the two principal curvatures. In particular we want to know whether a
certain flow creates parabolic points, ridge points, and umbilics. In a rather discouraging
article 10 years ago, Yuille [16] showed that both parabolic curves and ridge curves can
be created under mean curvature flows. However, each parabolic and each ridge curve is
associated to only one of the two principal curvatures. This suggests studying flows that
can decouple the two. Our main result is that if we use the flow defined by one of the
principal curvatures, then ridges and parabolics associated to that principal curvature are
never created. However, umbilics are precisely those points where the two principal cur-
vatures become equal; hence they intertwine the two flows. In fact, surfaces apparently
become non-C2 at umbilic points under principal curvature flow, this flow existing only
as a viscosity solution. We find that umbilics can be created under both of these flows,
and, in fact, in some cases, umbilic points collide in a remarkable way under the princi-
pal curvature flows. Presumably, this is connected to the fact that on the simplest of all
surface, namely, the sphere, all points are umbilics. Moreover, our numerical experiments
strongly suggest that all parabolics will eventually be eliminated under the principal curva-
ture flows and the ridges reduced to the bare minimum (e.g., on all ellipsoids, there are three
ridges on the three coordinate planes). This means that principal curvature flows are basic
tools to use in connection with the application of curvature to three-dimensional object
recognition.

This paper proceeds as follows. Section 2 derives the equations characterizing the flows
we will consider, and includes a discussion on the existence of solutions of the equations.
Sections 3 through 5 describe the local effects of curvature flows on parabolic points, ridge
points, and umbilics, respectively. Section 6 shows a numerical simulation of a 3-D face
under two principal curvature flows, and gives some intuition on how the two flows simplify
a surface in different ways.
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2. CURVATURE FLOW ON A MONGE PATCH

2.1. The Equation for Curvature Flows

In this paper, we shall consider a smooth surface patch locally described in Monge form:

z = f (x, y) = 1

2
(κ1x2 + κ2 y2) + 1

3!

3∑
j=0

(
3

j

)
b j x

3− j y j + 1

4!

4∑
j=0

(
4

j

)
c j x

4− j y j

+ 1

5!

5∑
j=0

(
5

j

)
d j x

5− j y j + o((x, y)5). (1)

At the origin, the tangent plane is the x − y plane, κ1, κ2 are the two principal curvatures,
and the x and y axes are in the principal directions (provided κ1 �= κ2). After a suitable
translation and rotation, any point on the surface can be represented this way. Without loss
of generality, we always assume that κ1 ≥ κ2.

In the following sections we will only look at a small neighborhood of the origin. In each
case we shall assume that the origin is of the singularity type in which we are interested.
Then we will analyze how the features change locally by examining the corresponding
equations, in terms of the coefficients of Eq. (1).

Now consider a one-parameter family of surfaces {St } parametrized by t , which is often
referred to as “time” or “scale.” At time t , we want to deform St along the normal direction
of each point, with a “speed” of β:

dSt

dt
= β 
N t . (2)

Locally, St can be represented in Monge form as

St = {(x, y, z) : z = F(x, y, t)},
and the normal vector 
N t on St is


N t = (−Fx , −Fy, 1)√
1 + F2

x + F2
y

.

Using first-order approximation, Eq. (2) becomes

St+�t − St = (�x, �y, �z) = β
(−Fx , −Fy, 1)√

1 + F2
x + F2

y

· �t + o(�t),

where

�z = �F = Fx�x + Fy�y + Ft�t + o(�t).

Therefore

Ft =

 β�t√

1 + F2
x + F2

y

− Fx�x − Fy�y


/

�t + o(�t)/�t

= β

√
1 + F2

x + F2
y (as �t → 0).
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If we suppose S0 is described by z = f (x, y), as in Eq. (1), then Eq. (2) leads to the
initial value problem

Ft (x, y, t) = β ·
√

1 + F2
x + F2

y (3a)

F(x, y, 0) = f (x, y). (3b)

For small t , we can approximate the solution by

F(x, y, t) = F(x, y, 0) + Ft (x, y, 0)t + o(t)

= f (x, y) + β

√
1 + f 2

x + f 2
y · t + o(t). (4)

If β is chosen to be a function of the principal curvatures K1(x, y), K2(x, y) (by con-
vention, we always assume K1 ≥ K2), then we call this process of deformation a curvature
flow. One of the most important types of flows is the mean curvature flow, i.e., when β = H ,
where H is the mean curvature of the surface. The family of surfaces are defined by

