
648 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 2, MAY 2007

A Pattern-Theoretic Characterization
of Biological Growth

Ulf Grenander, Anuj Srivastava*, and Sanjay Saini

Abstract—Mathematical and statistical modeling of biological
growth is an important problem in medical diagnostics. Here, we
seek tools to analyze changes in anatomical parts using images
collected over time. We introduce a structured model, called
Growth by Random Iterated Diffeomorphisms (GRID), that treats
a cumulative growth deformation as a composition of several
elementary deformations. Each elementary deformation applies to
a small region by capturing deformation local to that region and is
characterized by a seed and a radial deformation pattern around
that seed. These GRID variables—seed locations and radial de-
formation patterns—are estimated from observed images in two
steps: 1) estimate a cumulative deformation over an observation
interval; 2) estimate GRID variables using maximum-likelihood
criterion from this estimated cumulative deformation. We demon-
strate this framework using an MRI image data of a rat’s brain
growth. For future statistical analysis, we propose a time-varying
Poisson process for the seed placements and a random drawing
from a predetermined catalog of deformations for the radial
deformation patterns.

Index Terms—Growth dynamics, growth models, growth pat-
terns, random diffeomorphism.

I. INTRODUCTION

MATHEMATICAL modeling and analysis of biological
shape changes are of great interest in many branches of

sciences, including physiology, ecology, evolution, medicine,
and surgery. Medical applications include analysis and predic-
tion of tumor growth in animal tissues, testing normality of an
organ’s growth, analysis of shapes of anatomical structures in
brain, and tracking of biological growth and decay in body parts.
Shapes and shape variations of anatomical parts are often impor-
tant factors in deciding the state of health of a person. In many
cases, the current clinical practice is to manually measure cer-
tain coarse characteristics such as lengths, sizes, or areas asso-
ciated with the regions of interest, and use those indicators in
diagnoses. Another common approach is to model objects via
simple geometries, such as ellipsoids, spheres, and rectangles,
and use the corresponding shape parameters for analysis. As an
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example, for measuring the growth of a tumor some techniques
use “multicellular spheroid” models, where the growth of the
inner core of a tumor is modeled by elliptical spheroids [1]. In
general, however, one would like to measure and analyze com-
plete shapes of objects and not just certain indicators or their ap-
proximations to simple geometries. In this paper, we develop a
mathematical framework for analyzing growth of biological ob-
jects such as animal cells, anatomical parts, tumors, and organs.

A. Comparison With Past Work

Three broad categories of past papers are relevant for compar-
ison here. These categories are: shape analysis using anatomical
landmarks, shape modeling and comparisons using background
deformations, and explicit mathematical models for growth of
tumors.

The subject of growth and development has formally been
studied for several decades. Many current techniques in statis-
tical shape analysis [2]–[4] use a collection of predetermined
anatomical landmarks (salient points on objects) to analyze
shape changes. In contrast, we will focus on analyzing full
images of complete shapes, including interiors and boundaries.
Notably, we propose to use both the pixel values and pixel
locations, instead of using just the locations of landmarks in
the images.

Growth and shape dissimilarities have also been modeled in
the past using smooth deformations, or diffeomorphisms, of the
underlying coordinate systems [5]–[11]. The set of all diffeo-
morphisms from to , with or , denoted by ,
forms an infinite-dimensional space, and its differential geom-
etry [12] is often used to analyze deformations. An element

denotes a diffeomorphism such that a pixel located at
is mapped to the location . We are inter-

ested in a subset of that is naturally suited to modeling bio-
logical deformations. While a large extent of transformations in

maybe relevant in studying shape dissimilarities across sub-
jects, or across classes/species, a smaller, more structured subset
seems appropriate for studying growth of an anatomical object,
at least over small time intervals. In case of biological growths, it
seems more natural to model a time-sequence of smaller, more
elementary deformations, rather than a large integrated defor-
mation, to highlight the time-varying nature of growth.

