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Abstract

This paper discusses a deformable template approach to the problem of recognising three
dimensional, non-dense objects in high-resolution laser range images. To model the infinite
variability in object appearance we develop an imaging model based on a Poisson object
process, assuming objects to consist of primitives distributed according to a non-homogeneous
Poisson point process. We discuss some computational aspects of the model, and show how
we can use the Metropolis-adjusted Langevin Algorithm (MALA) to generate samples from
the posterior distribution. We show results applying the model to real laser range images of
forest.

1 INTRODUCTION

Recognition of three-dimensional objects from remotely sensed scenes has received considerable
attention over the last few years, especially in connection with automated target recognition
(ATR). Laser radar imagery is particularly well suited for such tasks, as the need for modelling
light-sources and reflectance is much less pronounced than is the case for intensity images. A laser
range image is a collection of distances measured along rays emanating from the laser and indexed
by azimuth and elevation angles,

r={r(0,¢) ; 66 <0 <02, ¢ <P < ho}. (1)

So far, much of the work has focused on detection based on non-contextual models (Green and
Shapiro, 1994) and on classification based on the matching of range profiles (Koksal, Shapiro
and Wells, 1999; Zhou, Liu and Wang, 2000; Webb, 2000; Nair and Aggarwal, 2000; Jacobs and
O’Sullivan, 1997). The use of contextual models for more advanced tasks has been advocated by the
group centred at Washington University, focusing on recognition of rigid objects in radar (Miller,
Srivastava and Grenander, 1995; Srivastava, Miller and Grenander, 1997; Jacobs, O’Sullivan, Faisal
and Snyder, 1997) and forward-looking infrared (Lanterman, Miller and Snyder, 1997) images.

We adopt the approach of the above-mentioned group, using the deformable template models
introduced in Grenander, Chow and Keenan (1991) and Grenander (1993). These are highly
structured probability models based on physical knowledge of the imaged objects, and containing
significant contextual information. Objects are divided into classes taken from a finite alphabet,
and for each class a priori knowledge on object shape is represented via a template Iy, a parametric
model of a typical object. Natural variability in object shape is then modelled by applying a
transformation group S to the template, generating a set {slp; s € S} of objects. Deformable
template models have successfully been applied in two-dimensional applications, eg. for recognising
hands (Grenander et al., 1991), locating and classifying cells (Rue and Hurn, 1999), and for
estimating the outline of blood vessels (Hansen, Mgller and Tggersen, 2000; Husby, 2001). In 3D
applications focus has been on estimating location and pose of rigid objects, ie. finding parameters
in the special Euclidean group SO(3) x R?® corresponding to rotations and translations of the
template CAD surfaces representing the various objects present in the images, see eg. Srivastava
(1996) for an overview.

However, lately there has been an increasing interest in modelling non-rigid objects and
objects with a high degree of shape complexity (Jain and Dorai, 2000). This paper represents a
step in that direction, since we are concerned with objects having highly variable shapes. This has
implications both for the way objects need to be represented, and for the choice of transformation
groups. The representation should be flexible enough to be able to capture the shape differences
needed, while at the same time lend it self to efficient computations. Ideally, a representation



should also possess certain invariances, such as being viewpoint independent. There exists a
wealth of different representation (see Jain and Dorai (2000) for a review), and there is unlikely
to be one representation being suitable for all object types and sensors. We follow a slightly non-
standard path, letting a triangulated surface represent the main outline or envelope of the object,
and modelling variation on a finer scale by assuming the object to consist of primitives placed
at random positions within the region defined by the outline. We believe that this is an useful
approach when dealing with objects that have a high degree of shape complexity or are otherwise
non-standard, since it allows us to separate the two sources of shape variability, thus reducing
the complexity of the recognition problem. We especially have in mind objects that are porous,
having holes at random positions. The small scale variability due to the porosity will effect the
performance of the recognition method, but is not of primary concern for us, as only the global
shape features are relevant for comparison and classification of objects.