F(x, y, t) = f (x, y) + H (x, y)
√

1 + f 2
x + f 2

y · t + o(t). (5)

We will also explore principal curvature flows: when β is one of the two principal curvatures.
If β = K1 (resp. K2) we call the corresponding flow K1 flow (resp. K2 flow). Under Ki

flow (i = 1, 2), the family of surfaces are then given by

F(x, y, t) = f (x, y) + Ki (x, y)
√

1 + f 2
x + f 2

y · t + o(t). (6)

Equation (2) is a nonlinear parabolic PDE. Even when the initial surface is smooth, the
evolution family of surfaces may develop singularities. In particular, the principal curvatures
are nondifferentiable functions at umbilic points; hence umbilics will become singular points
under the principal curvature flows. The issue of the existence and uniqueness of solution
to (2) is not trivial. See the Appendix for a discussion on this.

2.2. Good Flows vs Bad Flows

A “good” flow should always simplify a surface. That is, as t increases, no new geometric
features or singularities should be generated. Analogously, as the scale t increases, no new
detail is created on the surface. In fact, features should eventually be destroyed. This mono-
tonic decrease of features is desirable because it gives us a good hierarchical description of
the surface.

First, let us look at the analogous 2-D case. Consider the flow

dCt

dt
= κ 
N t ,

where {Ct = (x, F(x, t))} is a family of curves, κ is the curvature, and 
N t is the normal
direction of Ct . One can show that the flow leads to the equation

Ft = Fxx
/(

1 + F2
x

)
.
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As an example, consider the curve y = x4, which has a double inflection point at (0, 0).
One can derive

F(x, t) = x4 + 12x2t + o(x4, t x2)

∂2 F

∂x2
= 0 ⇔ 12(x2 + 2t) + o(t, x2) = 0.

Thus there are two inflection points if t < 0 and none for t > 0; i.e., the flow does not
create inflection points. Similarly, the flow does not create “vertices,” where the curvature
assumes extremal values. Thus, this flow has the desired property.

In the 3-D case, the important types of singular points include parabolic points, ridge
points, and umbilic points. Again, good flows are those that do not generate new such
singular points on the surface.

There is a standard bifurcation for the birth/death of each type of singularity. We will
adopt the terminology of Bruce et al. [17, 18] to refer to these bifurcations. We shall examine
in which direction each bifurcation moves, under different types of flows.

Remark. There are two points we would like to emphasize here. First, the results we state
in this paper are local, concerning surface patches rather than closed surfaces. Secondly,
unless otherwise mentioned, we will focus on generic surfaces, for which the features occur
and change in a stable way; i.e., if we slightly perturb the surface the pattern in which the
features evolve does not change. In contrast, surfaces of revolution are not generic, because
the symmetries would be broken by small perturbations.

3. PARABOLIC POINTS

At parabolic points the Gaussian curvature of a surface vanishes. They are the boundaries
between elliptic and hyperbolic regions. Alternatively, they are the points where the tangent
planes have a specially higher order contact with the surface [17]. Parabolic points can be
further classified distinction by assigning “colors” to them as follows: a point is called a
blue parabolic point if the larger principal curvature κ1 is 0; likewise, a red parabolic point
is where the smaller principal curvature κ2 equals 0. A more degenerate type is the flat
umbilic, where κ1 = κ2 = 0.

If the surface is closed and oriented so that the curvature is positive at convex regions,
then the red parabolics are the boundaries between convex elliptic regions and hyperbolic
regions and the blue parabolics are the boundaries of the concave elliptic regions.

Generically, in a one-parameter family of surfaces, parabolic curves can only be created
through a nonversal A3 transition [17]. At the moment of transition there is (locally) a single
parabolic point. Then it either disappears or evolves into a parabolic loop.

The red parabolic set (i.e., K2 = 0) of S0 around the origin satisfies

0 = fxx fyy − f 2
xy = κ1(b2x + b3 y) +

(
1

2
κ1c2 + b0b2 − b2

1

)
x2

+ (κ1c3 + b0b3 − b1b2)xy +
(

1

2
κ1c4 + b1b3 − b2

2

)
y2 + o((x, y)2).