Lastly, several groups have developed explicit models for
capturing the growth of tumors as seen in images. These models
utilize mathematical tools such as reaction-diffusion equations
[13], mechanical models [13], or cellular automation [14], and
provide a remarkable insight into the growth process. The paper
by Swanson et al. [15] and the book by Chaplain [16] describe
several of the existing models used in studying tumor growth.
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We seek a growth model capable of modeling growth in a
variety of anatomical parts, including tumors. Our approach
can lead to a stochastic differential equation modeling local
deformations, similar to the diffusion model of [13], but our
framework allows for a more efficient representation of a wider
class of deformation patterns. Ling and He [17] have studied
certain biological growth models using entropy considerations.
Our approach is quite similar to the local transformations
introduced in Arsigny et al. [10] except that they restrict to a
smaller set of rigid or affine transformations.

B. Issues in Representation of Growth Patterns

A fundamental question in computational anatomy is: How
can we construct a family of mappings for representing bio-
logical variations and growth? Furthermore, what dynamical
models can be imposed on these mappings to characterize typ-
ical biological growths? We shall introduce a type of random
diffeomorphism to prepare for the statistical analysis of bio-
logical growth patterns. A related question that is addressed in
this paper is: What coordinate system(s) should be used to an-
alyze biological growth? Instead of a fixed cartesian or a polar
coordinate system, it is desirable to have an evolving coordi-
nate representation that reflects changing anatomy of object(s)
under study and that facilitates biologically plausible models.
Our goal is to develop representations that isolate and focus on
deformations of biological interest and result in a more efficient
and tractable analysis.

C. Our Approach

We propose a Growth (by) Random Iterated Diffeomor-
phisms (GRID) model to impose a structure on the desired
family of deformations. In this model, an overall growth is
modeled by a sequence of small, local deformations, each being
a diffeomorphism somewhat closer to identity transformation

. Their individual effects maybe small but their cumu-
lative effects are significant. Each elementary diffeomorphism
shall be primarily concentrated around a focal point of growth,
called a seed. A small active area surrounding the seed either
grows or decays, or both, radially according to a radial defor-
mation pattern. This pattern is specified in a polar coordinate
system centered at the seed using two functions—angular
and radial deformation functions (ADFs and RDFs). These
functions can often be further simplified using parametric
descriptions. Areas beyond the region of active growth are
pushed in or out, according to the changes in the inner active
area, or simply remain unchanged.

The choice of GRID model is motivated by observations of
locally active growths in several biological systems. Changes
in objects are seldom homogeneous and are characterized by
heterogeneities that result from varying biochemical composi-
tions of that region. For example, certain proteins act as cata-
lysts for tissue growth, and their concentration levels dictate the
scale and the nature of resulting growths. Higher concentrations
trigger active growth (or decay) in their neighborhoods. As an-
other example, in case of a single cell, the growth may be caused
by activation of some genes over a period, while the other genes
remain passive during that same period. Different genes may ac-
tivate at different times, and the nature of resulting deformations

Fig. 1. Examples of growth-related deformation fields that motivate use of ra-
dial deformation fields around imaginary focal points called seeds.

may differ as well. Incorporation of a locally active deformation
is an important highlight of the GRID model.

The choice of radial nature of deformation is motivated by ob-
served growth patterns. Shown in Fig. 1 are some examples of
actual deformation fields in high-growth subregions, estimated
from MRI images of a rat’s brain. As these pictures suggest, it
is possible to efficiently characterize these deformations as ra-
dial vector fields, emanating from some imaginary focal points.
Some advantages of the GRID model, over current methods that
estimate full deformation, are as follows.

1) Biologically Plausible Representations: An important as-
pect of this model is its ability to represent and analyze
growth/decay locally. The use of seeds and radial growth
patterns seems to capture well the deformations induced
by observed biological growth, in our limited experiments
so far. A large concentration of seeds in a region implies
high levels of active biochemical ingredients in that region.
Similarly, types of ADFs point to the nature of these cata-
lysts: growth-oriented, decay-oriented, or a composite. In
contrast, it is harder to ascribe such biological interpreta-
tions to cumulative deformations that are estimated in cur-
rent methods.