To our knowledge there has been little work on modelling of objects with high variability
in density and appearance, although Larsen and Rudemo (1998) explicitly models the density of
needles and branches in tree templates. However, when using range data it is sufficient to consider
binary object models, since we assume the transmitted beam to be reflected fully when hitting
the first object along its path. Thus we can assume an object to consist of geometric primitives
placed at the positions of an inhomogeneous Poisson point process. This allows us to treat the
small-scale variability pixel-wise instead of object-wise, inducing a probability density function 7
for the range at pixel ¢

m(ri | A) = A (0, ¢, 1) exp <— /0” A (03, di,r) df) . (2)

The function A is crucial, as it models the appearance of the objects. To reduce complexity and
allow for efficient computations, we will assume the intensity function A to be piecewise constant,
with high intensity in regions occupied by the template objects.

We take a Bayesian approach, defining a posterior distribution on the transformation group
S, and using Markov chain Monte Carlo methods to explore it. In particular, we use the Langevin-
Hastings algorithm suggested by Besag (1994). The algorithm is based on Langevin’s stochastic
differential equation (SDE)

dX (t) = VH (X (b)) dt + V2dW (t), (3)

which generates a Markov process with a stationary distribution proportional to exp(H (z)), and
which is shown to be superior to the Random-walk algorithm in many situations (Roberts and
Tweedie, 1996; Christensen, Mgller and Waagepetersen, 2000). However, additional complexity is
introduced when the posterior distribution takes values on curved manifolds lacking the familiar
vector space structures, as is often the case when the posterior is parametrised in terms of Lie
groups. The theory for constructing SDEs on manifolds is well established (Kunita, 1984; Gliklikh,
1996), but only recently has it been put to use in a statistical setting for sampling Lie-group
valued probability measures by means of Langevin’s SDE (Piccioni and Scarlatti, 1994; Srivastava,
Grenander, Jensen and Miller, 1999). These methods are described briefly in Section 4.

The range laser sensor is described in Section 3.2. Object representation using deformable
templates is discussed in Section 2, while we present our point process imaging model in Section 3.
In Section 5 we present some results using real range laser data of forest.

2 OBJECT REPRESENTATION

We will use the global shape models developed from Ulf Grenanders pattern theory (Grenander,
1993) to analyse the imaged scenes. The concept of deformable templates presents an unifying
way to analyse the variability on shape and occurrence of imaged objects. Let A be the finite set of
possible object types. For each object type a € A we define a template Ip(«) constituting all object
features affecting the imaging sensor, and representing a typical object in the class. For example,
in target recognition the template can be a surface manifold representing the target shape. The
variability in object shape within a class is accommodated by applying a transformation group S
to the template. For each s € S, let sIp(a) denote the action of s on the template; then the orbit

0% = {sly(a) ; s € S}

contains all possible object occurrences. We shall assume the group S to act transitively on O¢,
so that each object occurrence can be uniquely represented by an element s € S.



When modelling objects with a high degree of shape complexity the transformation group
needs to be very high-dimensional to be able to capture the variability. This has implications
for the computational complexity of the recognition algorithm, while not necessarily leading to a
higher classification accuracy. This is indeed the case in our example, where the objects have local
shape features that affect the sensor, but that are otherwise of no interest. To get a compact and
computationally efficient representation, we separate the two sources of variability and represent
the global shape by a closed, piecewise smooth surface ¢y approximated via m triangular patches,
each identified with a set of three vertices and a surface normal, see Fig. 1 for an example. By
global shape we shall mean the features used for discriminating between different object types,
and not features on a finer scale such as holes, irregularities at the boundary and so on. The
surface encloses a region Gy C R®, and the object itself is modelled as the collection of geometric
primitives placed at the random positions of an Poisson process on Gy as follows.

Let the region of interest be W C R3, and let ® be an inhomogeneous Poisson process with
intensity function A(z1,z2,73) = ABIw\a, + Aolg,, where [ 4(z) is the indicator function having
value one if z € A, and zero otherwise. Furthermore, let {x;};, be the collection of random
positions of ® in W, and associate with each point a geometric primitive P, inducing an Poisson
object process

r=J bl @)

Thus the template is a collection Iy(a) = (co, Ao) of a closed surface ¢ representing the global
shape of the object, and an intensity function Ay describing the density.

