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1 Some Background Deformations in Pattern The-
ory

To create knowledge representations for inference in Computer Vision the fol-

lowing set up has been used successfully, see for example Grenander(1993),

Grenander-Miller(1999) where many references can be found to related work.

Start from a collection of templates Itemplate
1 , Itemplate

2 , ...Itemplate
α , ... and a sim-

ilarity group S acting upon the background space X on which the templates

are defined. On S is defined a prior probability measure P that represents the

variability of the images that we observe. Combining templates via a connector

graph σ and identifying the resulting image by an identification rule R we get

an image

I = R[σ(s1Ii1 , s2Ii2 , s3Ii3 , ...); si ∈ S (1)

Here the background space X will be a rectangle in the plane, and R could be,

for example, identifying sums or unions of images. It is convenient to talk about
1Supported by NSF DMS 00774276
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X as a continuum, but when it comes to computing, to treat it as a discrete

lattice. Therefore we shall use concepts like ”derivative”, ”continuous”, ”curve”,

”boundary” both in their continuous and discrete versions.

The similarity group S has usually been assumed to be either a finite dimen-

sional Lie group or the group of diffeomorphism over X , the latter meaning at

least diffeomorphic with large probability w.r.t. P . An important case is when

S is the additive group R2 and the probabilities are produced by a stochastic

P.D.E.

Ls = e; s = (s1, s2) ∈ R2 (2)

where L is a linear differential (or difference) operator, space invariant (constant

coeeficients) of order d = 2p with some boundary conditions BC that make it

self-adjoint. We shall write

L =
d∑

α,β=0

lα,β
∂α+β

∂αs1∂βs2
; l = (lα,β) (3)

Further we shalll let e(·) be the derivative of the 2D Wiener process in the plane.

To make (1) meaningful L should be non-singular.

Of course the solution of (1) need not be diffeomoprphic a.s., but with appro-

priate choice of coeficients it can be made so with large probability. A sample
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solution with d = 2 can look like Figure 1

Figure 1

The inference can then be organized in terms of the likelihood function that

takes the simple form

L(s) =
constant√

J
exp[−1/2Q(s)] (4)

with the Jacobian

J = exp{
∑

k

log[λk]} (5)

where the λ’s are the eigen values of the operator Q = ll′ and Q(s) is the

quadratic form in the vector (given as a matrix) l. The Toeplitz approximation
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gives

log[J ] � constant×
∫
T2
log[R(λ)]dλ (6)

integrated over the 2D torus, perhaps parametrized as [−π, π)2, and with the

Fourier transform

R(λ) = |
∑
α,β

iα+βλα
1 λ

β
2 |2 (7)

For more details, see Lanterman,Grenander,Miller(2000).

2 Images Deformed by Non-Diffeomorphic Map-
pings

This is all very well, but if we encounter image ensembles with strong disconti-

nuities, but still generated from continuous templates, then the above knowledge

representation is inadequate.

To get some feeling for what sort of knowledge representation to choose for

4



such partly discontinuous image ensembles, consider the picture in Figure 2

Figure 2
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Here the discontinuities are produced along a circular arc, a cutset, and in

Figure 3 we display the horizontal and vertical line segments that have been cut

by the disconuities

Figure 3

The likelihood, the conditional probability density for a fixed template,

should describe how those discontinuities are likely to occur. The usual Markov

random fields are not adequate; indeed the pertinent fact about the discontinu-

ities is that they should occur at known locations.

Therefore it seems more promising, to build these expected curves of discon-

tinuities into the likelihood. This will now be done and we shall use Gaussian

measures to illustrate the idea of cutset processes. Let us remark, however, that
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the Gaussian assumption can be replaced by others.

REMARK. If the cutset forms a closed curve (in the discrete topology defined

by neighborhood definition) it is clear that the random field inside the cutset

is stochastically independent of the field outside so that no additional difficulty

appears. In the opposite case, that seems to be the practical one, a new difficulty

appears, which will be dealt with below.

Consider a partial stochastic difference equation

L(c)f = e (8)

where the random fields f and e are defined on a l × l square lattice, e is i.i.d.

N(0, σ2), say σ = 1, and L(c) some non-singular linear operator that will be

made to depend upon the cutset c, consisting of one or several smooth curves

in [0, 1]2. Hence f = L−1(c)e has a Gaussian distribution with mean zero and

the covariance operator σ2L−2(c).

We shall start with ∆+ aI but modified by a term due to c, i.e. we define

L(c) = ∆ + aI −N(c) (9)

Here ∆ is the discrete Laplacian, corresponding to some suitable boundary

conditions. The modifying term N(c) shall be of the form

N(c) =
∑

→
z,z′cuts c

cut(f ; z, z′) (10)

where cut (f ; z, z′) is an operator defined through the inner product

(cut(f : z, z′), g) =
1
4
[f(z)g(z)− f(z)g(z′)− f(z′)g(z) + f(z′)g(z′)]
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for each segment
→
z, z′ that is cut by c. The segments can be either horizontal

or vertical; see Figure 3.