2) Parametric Nature of Representations: The proposed
model incorporates a rich family of patterns, accounting
for different combinations of growths, decays, or others.
The resulting deformations can be analyzed using seed lo-
cations and deformation functions (DFs). It provides an ef-
ficient framework for representing and analyzing growth,
using these model variables. Contrast this with a nonpara-
metric approach where the full deformations are to be ana-
lyzed to characterize growth. We do, however, use full de-
formations to arrive at the model variables in this paper.
In principle, one should be able to analyze growth by es-
timating the GRID variables directly from the image data.
That is a long-term goal to be explored in our future work.
The parameters generating GRID deformations should
most naturally be treated as random values with ap-
propriate prior probabilities. However, the experiments
presented later in this paper consider these parame-
ters as unknown, deterministic quantities leading to
a maximum-likelihood estimation (MLE) framework.
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The choice of prior models and the resulting maximum
a posteriori (MAP) estimation is briefly outlined under
future extensions.

3) Statistical Modeling of Growth: Another important
consequence of this model is the potential statistical
framework it will provide to detect, classify, and recognize
growth patterns. Statistical models on seed placements
and random choices of deformations functions can pro-
vide randomness of growth models. For instance, one can
characterize growth patterns using: 1) intensity functions
associated with Poisson seed placements; 2) the nature of
observed DFs. Contrast this with a statistical analysis on
full space without any additional structure. The models
on seed placements and DFs can be also used to induce
explicit probability models on the deformation fields.

In this paper, the estimation of GRID variables is performed
in two steps. First, we estimate a cumulative deformation map
representing biological growth during a time period. Then, we
estimate GRID variables—seed placements and DFs—from this
deformation map.

The rest of this paper is organized as follows. We introduce
the GRID model—seed placements and radial deformation
functions—in Section II. Some interesting analytical properties
associated with the deformation field generated by the GRID
model are presented in Section III. Estimation of diffeomor-
phic maps, using time-sequences of images, is explained in
Section IV, while the use of these maps to estimate MLEs of
GRID variables is illustrated in Section V. We conclude the
paper with a listing of possible future extensions in Section VI
and with a summary in Section VII.

II. GRID MODEL

A starting point for modeling biological growth is at the cel-
lular level. Studies of cellular growth are motivated in part by
Omne vivum ex ovo—all life from egg—a famous statement by
William Harvey [18]. Motivated by pre-eminent role of cellular
divisions in all anatomical growth, we model growth using a se-
quence of local elementary deformations. We shall indeed start
from an initial shape taking up the compact region. For sim-
plicity, we shall start assuming growth to take place in ; much
can be carried over to with obvious modifications. We will
denote the growing region at time by . In case of
MRI images, is a subset of imaged coordinates expressed
in a Cartesian system.

A. Iterated Diffeomorphisms

We assume that a deformation induced by growth consists
of several elementary deformations. These elementary deforma-
tions are assumed to result from random placements of growth
centers, called seeds, and a random choice of DFs to model
growth radially around those seeds. At time , let the elemen-
tary growth result in a diffeomorphism such that

. The point represented by moves to
under this transformation. We seek a biologically mo-

tivated representation of as follows.
1) Deformation Seed: We hypothesize that the deformation

is local in the sense that it is concentrated around a
central point, or a , denoted by . The

seed denotes an activated point while the other points
may remain passive at . For statistical modeling, one can
assume that the seeds are distributed according to a Poisson
process and the underlying intensity function reflects the
concentration of active biochemical ingredients.