Next we introduce the transformation group S generating the object space. In our example,
concerning recognition of trees, we have found it sufficient to consider simple, low-dimensional
groups, letting S = A(3) x US(1), the product of the affine group and the group of uniform scaling
in one dimension. By a deformed template

slp(a) = (s10¢co,8200), (s1,82) € A(3) x US(1) (5)

we shall mean the surface s; o ¢y formed by transforming all vertices and normals by s;, together
with the function saAg obtained by scaling Ag.

Taking a Bayesian approach we define conditional prior probability densities m(s|«a) on the
transformation groups, and a probability distribution 7(«) on the set A of object classes. We
choose the elements of the scale group US(1) to be Gamma distributed with hyperparameters p
and g. The affine group

r— Ar+a, A€EGL(3),acR? (6)

represents translation, scaling, rotation, bending and skewing. We chose the elements to have
independent, Gaussian distributed components, ie. s € A(3) has density

() o exp <_% f: (3 ;N>2> (7)

i=1

with respect to Lebesgue measure. The means u; are chosen so that the distribution has the
identity transformation as its mode.

3 IMAGE FORMATION AND SENSOR MODELLING

When an object described by an deformed template sIp(a) is mapped to an image r, two sources
of variability is introduced. One is due to the description of the template as a random Poisson
object process I, together with the projection of I onto an abstract true range image r*. The
second is measurement noise introduced when collecting the data, and is sensor dependent. We
begin by describing the imaging formation model 7(r* | s) and its properties in Section 3.1. The
sensor likelihood 7 (r | r*) is described in Section 3.2.

3.1 Image formation

Throughout this section we will assume orthographic projection, although an extension to perspec-
tive projection is possible. Assuming the sensor to be far from the imaged objects, and the imaged
region to be small, this assumption is reasonable. We identify the imaging plane of the sensor with



the set  C R?, and assume for simplicity continuously observed measurements. The ideal data is
then r* = {r*(z1,z2) ; (z1,22) € Q}. Denote the axis orthogonal to the imaging plane by x3, and
consider a ray p(z1,z2) emanating from the point (z1,z2) and going in the positive z3-direction
. The probability of observing a particular range r*(x1,z2) is then the probability of r*(z1,z2)
being the site of the first event of the Poisson process ® along the ray p(z1,z2):

r*(z1,z2)
Tx1,22 (T*(xl)x2) | S) =A (1‘1,1‘2,1“*(1’1,1’2)) exp <_/ /\(1’1,1’2,1’3) d:L’3> . (8)
0

By integrating over the imaging plane {2 we get the density for the whole image r*:

w(r*|s) =
r*(z1,z2)
exp —/// Mz, x2, x3) dog des dzy + // In A(z1, 2,7 (x1,22)) dradry | . (9)
0
Q Q

This can be further simplified by assuming the density function to be piecewise constant.
Then, letting F = {(z1,72,73) € R® ; (z1,22) € Q, 0 < 23 < r*(w1,22)} denote the part of the
world W that is observed under the sensor, and letting R* D G = s o cg be the set occupied by
the template, we define the intensity function as

AB, (z1,29,23) €GENF

10
Xo, (x1,72,23) € GyNF. (10)

)\(371,372,373) = {

The density (9) then simplifies as follows.

PROPOSITION 1
Let the density (9) have an intensity function as defined in (10). The density can then be written
as

m(r* ] s) exp(—()\g — Ap)m (Gs N F) +1n (Ao/Ag) m(P (G, N aF))), (11)

where OF = {(x1,22,23) € F; x3 = r*(x1,z2)}, P represents the orthographic projection (x1, 2, z3) —
(z1,22), and m(-) is Lebesgue measure.

Evaluation of the density does in other word amount to calculating the volume and projected
area of the deformed templates. This might be computationally expensive, especially calculating
the area P (Gs N F) which may be highly irregular. Effort should be put into designing efficient
ways of doing this.