The rationale behind this knowledge representation is that in images like the

one in Figure 2 large discontinuities can occur at some specified locations but

otherwise the field varies more slowly . Whether the latter occurs or not it is

clear that (9) allows jumps around c, as we wish.

To synthesize such patterns is easy. We first simulate the i.i.d. e-field and

then solve the Poisson equation (9) by classical relaxation (deterministic, not

stochastic!). The value of a should be chosen very small. To discuss this we

note, also for later use, that ∆ has eigenvalues

λst = 1− 1
2
cos

πs

l
− 1

2
cos

πt

l
(11)

and the corresponding eigenfunctions

ψst(x, y) =
2
l
sin
πsx

l
sin
πty

l
, x, y = 1, . . . , l (12)

for s, t = 1, . . . , l. Hence the smaller eigenvalues are, for large l,

λst ∼ π2

4l2
(s2 + t2)

so that (∆ + aI)−1 will have the larger eigenvalues approximately

(λst + a)−1 ∼
[
π2

4l2
(s2 + t2) + a

]−1

If they vary slowly with s, t the field f will be too chaotic, but we want them

to decrease fairly fast so that a/( π2

4l2 + a) should be small. Finally, to illustrate

the way a cutset can appear we show a non-diffeomorphic mapping in Figure 4.
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Figure 4

3 Perturbed Spectra of Covariance Operators
for Cutset Processes

The likelihood function can be expressed as

L(f |c) ∝ Z−1(c) exp
[
− 1
2σ2

‖ L(c)f ‖2

]
(13)

where the operator L(c) = ∆ + aI − N(c) is defined in (9), (10), and the

partition function is given by

Z(c) = [detL(c)]−1 (14)
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A circumstance that may appear strange is that here our operator L(c) would

be represented by a 4-dimensional array, not a matrix, and the determinant has

to be interpreted accordingly. But this is only a superficial difficulty. It is more

convenient to avoid the representation and simply write

detL(c) =
∏

i

λi (15)

where λi, the eigenvalues of L(c), are the focus of our calculation. This is just

what we said about the Jacobian in (5).

Consider the eigenvalues λ′st for the operator ∆ − N(c). Note that adding

−N(c) to ∆ amounts to a small modification of ∆ affecting only a minor fraction

of the l4 coefficients defining ∆. It is therefore natural to use a perturbation

argument.

If A and B symmetric operators and

A′ = A+ εB,

then an eigenvalue λ of A changes into

λ′ = λ+ ε(Bψ,ψ) + o(ε), (16)

where ψ is the normalized eigenfunction associated with λ. In our case the inner

product

ε(Bψ,ψ) = − l
4

∑
→

z,z′

[ψ(z)− ψ(z′)]2 (17)

where the sum is over all pairs
→
z, z′, (z = (x, y) and z′ = (x′, y′)), that make

up the cutset.
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However, there is a complication due to the multiple eigenvalues λst = λts

for s �= t. This forces us to employ a modified form of (16) [cf. Kato (1966), pp

81-83 and 120-121]. For each (s, t) (or(t, s)), the modification of (16) for double

eigen-values is given by
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λ′st = λst + εk
(1)
st + o(ε) (18)

λ′′st = λst + εk
(2)
st + o(ε), (19)

where k(1)
st and k(2)

st are the two eigenvalues of the matrix

K =
(
(Bψst, ψst) (Bψst, ψts)
(Bψts, ψst) (Bψts, ψts)

)
(20)

Only the sum k(1)
st +k(2)

st will be needed later on, hence we only calculate the

trace of K.

Notice that a pair
→
z, z′ is either horizontal

x′ = x+ 1, y′ = y (21)

or vertical

x′ = x, y′ = y + 1 (22)

For large l, by routine calculation we have

ε(k(1)
st + k(2)

st ) = ε[(Bψst, ψst) + (Bψts, ψts)] (23)

≈ − 4
l2

(
sin2 πs

2l

∑
H

sin2 πty

l
cos2

πsx

l
(24)

+ sin2 πt

2l

∑
V

sin2 πsx

l
cos2

πty

l
(25)

+ sin2 πt

2l

∑
H

sin2 πsy

l
cos2

πtx

l
(26)
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+sin2 πs

2l

∑
V

sin2 πtx

l
cos2

πty

l

)
, (27)

(28)

where
∑
H

is over all horizontal pairs
→
z, z′ in the cutset and

∑
V

over all vertical

pairs.

If we assume that the cutset c consists of a finite number of smooth arcs

located in the interior of the unit square discretized into an l× l lattice, then by

setting u = x
l , v =

y
l , du ≈ 1

l dv ≈ 1
l , we obtain the curve integral approximation

ε(Bψst, ψst)

(29)

≈ −4
l

∫
c

sin2 πs

2l
· sin2 πtv · cos2 πsu du+ sin2 πt

2l
· sin2 πsu · cos2 πtv dv.

Now let

D(ε) = detL(c) =
∏
s,t

(λ′st + a) =
∏
s

(λ′ss + a) ·
∏
s<t

(λ′st + a)(λ
′′
st + a)(30)

D(O) = det(∆ + aI) =
∏
s,t

(λst + a). (31)

Then

log
D(ε)
D(0)

≈
∑

s

1
λss + a

ε(Bψss, ψss) +
∑
s<t

1
λst + a

ε(k(1)
st + k(2)

st )

=
∑
s,t

1
λst + a

ε(Bψst, ψst).