2) Deformation Type: Once a seed is placed, the deformation
in a neighborhood around it is modeled using radial vector
fields, which in turn are generated by DFs mentioned ear-
lier. The actual choice of DFs is based on discrete deci-
sions of cells as controlled by genes that are switched on at
the moment. This could be, e.g. mitosis, corresponding to
proper growth, or cell death meaning decay. Momentarily,
we use to represent the DFs; it dictates whether a defor-
mation around a seed results in growth, decay, or a mixture,
and the specific pattern associated with that deformation.
We conjecture that the set of deformations that occur fre-
quently in nature is a finite set and, therefore, one can view

as an index to this set.
Note that depends on both the seed and the de-
formation type . The interesting part of lies inside an active
region containing the seed; outside this region the coordinates
remain unchanged. A sequence of events at times ,
at the corresponding seed locations ,
and the deformation types , leads to an iterated
diffeomorphism

(1)

where is applied to the resulting -field . In view
of the random placements of seeds, and the random nature of
the diffeomorphisms, characterized by s, the growth will be
random in nature. This is the GRID model, in its general form.
We shall gradually specialize it in the next few sections.

B. Elementary Translation-Invariant Deformation

Here, we start by developing an elementary transformation
. We shall concentrate our study to situations where the diffeo-

morphism is invariant with respect to the translation group in
. In other words, there exists a diffeomorphism

such that

(2)

Let denote the cumulative change in the position of
over the interval . It is given by

. Defining a new diffeomorphic map,
such that . We can rewrite the

displacement vector as

(3)

The displacement of a point at a time is dependent only on
its location relative to the seed at that time and the nature of

. Note that different points can act as seeds at different times.
This setup is illustrated in the left panel of Fig. 2, which shows
a seed, indicated by , and a location, indicated by , being
considered for growth, all for a fixed . We have introduced three
ways of specifying the mapping that takes to .
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Fig. 2. Left: deformation coordinates for a point x relative to the seed. Right:
illustration of displacement of x to x + d� (x) using a radial growth function
that takes v = (r; �) to ~v = (�(r; �); �).

1) provides the new location of the point in the fixed, ab-
solute cartesian coordinate system in centered at the
origin.

2) provides the new location of a genetic material in a
cartesian coordinate system that is centered at . Very
often we will use polar coordinates of points in this system
as follows: the point in this system has polar
coordinates such that . As
a convention, the angle will be measured anticlockwise
from the positive, horizontal axis.

3) computes the displacement vector directly in a fixed
cartesian coordinate system. Later in Section V-B, we im-
pose an observation model on the displacement field to
setup a maximum likelihood estimation problem.

We will use these three mappings interchangeably in our discus-
sion depending on the convenience.

The restriction to translation invariant deformations still
leaves a lot of leeway in defining these mappings. We fur-
ther constrain the deformation to be radial as follows. Let

be the polar coordinates of the vector .
In these local polar coordinates, the deformation is given
by , where the choice of varies
according to the model. This is pictorially illustrated in the
right panel of Fig. 2. We will study a few examples of the radial
displacement , each of which involves decomposing

into two functions, one for and other for .
1) As a first example, let the scale change along direction

be given by , where
is called the angular deformation function (ADF) and

is called the radial deformation function
(RDF). The active area along the direction is expanded
(or contracted) at the rate given by which
means expansion or growth while means con-
traction or decay in that direction. Each of these two func-
tions can either be used in a parametric or a nonparametric
form. Based on experimental studies, we have chosen to
represent RDF in a convenient parametric form while ADF
is left in a functional form. There are several possibilities
for the RDF .

a) , for , .
b) , for , ,

and .
We will use to denote the parameters of and we will
write as when needed. In the first case ,

Fig. 3. (a) Examples of radial displacements (�(r; �)� r) for c = 1, R(r) =
re , and A(�) = 0; 5;�0:5. Plots of (b) determinant of the Jacobian
and (c) divergence for the corresponding � .

while in the second case . Plotted in Fig. 3(a)
are two examples of for and

for the case where . (For a
better understanding, this figure plots the radial displace-
ment , rather than itself.) As the two
curves show, major deformation lies in a region around

, denoted by , here, and goes to zero exponen-
tially fast as gets larger.