If a red parabolic loop is to be created, then there must exist a moment when an A3

transition takes place at some point on the surface. For the rest of this section, we will
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suppose that t = 0 corresponds to the moment of an A3 transition, and that the origin is an
isolated red parabolic point on S0. Thus b2 = b3 = 0, and the quadratic form

Q(x, y) =
(

1

2
κ1c2 − b2

1

)
x2 + κ1c3xy + 1

2
κ1c4 y2

is either positive definite or negative definite in a neighborhood of the origin.

3.1. Mean Curvature Flow

Under mean curvature flows, the family of surfaces (for small t) is given by Eq. (5). The
parabolic set of St is given by

0 = Fxx Fyy − F2
xy =

[
1

2
κ1(c2 + c4) + O(x, y)

]
t + o(t) +

(
1

2
κ1c2 − b2

1

)
x2

+ κ1c3xy + 1

2
κ1c4 y2 + o((x, y)2).

For each fixed t , the parabolic set satisfies

t = − Q(x, y)

κ1(c2 + c4)/2
+ o((x, y)2). (7)

Here Q(x, y) is either positive definite or negative definite, depending on the sign of κ1c4:

— If κ1c4 > 0, then 1
2κ1c2 − b2

1 > 0, so that κ1c2 > 0. Hence, κ1(c2 + c4) > 0, and the
right-hand side of (7) is always negative. Thus for sufficiently small t > 0, no red parabolic
loop is created.

— If κ1c4 < 0, it is possible to create red parabolic loops for some surfaces, since the
right-hand side of (7) could be positive.

The case κ1c4 > 0 corresponds to the bifurcation when a hyperbolic area appears or
disappears inside an elliptic region; κ1c4 < 0 corresponds to the opposite case [17]. Thus, no
hyperbolic regions can be created under a mean curvature flow. However, elliptic regions can
be created. By symmetry, this is also true when we start from an isolated blue parabolic point.

3.2. Principal Curvature Flow

Now consider the K2 flow. Recall that κ2 = 0. The smaller principal curvature around
the origin is

K2(x, y) =
(

c2

2
− b2

1

κ1

)
x2 + c3xy + c4

2
y2 + o((x, y)3).

Substituting this into (6), we can obtain F(x, y, t), and the parabolic set of St is given by

0 = Fxx Fyy − F2
xy =

[
1

2
κ1c4 + O(x, y)

]
t + Q(x, y) + o(t, (x, y)2)

t = −
(

1
2κ1c2 − b2

1

)
x2 + κ1c3xy + 1

2κ1c4 y2

κ1c4
+ o((x, y)2).
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The numerator and the denominator above always have the same sign, which means that
for t > 0 and small, the isolated red parabolic point is always eliminated, and no (red)
parabolic loop is created. A similar argument shows that K1 flows do not generate blue
parabolic loops.

In addition, we believe that the blue (resp. red) parabolic loops are always eliminated by
K1 flows (resp. K2 flows), although a rigorous proof has yet to be found.

3.3. Conclusion

• Under mean curvature flows, parabolic loops (either blue or red) can be created. More
precisely, hyperbolic regions cannot be created inside elliptic regions; elliptic regions can
be generated inside hyperbolic regions.

• Under K1 (resp. K2) flows, no blue (resp. red) parabolic loops are generated.

4. RIDGE POINTS

A ridge point is a point where the surface has a higher order contact with one of the
osculating spheres, or equivalently, where the principal curvature has an extreme value along
the corresponding line of curvature. Ridge points can also be colored: those associated with
the larger principal curvature are blue ridges, and those associated with the smaller principal
curvature are red ridges. Here we shall restrict ourselves to ridge points away from umbilics.

Let K2(x, y) be the smaller principal curvature, and 
V 2(x, y) be the principal direction
corresponding to K2. Then the condition for a red ridge point is

∇K2(x, y) · 
V 2(x, y) = 0.

From this we can get the equation for red ridge points (in a sufficiently small neighborhood
of the origin):

0 = b3(κ1 − κ2) − (3b1b2 − (κ1 − κ2)c3)x

− (
3b2

2 − (κ1 − κ2)
(
c4 − 3κ3

2

))
y + Q(x, y) + o(x, y)2), (8)

where

Q(x, y) = (· · ·)x2 + (· · ·)xy +
(

1

2
d5(κ1 − κ2) − 9

2
b2c3

+ 6b1b2
2

κ1 − κ2
− 9(κ1 − κ2)κ2

2 b3 − 4b2
2b3

κ1 − κ2

)
y2

represents the quadratic terms.
Generically, in a family of surfaces, ridges are created or killed through a Morsetransition

[18]. At the moment of transition there is (locally) an isolated ridge point. Then this point
either disappears or develops into a ridge loop.