The simulation algorithm described in Section 4 depends on gradient information in the
posterior density. When the intensity function is as defined in (10), we can derive an explicit
formula for a part of the gradient VInm(r* | s). The result is as follows.

PRrOPOSITION 2

Assume the deformed template shape s o cg to be a closed, piecewise smooth surface with outward
normal n, and let G5 be the region bounded by it. Denote by a1, ... ,a12 a basis for the Lie algebra
a(3) of left-invariant vector fields on A(3). Then

Bisk///dx: // (n,ay, o x) dz, (12)

G,nF 0G . NF
where (-, ) is the usual inner product on R3.

Proof. We sketch a geometric proof. Let s, be equal to s, except for a small variation € in the
kth component, and let G, be the volume enclosed by the corresponding deformed template.
Then the gradient is proportional to the limit € | 0 of the volume (G5 \ Gex) U (Ge i, \ Gs).
Represent the template surface ¢y by a triangulation ¢y = UlelTl, with each triangle having area
A, outward unit normal n; and centre point p;. The integral on the left hand side of (12) can

then be approximated by the sum of parallelogram volumes ), <nl, %SS’: > A= (i, ap o pr) Ay,
which in the limit € | 0, L — oo becomes the surface integral in (12). O



3.2 Laser radar range images

A coherent laser radar collects a range image by scanning a field of view, transmitting a single
laser pulse for each pixel in a raster scan. The value at each pixel represents the time-of-flight
between the peak of the transmitted pulse and the peak intensity of the video-detected intermediate
frequency return waveform. The data used in this study were collected using a Riegl LMS-7210
laser range-finder with a rotating mirror and an angular separation of 0.18 deg. The images contain
440 x 1440 pixels, and thus represents a field of view of 80° vertically and 259° horizontally. The
operational range of the apparatus is approximately 2 — 200 m. An image is represented as an
array r defined on a lattice A C Z2.

Range images are subject to additive measurement noise and range fluctuations due to laser
speckle (Goodman, 1975). The latter effect causes measurements far off the true range when a
speckle fade occurs in conjunction with a noise peak (Green and Shapiro, 1992). To counter these
effects we use the observation model of Green and Shapiro (1992), assuming the probability density
of the measured range image r given the the true range image r* to be a product of mixtures

1) =TT (0= n e ewp (~ gt =102 ) + 5. (13)

1EA

where ¢ is a measure of the local range uncertainty, R is the operational range R = rmax — Tmin,
and p is the probability of an anomalous measurement. The parameters ¢ and p are system
dependent, and approximate formulas are given in Shapiro, Reinhold and Park (1986).

4 POSTERIOR SAMPLING USING THE LANGEVIN-HASTINGS ALGORITHM

The a priori object model and the imaging models are combined to yield the a posterior distribution
for the scene parameters s given the data r,

w(s|r) ocm(r|r)m(r®|s)m(s). (14)

We will restrict attention to a single object, so s takes values in the product Lie group A(3) xUS(1),
while r is defined on the lattice A. The Langevin-Hastings algorithm presents a generic way
of updating all parameters of a d-dimensional random vector S simultaneously, using gradient
information to explore the parameter space. It is based on a discretization of the Langevin SDE
which on vector spaces takes the form

ds(t) = %vm (S(#) | r) db + dVV (2), (15)

where W (t) is a standard d-dimensional Wiener process. Assuming that the parameter vector S
is defined on a vector space, and that the current state of the Markov chain is S, the algorithm
proceeds by proposing a new state S’ by going a distance along the gradient and adding Gaussian
noise,

s’ ~N (St + %hv log m(S¢ |r),hId> . (16)

We denote the density of this proposal by ¢(S, S’). The new state S’ is accepted with probability

)q(5’7 St) }
)(I(Stasl) ’

otherwise the old state S; is retained. The Markov chain then converges to the posterior distribu-
tion , ||Pr(S; € -|So = so) — 7(+)|ltv — 0 for m-a.e. so.