2) Another possibility is to define according to

if
if

(4)

As earlier, is the ADF. In each direction, is
piecewise linear in . is scaled up or down ac-
cording to , in the active region. Here,
means expansion while means contraction. The
main difference here, from the previous model, is that here
the outer regions are also transformed; they are pushed
away (or inwards) according to the expansion (or contrac-
tion) in the inner active region. This model is not explored
further in this paper.

Through these choices of , we have ensured that the
interesting part of the deformation takes place inside a neigh-
borhood of , a subset of , whose size depends on
. In the first case, the outside regions are unchanged, while

in second the outside regions are simply pushed in or out. In
the coordinate system centered at , the point located at

moves to the location , where
is a unit vector. The three mappings

introduced earlier can be restated in this notation as follows:
, , and .

C. Examples of ADFs

To illustrate elementary deformations resulting from GRID
model, we show some examples representing the primitive
forms of growth/decay. For brevity, we will restrict to radial
growth characterized by , for a certain
. As mentioned earlier, a rich family of deformations can

be obtained by simply changing the ADF. The behavior is
regulated mainly by the maxima and minima of the ADF .
If has a single extremum, we label it the unipolar growth;
if it has two extrema we call it the bipolar growth, and the
case with several minima and maxima we call the multipolar
growth. If the function is mostly positive, then we will label
the corresponding seed as a source; if it is mostly negative,
then we will call the seed a sink. In case is both positive and
negative, then we have a composite seed.
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Fig. 4. Examples of elementary deformations  obtained using different ADFs. (a)–(c) show unipolar ADFs and (d) and (e) show bipolar ADFs.

Fig. 5. Some examples of deformations resulting from random combinations
of these elementary deformations.

Fig. 4 shows some examples of these elementary defor-
mations applied to a uniform polar grid. For each case,
we display the function versus (top panel), with
plotted in radians, and the resulting applied to a uniform
polar grid (bottom panel). Shown in Fig. 4(a) is an example of
unipolar source where there is a proper growth in the positive
horizontal direction. The pattern shown in Fig. 4(d) is termed
bipolar source as it results in a proper growth in two different
directions. Next, consider a decay, so that the seed acts like a
sink. Fig. 4(b) and (c) displays the case of decay in positive and
negative horizontal directions. We term these cases unipolar
sink. A further possibility is the bipolar behavior where the
deformation results in growth in some direction and decay in
some other direction. Shown in (4e) is the case of a source in
one direction and a sink in another direction. One can construct
a whole catalog of ADFs by choosing source or sink or com-
posite, and polarity, and directions:

. Under
the GRID model one can characterize cumulative biological
growth using a collection of seed locations and elementary de-
formations. Shown in Fig. 5 are some examples of cumulative
deformations generated by a concatenation of these elementary
deformations.

III. ANALYSIS OF GRID MODEL

In this section, we study certain analytical properties of de-
formations generated by the GRID model. We start by deriving
conditions under which is a diffemorphism, followed by a
study of Jacobian, divergence, and curl associated with GRID-
generated deformation fields. Here, we consider the RDF to be

, but a similar analysis results for other
choices of RDF.

A. Diffeomorphic Nature of Mappings

We seek conditions that ensure that the mappings are dif-
feomorphic at all times. Consider the displacement of under
the mapping . For the vector , and its polar
representation , the new relative location of this point
is given by whose polar coordinates are .
The mapping will be diffeomorphic as long as

is a diffeomorphism, for all . So the next question is: When
is a diffeomorphic function? Fix an angle and that fixes the
value of . Now, is a diffemorphism as long it
has a piecewise-continuous derivative and .

For the case , we get
, with . From

, we obtain the condition that
. The following cases result.

Case 1: For the value of , the partial derivative is
positive for all values of .

Case 2: For , this condition becomes
. Since the maximum value

of the right side is 1, achieved at , we reach
the condition that .

Case 3: For , the condition becomes
. The minimum value of

the right side is , achieved at
. Therefore, we need for to

be a diffeomorphism.
In summary, and are diffeomorphisms as long as

for all . Recall from earlier that results
in compression and results in expansion. The reader can
check that all ADFs shown in Fig. 4 satisfy these conditions.