Suppose that S0 is the surface at the transition moment, and that the origin is an isolated
red ridge point. Then the linear terms in Eq. (8) vanish, which yields

b3 = 0, 3b1b2 = (κ1 − κ2)c3, 3b2
2 = (κ1 − κ2)

(
c4 − 3κ3

2

)
.
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Equation (8) now reduces to

Q(x, y) + o((x, y)2) = 0,

with

Q(x, y) = (· · ·)x2 + (· · ·)xy + 1

2

(
d5(κ1 − κ2) − 15b1b2

2

κ1 − κ2

)
y2

being either positive definite or negative definite in a neighborhood of the origin.

4.1. Mean Curvature Flow

It can be shown that the mean curvature flow can move in either direction; i.e., it can
either generate a ridge loop or not. The calculations, which are omitted here, are similar to
those in the following subsection.

4.2. Principal Curvature Flow

The equation for the red ridge curve on St is described by

∇K2(x, y, t) · 
V 2(x, y, t) = 0,

which leads to

0 = Q(x, y) +
(

d5(κ1 − κ2) − 15b1b2
2

κ1 − κ2

)
t + o(t, (x, y)2).

Solving for t we get

t = − Q(x, y)

d5(κ1 − κ2) − 15b1b2
2

κ1 − κ2

+ o((x, y)2).

Note that the denominator and the coefficient of y2 in Q(x, y) always have the same signs.
By assumption, locally Q(x, y) is either positive definite or negative definite. Thus t would
always be negative when x and y are small. This means that when t > 0 there is to ridge
point, and therefore the K2 flow cannot generate any red ridges. By a similar argument, we
can prove that K1 flows do not generate any blue ridges.

In conclusion, K1 (resp. K2) flows do not generate blue (resp. red) ridge loops. As in
the parabolic case, we suspect that these flows always eliminate the ridge loops of the
corresponding color.

5. UMBILICS

At an umbilic point the two principal curvatures are equal. The ridge curves change
“colors” at umbilic points.

When a family of surfaces goes through a nonversal D4 transition, a pair of umbilics are
either created or killed [18]. Suppose at the moment of transition, the origin is a (double)
umbilic point on S0. One can show that S0 is given by

z = f (x, y) = 1

2
κ(x2 + y2) + 1

6
(b0x3 + 3b1x2 y + 3b2xy2 + b3 y3) + o((x, y)3),
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with the coefficients satisfying

∣∣∣∣∣ b0 − b2 b1 − b3

b1 b2

∣∣∣∣∣ = 0.

By rotating axes we can assume b1 = b2 = 0. We will consider several different types of
flows in this section.

5.1. Modified Mean Curvature Flow

First consider the modified mean curvature flow

F(x, y, t) = f (x, y) + Hn(x, y)
√

1 + f 2
x + f 2

y · t + o(t), (9)

where

Hn(x, y) =
(

K n
1 (x, y) + K n

2 (x, y)

2

)1/n

.

Here K1(x, y), K2(x, y) are the two principal curvatures.
Hn(x, y) is actually a function of the mean curvature H (x, y) and the Gaussian curvature

K (x, y). From the Taylor expansion of H and K , we can get the expansion of Hn around
the origin. The details are omitted here. The result is

Hn = κ + 1

2
(b0x + b3 y) +

(
−κ3 + 1

4
c0 + 1

4
c2 + n − 1

8

b2
0

κ

)
x2

+
(

1

2
c1 + 1

2
c3 − n − 1

4

b0b3

κ

)
xy +

(
− κ3 + 1

4
c2 + 1

4
c4 + n − 1

8

b2
3

κ

)
y2 + o((x, y)2).

