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1 Background

Much recent work in CA employs diffeomorphisms that deform templates into observed
images. See Christensen, Rabbit, Miller (1994), Beg, Miller,Trouve, and Younes (2003),
Mumford (2002), Miller, Trouve and Younes (2002). Further reference can be found at
www.cis.jhu.edu and in Grenander,Miller (1998). This work has used a static approach,
biological time does not enter the discussion, only algorithmic time, but now, when we are
studying biological growth, the diffeomorphisms will represent the dynamics of growth/decay
in biological time, and this will have important consequences for the model building.

We have used models as the one in (1), and several variations of it,

∂φ(x, t)

∂t
= v[φ(x] + n(x, t); x = (x1, x2, x3) ∈ X; t ∈ [0, 1] (1)

with X = [0, l1] × [0, l2] × [0, l3], time unit perhaps a week, n(·, ·) means random noise
representing biological variation, and perhaps terms on the right hand side to represent
landmark constraints. This induces maps

Itemp → ID = φ(−1) ◦ Itemp (2)

where I is a template image and φ is the diffeomorphism. Here the velocity of deformation
v(·) is a function of the moving point x in absolute space X, but this setup corresponds
poorly to what happens during biological growth, since only relative space is meaningful in
this context. We must construct biologically meaningful models, so that they express growth
tendencies of the cells as governed by genes and modifications of genes. This relates to the
cells themselves, not to their position in absolute spece X. Hence, we should adopt the point
of view in GPT, section 4.3.8, where growth pressure is related to the cells (generators) of
the organism.

1This work has been supported by NSF DMS-00774276 and by ...
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We add in passing that we may have concentrated too much on diffeomorphic mappings.
Many biological processes exhibit destruction of topology, say in mitosis or, closer to our
current interest, in pathological growth and decay. Better keep this in mind for future use.

Returning to the above discussion, we are atually confronted with the question of choos-
ing an intrinsic coordinate system. Although equations of motions are usually simpler to
write down in Eulerian formulations, here we will have equations with more Langrangian
components relating to the cells along the trajectory. The growth tendency should be ex-
pressed in such Lagrangian coordinates. This will lead to some unavoidable mathematical
complications, but we believe that we will be able able to cope with them.

2 An SPDE for growth.

More concretely, let the trajectories in absolute space be denoted by x(t) = φ(ξ, t) where ξ
enumerates the trajectories with the initial values x(ξ, 0) = ξ ∈ Ξ. We could start with the
PDE for incompressible Navier-Stokes,

SPDE :
Dv

Dt
= −grad p + µ∆v (3)

but with the growth pressure p being a given function of ξ, not of x, and with a parameter
µ that plays a role similar to that of viscosity for fluids. For example, cells belonging to
the hippocampus may have different values for the pressure p(·) than cells in the frontal
cortex due to genetic control. The gradient of p(·) drives the organism to expand or contract
according to the genetic information stored in the cells. We will also have random terms
representing biological variability, but that will be discussed later. The term ∆v and the
viscosity µ are introduced to ensure enough smoothness for the case to be studied later on
when we also have random forces acting on the cell growth.

This model will not be adequate for describing growth processes since the assumed in-
compressibilty contradicts growth. It will therefor be modified and we shall try the following.
Note also the discussion in Mumford (2002), section 4.3, in terms of geodesics in homogeneous
spaces.

With standard notation

·
f=

∂

∂t
for fixed ξ (4)

ft =
∂

∂t
for fixed x (5)

we can write v =
·
φ and introduce the deformation gradient as the function F = ∂φ

∂ξ
taking

3× 3 matrices as values. Assuming that the map φ : Ξ → X can be inverted with an inverse

2



Φ : X → Ξ, which will be the case at least for sufficiently small values of t, we also get the
inverse G = ∂Φ

∂x
, G = F−1.

Then we can write the momentum equation concisely as

(vi)t =
3∑

j=1

∂Tij

∂xj
(6)

with the Cauchy stress matrix

Tij = µ
∂vi

∂xj

− p(ξ)δij (7)

Following a suggestion by Constantine Dafermos we will proceed as follows. Start from
the form of the momentum equation

(vi)t +
3∑

j=1

∂vivj

∂xj

=
3∑

j=1

∂Ti,j

∂xj

+ randomness (8)

and the mass equation

ρt +
3∑

j=1

∂(ρvivj)

∂xj

= 0 (9)

and reduce expressions with derivatives w.r.t. x’s to expressions involving derivatives w.r.t.
ξ’s using the Jacobian matrices F and G. This leads to the following system of stochastic
PDE’s

·
Gβj= −

3∑
i,α=1

Gβ,i
∂vi

∂ξα
Gα,j (10)

·
vi=

3∑
α=1

∂Si,α

∂ξα
+ ni (11)

where we have introduced the matrix-valued function S with components

Si,α =
1

det (G)
[µ

3∑
β,j=1

Gα,j
∂vi

∂ξβ
Gβ,j − p(ξ)Gα,i] (12)

and ni is the random term corresponding to biological variability.
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With vector-matrix notation one can write (8) and (9) as

·
G= −∂v

∂ξ
GGT (13)

and

·
v=

∂S

∂ξ
+ n (14)

This system has 12 equations ( 9 in (12), 3 in (13) ) and 12 unknown functions (3 components
in the vector v and 9 components in the matrix G) , note that p(·) is assumed to be known
in advance. Equations (8) and (9)form our SPDE. We will probably use Neumann boundary
conditions along the sides bounding the box X and initial values

v(ξ, 0) = 0, G(ξ, 0) = I (15)

This PDE does not seem to have any accepted name. Perhaps it could be called
MICKEY’S LAW.