B. Jacobian of Elementary GRID Flow

To analyze further, one can compute its Jacobian. In phys-
ical terms, the Jacobian of at measures the change of area
in a small region around . Under the GRID model, this trans-
formation is actually performed in polar coordinates, via a se-
quence of transformations given by
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where , , and denote Jacobians of the three transforma-
tions. These Jacobians are given by

(5)

where is a short form of . The determinant of
overall Jacobian is

. If , this determi-
nant is given by

. Shown in Fig. 3(b) are
two example plots of , for ,
under this model. At the seed , the determinant is given by

, while for points far away from the seed the deter-
minant is one. For negative values of , the determinant is
less than one, implying a reduction in area. Similarly, a positive

implies an increase in the area or growth around the seed.
Since the determinant measures the change of area around a
point, this result again highlights the locally active nature of
the elementary GRID deformations.

C. Fluid Characterization of GRID Flows

It is possible to characterize in general terms the flows gener-
ated by the GRID model. Using (5), the full Jacobian for trans-
formation from to is given by
where

The divergence of the displacement vector field at a point is
given by , and it measures the rate
at which biological matter (considered as fluid) expands in a
unit region centered at that point. In case this divergence is zero
for all points, the fluid is said to be incompressible. Similarly,
the curl is given by , and it measures
the angular momentum, or rotational effect, of fluid particles
flowing along streamlines of the given vector field. In case the
curl of a vector field is zero at all points, the field is termed
irrotational. In that case, the vector field can be written as the
gradient of a potential function, i.e. there exists an such that

. For biological growth, resulting from irrotational
fields, one can use to interpret growth.

Substituting for the entries from the full Jacobian, we ob-
tain the formulas for divergence and curl of under the GRID
model.

1) The divergence is given by .
2) The curl is given by .

In the case of , the divergence
of the deformation field at is given by

, while the curl is given by
. Inside the active region, the

divergence depends on the ADF : a positive value of

implies fluid expansion while a negative value implies contrac-
tion. Note that the influence of a seed goes down exponentially
as we move far away from the seed. Similarly, the value of

dictates the curl inside the active region. For points
outside the active region, both the divergence and the curl go to
zero exponentially fast. An irrotational field is obtained when
the ADF is isotropic, i.e. .

So far, we have introduced the GRID model and have pre-
sented some analytical properties of deformations resulting
from this model. Next, we consider the problem of estimating
model variables from raw image data.

IV. ESTIMATION OF GROWTH DEFORMATION

In the next two sections, we present some results on estima-
tion of GRID variables from MRI growth data of a rat’s brain.
This estimation is accomplished in two steps. First, we estimate
the deformation that models brain growth from time to .
Later, we estimate seed locations, RDFs, and ADFs from the
estimated . This two-step approach has a limitation that the
values of estimated GRID variables depend on the estimated
which can be different under different criteria. A better approach
in the future will be to estimate GRID variables directly from the
image data, bypassing the estimation of .

In this section, we describe the first step of estimating from
the given image data at times and . Let be the image at
time and be the image at time ; we will simplify nota-
tion by fixing and dropping it from the subscript in this section.
There is a large body of literature on estimation of deformations
that model variations between given images. An important dis-
tinguishing factor between various techniques is the choice of
cost function used in estimation of deformation. Ideas such as
elastic matching [9], viscous modeling [19], spline-fitting [20],
point-based matching [21], curve-based matching [22], and sur-
face matching have been used in the past.

We perform this estimation using an energy that seeks to
match both the images pixels and their boundaries. This energy
that has three components: 1) reflects the squared error be-
tween the deformed image and the target images; 2) mea-
sures the mismatch between the (image) gradient vectors in the
two images; 3) measures the smoothness of . The total en-
ergy function is

(6)

with ; and , , are positive
constants that denote relative weights of the three components.
We want to solve for . Some important
aspects of our implementation are as follows.