Suppose that the first and second fundamental forms of St are I = E dx2 + 2F dx dy +
G dy2 and I I = e dx2 + 2f dx dy + g dy2, respectively. One can show the condition for
an umbilic is

rank

(
E F G
e f g

)
≤ 1,

which is equivalent to simultaneously requiring that

Eg − Ge = 0 (10)

G f − Fg = 0. (11)

Note that we can replace e, f , g by Fxx , Fxy , and Fyy in the above equations. We can
calculate the Taylor expansions of these terms and substitute them into the equations. It
turns out that (10) is a linear equation for x and y, whereas (11) is a quadratic one. If we
solve for t we get

t = −2κ
(
2b0b3c2 + b2

0c3 + b2
3c1 − 2κ3b0b3

)
b2

3(2κc1 + 2κc3 − (n − 1)b0b3)
x2 + o(x2). (12)
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Since for a generic surface, the right-hand side of (12) could be either positive or neg-
ative, our flow can go in both directions, meaning that it can either create or kill a pair of
umbilics.

The above result is derived for n > 1. A direct calculation shows that it also holds when
n = 1, which is the case for mean curvature flows.

5.2. Some Other Types of Flows

Next consider the principal curvature flows (β = K1 or β = K2). Since the principal
curvatures are not C∞ functions at the umbilic points, we cannot directly expand them into
Taylor series. However, it is clear that the K1 flow is the limiting case of the Hn flow above
(as n → ∞). Also, if the K1 flow can go in both directions, so can the K2 flow, because
they have the same effect in this case. Consequently, the principal curvature flows can go
in both directions as well.

Another interesting case is the Gaussian curvature flow, when β = G = K1 K2. By similar
calculations as in Section 5.1, we get

t = −1

2

2b0b3c2 + b2
0c3 + b2

3c2 − 2κ3b0b3

b2
3(κc1 + κc3 + b0b3)

x2 + o(x2).

Finally, consider the mean-Gaussian flow proposed by Neskovic and Kimia [19], in which
case

β = sign(H ) ·
√

G + |G|.

The result is

t ≈ −
√

2κ
(
2b0b3c2 + b2

0c3 + b2
3c1 − 2κ3b0b3

)
b2

3(2κc1 + 2κc3 + b0b3)
x2.

Obviously both flows can create or delete umbilics.

5.3. Conclusion

Under any of the above flows, a pair of umbilics can be either generated or eliminated.
We think this is due to the fact that the natural limit of the smoothing process is a sphere
that is one big degenerate locus of umbilic points. This suggests that destroying umbilics
is not an essential part of the smoothing process. From another perspective, umbilic points
are conformally invariant features, whereas all the above flows are not. P. Olver (personal
communication) has determined the lowest order conformally invariant formal flow but it
turns out to be a parabolic flow that is everywhere ill-posed, its second-order derivatives
having one positive and one negative eigenvalue. A very interesting problem is how to
describe the form of singular surface that viscosity solutions of the principal curvature flow
generate from umbilics: we conjecture that these are some sort of “pseudo-umbilic” C1 but
not C2 points.
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6. SIMULATING PRINCIPAL CURVATURE FLOWS ON A FACE

The experiment is based on laser range data of the face of a young woman that has been
first smoothed to eliminate noisy features. The data come from a Cyberware scanner and are
in cylindrical coordinates r = r (z, θ ) describing the whole head. We only look at the face
and we impose Neumann boundary conditions ∂r

∂θ
= ∂r

∂z = 0 to get a well-posed boundary
value problem.

To understand the experiment, one must first realize that the lines of curvature of κ1,
the larger curvature, tend to be horizontal. Thus, when the face is smoothed a great deal,
it approaches an ellipsoid with κ1 maximum on the nose ridge and its lines of curvature
perpendicular to the nose ridge and running left and right across the face area. On a fully
formed face, these lines make detours around the nose, the eyes, and ends of the mouth. On
the other hand, the lines of curvature of κ2, the smaller curvature, tend to be vertical on the
smooth parts of the face (see Figs. 7.19, 7.21, and 7.26 of [15]).

We expect that principal curvature flows will simplify the surface mainly in the corre-
sponding principal directions. In fact, what happens under the K1 flow is that the face in the
horizontal direction tends to become circular while in the vertical direction it retains the
original undulating curve caused by eyes, nose, and mouth. On the other hand, under the K2

flow, the face in the vertical direction tends to become flat while in the horizontal direction
we have a single peak along the nose, so that after some time, the face looks like a folded
paper. See Fig. 1.