(s’
(St

a(Sy, S") :min{l,z :: (17)

Note: The affine group A(3) = GL(3) x R? is strictly speaking not a vector space, it is not
closed under addition. Translation on matrix Lie groups is defined by matrix multiplication, and
the Langevin equation should be modified accordingly. In general, let G be a d-dimensional matrix
Lie group, and let Ey,..., E; be a basis for the Lie algebra g of left-invariant vector fields on G
(refer to eg. Boothby (1986) for details). For any point g € G, E; 4f is the directional derivative
of the function f € C°°(G) in the direction of E;. The vector ) . (E;, f) E; 4 is the gradient vector



of f at g. Now, by the existence theorem for ordinary differential equations, there exists a flow
&(t) € G which is generated by the gradient field

d
% = Z (Bienf) Biey = ) (Bigw f) EDE;,

A A

and thus

£(t) = £(0) exp (t Z (Bigw)f) Ez) ,

where exp(+) is the matrix exponential. This can be extended to stochastic flows by adding noise
terms (Kunita, 1984), setting

t d d
£(t) = £(0) +/0 (Z (Bigs)f) Eigs)ds + Z Ei¢s) 0 sz(3)> ) (18)
i=1 i=1
where Wy (t), ..., Wy(t) are independent, standard Wiener processes and o denotes the Stratonovich

integral.
Since GL(3) has a “flat” geometry this simplifies, and we can use the gradient computed
above. The Metropolis-Hastings algorithm becomes as follows. For each step, set

d
S' = S;exp (ngnﬂ' (S¢|r) + \/EZwZEl> , (19)
i=1

where the w; are independent standard normals and E, ... Ey is a basis for the Lie algebra gl(3).
The acceptance probability becomes

a (S, S") = min {1, EADIIC)

i ! 4
(5| r) g(w') exp (ngnﬂ (Se|r) + \/Ezszz> ‘} ) (20)

where ¢(-) is the density of the standard normal distribution.

The theory for constructing stochastic differential equations (SDEs) on manifolds can be found
in eg. Kunita (1984). For examples on random sampling on curved manifolds, see eg. Piccioni and
Scarlatti (1994) and Srivastava et al. (1999).

5 EXAMPLES AND FURTHER WORK

As an example we have estimated locations of trees in range images of forest. This is motivated
from target recognition applications, in which clutter objects such as trees poses a significant
challenge. The most tractable way of dealing with clutter is to use Markov random field models
(Zhu and Mumford, 1997) or pixel models based on projections of primitive geometric objects (Lee
and Mumford, 1999), but computational aspects aside, the most natural way is to use physical
models of clutter objects in the same manner as for targets. Furthermore, trees have highly
variable shapes and might have very different sensor signatures depending on tree type and time
of year. In that respect trees are suitable for the object model presented in this paper.

Fig. 2 shows estimated shape and location of a tree in a simple image. We used the template
in Fig. 1 initially located in the centre of the imaged region. The parameters of the likelihood
model were considered fixed, but the results did not vary much over a suitable range of parameters.
The parameters of the Poisson object process were fixed at A\g = 1072 and X\, = 5- 1073,

To investigate the methods sensitivity to occlusion we considered estimation of the shape and
location of a partially occluded tree. To simplify the computations we used a sequential algorithm,
first locating the foremost tree, then the occluded one. This method requires good initial guesses
of the positions. We used a crude, but effective method, assuming trees to have a fixed depth
and then convolving the image with a three-dimensional Gaussian kernel. Fig. 3 shows estimated
locations of the two trees. The results demonstrate that the method tackles occlusion, relying on
prior information in the regions not observed.

The object recognition problem could be handled in full generality using the reversible jump
MCMC as in Rue and Hurn (1999), assuming an unknown number of objects of varying type.
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A FIGURES

Figure 1: A tree template represented by a triangulated surface



Figure 2: Estimated tree shape using the template in Fig. 1. Figure (b) shows the
estimated location in space.



Figure 3: Estimation of occluded tree shape using the template in Fig 1. Figure (b)
shows the estimated locations in space.
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