If this growth model turns out to be realistic we will be confronted by several questions:
1) In order to judge the performance of the model we ought to synthesize it applying

it to some of the MRI’s we already have. There does not (?) seem to exist any software
specialized for this set up, but it may be possible to use programs of general nature and
specialize it to MICKEY. I am looking into this problem. It appeared troubling that the
observed displacement fields seemed to have fairly chaotic divergence, but this was late
explained as a computational artefact due to landmark constraints.

2) Using our existing data for template + image and already computed diffeomorphisms
for the duration one week, how do we estimate the variation of p(·) over Ξ ? Perhaps we
could use some simple time-averaging behavior, but a full ML solution would require a careful
examination of the form of the likelihood function involving a Jacobian.

3) How would a minimum energy derivation of the solution to MICKEY’S LAW be
organized ? Too early to say yet.

4) If we can handle 1) - 3) we can use the results in FANOVA as discussed in earlier
reports.

3 Simulating the SPDE.

Waiting for 3D software to solve the SPDE we have developed MATLAB code for the 2D
case. It uses a rough difference scheme for integrating the differential equation. We get for
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example
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Figure 1

The structure at location (45,125) in the upper left panel has grown as is seen in the
upper right panel. The lower left panel shows the growth pressure and the right lower one
presents the resulting deplacement field.

In Figure 2 we see a growth area at (50,80) and a decay area at (80,0),resulting in the
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structure in the right upper panel.
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Figure 2

We have seen similar phenomina before, see Grenander, Miller (1998), but they were not
based on a biologically motivated models as are Figures 1 and 2.

We mention parenthetically that if we leave out the viscosity term in (12) we get a simpler
model, both analytically and computationally, but numerical experiments have convinced us
that the growth then tends to be non-cohesive which contradicts experience. Therefore we
have not pursued this alternative.

The SPDE has a regular solution for suffiently small durations, but nothing guarantees
that this holds for long durations. Indeed, the non-linear form of the flow can very well
lead to shockwaves and other singularities. If shockwaves occur this may have interesting
biological interpretations, but this remains to be seen.

The paradigm of fluid flows of images has served us well, but biological growth is different
from mechanical flow, so that we ought to be open to non-mechanical models for growth.

4 How to estimate the growth pressure?

If it turns out that the SPDE is indeed useful for our purpose, the question arises how
the p(·)-function can be estimated. We offer the following crude attempt that should be
understood only as a first approximation.

If we neglect the viscosity term in (12) as well as the local variability of the deformation

tensor G, we see that
·
v ∝ grad p where the degree of approximation is in doubt. Integrating

this approximate proportionality relation we get

v(ξ, 1) =
∫ 1

t=0

·
v (ξ, t)dt ∝ (grad p)(ξ) (16)

Now recall that a vector field F = {f(x); x ∈ X} can be expressed via Helmholz’ theorem
as a sum

F = F1 + F2 = gradE + curlF (17)

in terms of a scalar potential E and a vector potential F , so that the first term in the sum
is irrotational, curlF1 = 0, and the second term is solenoidal, divF2 = 0. Apply div to both
sides of (17)

divF = div gradE = ∆E (18)

It seems reasonable to state E(x) = 0; x ∈ ∂X so that with these boundary conditions

E = ∆−1divF (19)
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since the operator ∆ is invertible on the subpace of functions vanishing on ∂X. Hence the
ratio, for example with L2 norm,

rirroot =
‖V1‖
‖V ‖ (20)

expresses the degree to which the velocity field is irrotational. Apply (16) and (19) to
data, using classical over relaxation to determine the inverse of the Laplacian ∆, we get the
estimate of the growth pressure

p∗(ξ) = (∆−1div v)(ξ, 1) (21)

Look at the artificial growth data in Figure 3. The growth pressure is positive in the
upper part of the organism (expansion) and negative in the lower part (compression) as is

9



seen in the upper right panel.
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Figure 3

Compute the estimate in (21); the result is shown in the right panel of Figure 4. It does
not look too bad, but we had better exercise caution keeping in mind that experimenting
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with artificial data often leads to misleadingly good result.
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Figure 4

A more ambitious approach, perhaps using (21) as an initial attempt, could be based on
ML estimation, but it remains to be seen how this could be done.
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