Both the K1 flow and the K2 flow kill the parabolic loops: see Fig. 2. We also found
that the K2 flow created a blue parabolic loop near the boundary of the face. Although this
is certainly a new structure, it is created in a nearly flat part of the face where the cheek
interacts with the Neumann boundary conditions we imposed and is not a new perceptually
salient structure. Moreover, under both principal curvature flows, a pair of umbilics can be
either created or eliminated. A pair of umbilics is created in Fig. 2.

Another interesting phenomenon in Fig. 2 is that a pair of umbilics of the same kind
always present on the tip of the nose get closer under κ1 flow. One might suspect that this
was an artifact of the numerical simulation (as we did), but one can give a strong heuristic
argument that this really happens for pairs of symmetric double umbilics on a ridge. To
make the calculation relatively simple, assume we have a surface z = f (x, y) symmetric
under both (x, y) → (−x, y) and (x, y) → (x, −y). This makes the x and y axes red and
blue ridges respectively on this surface. In the Monge form, only terms in x2 and y2 remain:

z = f (x, y) = 1

2
κ1x2 + 1

2
κ2 y2 + 1

24
(c0x4 + 6c2x2 y2 + c4 y4)

+ 1

6!
(e0x6 + 15e2x4 y2 + 15e4x2 y4 + e6 y6) + · · · .

Then the two principal directions are the x axis and the y axis. Suppose there are two
umbilics near the origin on the x axis. We get the following condition for this to happen:

c2 − c0 + 2κ3
1 > 0.

In this case, the (x, y) coordinates of the two umbilics are (±
√

2(κ1− κ2)
c2− c0 + 2κ3

1
+ · · · , 0). Under



76 LU, CAO, AND MUMFORD

FIG. 1. The 3D face under curvature flows. The top one is the original face, the middle and bottom ones are
the faces under K1 and K2 flows at t = 1000 respectively. Solid curves are blue ridges, and dotted curves are red
ridges.
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FIG. 2. The evolution of parabolics, ridges, and umbilics. The top row is the original face, the next row is
the face under K1 flow at t = 100, the third row is the face under K2 flow at t = 100, and the bottom row is the
face under K2 flow at t = 250. On the left, the blue ridges, blue parabolic curvess, and the level sets of K1 are
shown; on the right are the red ridges, red parabolic curves, and the level sets of K2. Thick solid lines are elliptic
ridgs; thin solid lines are hyperbolic ridges. Triangled curves are blue parabolic curves; starred curves are red
parabolic curves. Dotted lines are level sets of principal curvatures. Small solid disks are lemon umbilics; small
solid triangles are star umbilics.
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the K1 flow,

F(x, y, �t) = F(x, y, 0) + Ft (x, y, 0)�t + o(�t)

= f (x, y) + K1(x, y)
√

1 + f 2
x + f 2

y �t + o(�t)

= κ1�t + 1

2

(
κ1 + (

c0 − 2κ3
1

)
�t

)
x2 + 1

2
(κ2 + c2�t)y2

+ 1

24

(
c0 +(

e2 − 20c0κ
2
1 + 24κ5

1

)
�t

)
x4

+ 1

4

(
c2 +

((
e4 + c0κ

2
2 + 2c2κ

2
1 − 4κ5

1 − 4κ4
1 κ2

) + 4
(
c2 − κ3

1

)2

κ1 − κ2

)
�t

)
x2 y2

+ 1

24
(c4 + e6�t)y4 + o(�t, x4, y4).

Hence,

∂(κ1 − κ2)

∂t
= c0 − c2 − 2κ3

1 < 0,

which brings the umbilics closer together. One can also look at the second derivative, at the
change of C2 − C0 + 2K 3

1 ,

∂
(
C2 − C0 + 2K 3

1

)
∂t

= b(x, y) + 4

κ1 − κ2

(
c2 − κ3

1

)2
,

where

b(x, y) = e4 − e2 + 26c0κ
2
1 + c0κ

2
2 + 2c2κ

2
1 − 40κ5

1 − 4κ4
1 κ2

is bounded in terms of the coefficients of z. So, when κ1 − κ2 is small enough,

∂
(
C2 − C0 + 2K 3

1

)
∂t

> 0.

These two conditions suggest strongly that the two umbilics will get closer under κ1 flow
and eventually become one highly degenerate umbilics with index +1 or −1, depending on
the type of the umbilic pair we started with.