Setting ξ = s
l , ζ =

t
l , dξ ≈ 1

l , dζ ≈ 1
l and using (18),(19),(20), we obtain the

approximation
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log
D(ε)
D(0)

(32)

†
≈ − 4l

∫
c

( ∫ 1

0

∫ 1

0

sin2 πξ
2 · sin2 πlζυ · cos2 πlξu

1− 1
2 cosπξ − 1

2 cosπζ + a
dξ dζ

)
du (33)

(34)

+
( ∫ 1

0

∫ 1

0

sin2 πζ
2 · sin2 πlξu · cos2 πlζυ

1− 1
2 cosπξ − 1

2 cosπζ + a
dξ dζ

)
dυ (35)

(36)

‡
≈ − l

2

∫
c

( ∫ 1

0

∫ 1

0

1− cosπξ
1− 1

2 cosπξ − 1
2 cosπζ + a

dξ dζ

)
du (37)

(38)

+
( ∫ 1

0

∫ 1

0

1− cosπζ
1− 1

2 cosπξ − 1
2 cosπζ + a

dξ dζ

)
dυ (39)

(40)

= − l

2

( ∫ 1

0

∫ 1

0

1− cosπξ
1− 1

2 cosπξ − 1
2 cosπζ + a

dξ dζ

) ( ∫
c

du+ dυ
)
, (41)

(42)

where (†) follows from Fubini Theorem and (‡) follows from Riemann-Lebesgue

Lemma based on the fact that for large l, the functions sin2 πlξu, cos2 πlξu os-

cillate rapidly with the mean value 1
2 over the interval 0 ≤ ξ ≤ 1, as do the

functions sin2 πlζυ, cos2 πlζυ over the interval 0 ≤ ζ ≤ 1.

4 Pattern Inference for Cutset Processes

To organize pattern inference we shall, as in several earlier instances, simulate

the posterior density by an SDE which requires, as its main part, the computa-

tion of the gradient of the logarithm of the posterior density.

The part due to the prior causes no problem, it is dealt with as before. The

other part, due to the likelihood, is radically different however, and requires more
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attention. The inference can deal with several hypothetical cutsets, differring

in location, pose, and shape. Then the partiton functions also differ and their

computation is neccessary.

Since the partition function Z(c) has been calculated in section 3, we now

consider the quadratic form Q =‖ L(c)f ‖2 . We can write

Q = ([∆ + aI −N(c)]f, [∆ + aI −N(c)]f)

= ‖ (∆ + aI)f ‖2 −2((∆ + aI)f, N(c)f) + (N(c)f, N(c)f)). (43)

Using the notation f = G and (∆+aI)f = F , let us calculate (F, N(c)G). The

third term (N(c)f, N(c)f) in (43) can be handled similarly.

Note that

(F, N(c)G) =
1
4

∑
−→
z,z′

[F (z)− F (z′)][G(z)−G(z′)], (44)

where the sum is over all pairs
−→
z, z′ that form the cutset.

For large l we get the curve integral approximation

(F,N(c)G) ≈ l

4

∫
c

(H, dz) (45)

with the column vector

H =



∂F

∂x
· ∂G
∂x

∂F

∂y
· ∂G
∂y


 (46)

assuming sufficient smoothness for F, G and c thought of as given in the con-

tinuum [0, 1]2.

We can write, using a continuous formulation,

z(t) = s0 + s1c0(t), 0 ≤ t ≤ n (47)
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with

c0(t) =
∫ t

0

g0(s)ds, g0(s) = g0i for i ≤ s < i+ 1 (48)

where s0 = (s0x, s0y)t is a translation, s1 is a scalar meaning scale change. For

the moment we have made all the individual rotation angles φi = 0; we can

later on include the φi.

We need the second derivatives ∂2z
∂t∂θ where θ stands for one of the group

element parameters. For θ = s0x and s0y this second derivative is zero. For

θ = s1 it is equal to dc0(t)
dt which equals g0i for i ≤ t < i+ 1. Hence,

∂

∂θ
(F,N(c)G) ≈ l

4

∫ n

t=0

(
H,

∂2z

∂t∂θ

)
dt+

l

4

∫ n

t=0

(
∂H(z(t))
∂θ

,
∂z

∂t

)
dt (49)

with

∂H(z(t))
∂θ

=
∂H

∂x

∂x(t)
∂θ

+
∂H

∂y

∂y(t)
∂θ

=
(
∇H, ∂z(t)

∂θ

)
(50)

where ∇H denotes the 2× 2 matrix

∇H =




∂

∂x

(
∂F

∂x
· ∂G
∂x

)
∂

∂x

(
∂F

∂y
· ∂G
∂y

)

∂

∂y

(
∂F

∂x
· ∂G
∂x

)
∂

∂y

(
∂F

∂y
· ∂G
∂y

)


 (51)

This completes the calculation of the quantities needed for inference.
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