7. SUMMARY

We have shown that under principal curvature flows, no parabolic loop or ridge loop of the
corresponding color can be created. We believe that this clears the way for the application of
curvature ideas to 3D object recognition. In contrast, the mean curvature flow can create all
types of singularities that we have considered. We believe what this ultimately means is that,
in considering the curvature structure of a surface, one should look at it as two intertwined
stories: the story told by the maximum principal curvature with its ridges, parabolics, and
lines of curvature and the story told by the minimum principal curvature. We have seen
how, in the case of the face, these two flows undo its features in very different ways. These
flows should lead to a method of extracting a curvature “portrait” for surfaces, generalizing
part of the plane curve “portrait” due to Kimia et al. [29]. Such a curvature portrait would
be a powerful tool for 3D object recognition.
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APPENDIX

Existence and Uniqueness of Solutions of Principal Curvature Flow Equations

Unlike the 2-D case, geometric flows for surfaces may develope singularities. In the
classical framework, there has been some study on existence and uniqueness, as well as on
qualitative behaviors, of flows driven by mean curvature and functions of Gaussian curvature
(for convex surfaces) [20, 21]. To study nonlinear second-order partial differential equations
such as Eq. (2) in general, a theory of viscosity solutions has been developed [22–25]. The
existence of a unique viscosity solution of mean curvature flow equation is proven in Evans
[26] and Chen et al. [27]. The latter also shows that the same result holds for a more general
class of geometric, degenerate parabolic equations. This is further generalized in the work
of Ishii and Souganidis [28].

In this section we will apply the result of Chen et al. [27] to establish the existence of
unique viscosity solutions of principal curvature flow equations. Following the notation in
[27], consider the second-order parabolic equation

ut + F(t, ∇u, ∇2u) = 0, (A.1)

u(0, x) = a(x) ∈ Cα(Rn), (A.2)

where u = u(t, x), x ∈ Rn , and for a constant α, Cα(A) is defined to be the set of continuous
functions a(x) in A such that a − α is compactly supported in A. We say that Eq. (A.1) is
geometric if F has a scaling invariance

F(t, λp, λX + σ p ⊗ p) = λF(t, p, X ), λ > 0, σ ∈ R, (A.3)

for nonzero p ∈ Rn and X ∈ Sn×n , the space of n × n real symmetric matrices. F is called
degenerate elliptic if

F(t, p, X + Y ) ≤ F(t, p, X ) for Y ≥ O, Y ∈ Sn×n, (A.4)

where O is the all-zero matrix. Theorem 6.8 in [27] is restated as follows:

THEOREM A.1 (GLOBAL EXISTENCE [27]). Let T > 0. Assume that F(t, p, X ) is contin-
uous in (0, T ] × (Rn\{0}) × Sn×n and is geometric and degenerate elliptic, and that F
satisfies

F(t, p, −I ) ≤ c−(|p|), (A.5−)

F(t, p, I ) ≥ −c+(|p|), (A.5+)

lim
p,X→0

F(t, p, X ) exists and is finite, (A.6)

for some c±(σ ) ∈ C1[0, ∞) and c±(σ ) ≥ c0 > 0 with some constant c0. Then for a ∈
Cα(Rn) there is a unique viscosity solution ua ∈ Cα([0, T ] × Rn) of Eqs. (A.1) and (A.2).

In order to apply the theorem, we need to regard {St } as level surfaces of some function
u; i.e., St = {(x, y, z): u(t, x, y, z) = 0}. The shape operator is given by the matrix −(I −
∇u
|∇u| ⊗ ∇u

|∇u| )∇2u. It appears as an operator applied to the tangent spaces in the ambient 3-
space. Zero is one of its eigenvalues, and ∇u is the corresponding eigenvector. The other two
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eigenvectors, which correspond to the two principal directions, lie in the plane perpendicular
to ∇u.

For K1 flow, Eq. (2) becomes

ut + F(∇u, ∇2u) = 0, (A.7)

with

F(p, X ) = larger eigenvalue of −(I − p̄ ⊗ p̄)X in p⊥, p̄ = p

|p| ,

where I is the identity matrix and p⊥ is the plane perpendicular to the vector p.
We can show that F is geometric and degenerate elliptic. Conditions (A.5−) and (A.5+)

are satisfied by choosing c±(σ ) ≡ 1. Condition (A.6) is also easily seen to be satisfied.
Therefore we have the following:

PROPOSITION A.1. There exist unique viscosity solutions to the principal curvature flow
equations.
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