1) Image Interpolation: We will use an iterative gradient ap-
proach to solve for . We need several
gradients, for example on a discrete lattice. Since
takes values in , the value of may not be readily
available as is defined only on the lattice. We will use the
bilinear interpolation to estimate image values between lat-
tice points to obtain .
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Fig. 6. (a) I , (b) J , (c) initial difference I � J , and (d) I after RST.

2) Multiresolution Estimation: Let be a 2-D Gaussian
filter with a bandwith , and let and

be the smoothed versions of these two images. De-
fine , where is as defined
in (6), except and are replaced by and , respec-
tively. Our strategy is to start with a large , implying a
coarse resolution to estimate the mapping . In the next it-
eration, decrease , thus increasing the resolution, and use
the previous estimate of to initialize the gradient search
for at the next resolution.

3) Rotation, Scaling, and Translation (RST): To remove
rigid translation, rotation, and scale variability from ob-
served images, we use a principal component approach.
For each image , we define the mean location and a co-
variance matrix as

and

where . Means and eigenvectors
of are then used to align the two images. This enables us
to focus on estimation of without worrying about errors
resulting in this initial alignment. Shown in Fig. 6(d) is an
example of this initialization.

Shown in Figs. 6–8 are some results obtained using this mul-
tiresolution approach on MRI images of a rat brain growth.
Shown in Fig. 6 is the first experimental setup. Panel (a) shows
the image , (b) shows , (c) shows their initial difference

, and (d) shows the initial RST alignment of to match .
Then, a multiresolution approach is used to estimate the op-
timal . The results for estimating are shown in Fig. 7, where
(a) shows , (b) shows , and (c) shows their difference

. Deformations associated with the resulting are
shown in several ways—a vector field (d), a deformed lattice
(e), and an image of displacement magnitudes (f). Fig. 8 shows
another example of this estimation using a different pair of
and .

A quick look at the estimated s supports the earlier claim
that growth is local and the deformation field can be locally
modeled using radial displacements around random seeds. The
next section elaborates on this idea. As stated earlier, the solu-
tion is not unique; it depends on the minimization criterion
and the optimization procedure and will affect the remaining
analysis.

V. ESTIMATION OF GRID VARIABLES

So far, we have estimated the deformation that matches
the image to the image . Next, we consider the problem
of estimating GRID variables—seed locations, RDFs, and

Fig. 7. (a) J , (b) I(�̂), (c) I(�̂) � J , (d) deformation vector field generating
�̂, (e) optimal �̂ applied to uniform lattice, and (f) image of jd�̂j averaged over
small neighborhoods to show active regions.

Fig. 8. Estimated deformation that optimally matched I with J : (a) I , (b) J ,
(c) I after RST, (d) I(�̂), (e) I(�̂)�J , (f) optimal deformation field, (g) optimal
�̂ applied to uniform lattice, and (h) jd�̂j averaged over small neighborhoods to
show active regions.

ADFs—from the estimated . Our approach is to treat as a
noisy observation of the underlying GRID deformation and use
a maximum-likelihood setup to estimate GRID variables.

A. Model for Displacement Field

We will analyze deformations in the form of displacement
vector fields and, therefore, we model them explicitly. For a de-
formation , the displacement vector at any point is given by

. First, we derive a model for displacement
field induced by the GRID model. An elementary displacement
field, attributed to a single seed, is given in the Cartesian coor-
dinates as

where

and . As mentioned earlier, is the ADF that
captures the deformation around the seed. It is a function of
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the angle made by the vector with the positive horizontal
axis. To reduce notation, we assume momentarily that the seed
is located at the origin, i.e., . The deformation model
simplifies to

(7)

is the counterclockwise angle made by the vector with
the positive horizontal direction. Here, can be viewed as a
“template displacement” of a uniform lattice, induced by the
ADF and the RDF . For later convenience, we define a
vector field so that we can rewrite

.

B. Observation Model

We are given a displacement vector field such that for any
, is a 2-D vector. Our goal is to estimate GRID

variables using the given deformation field. We first impose a
data model on the observed deformation field that will allow us
a likelihood-based framework for the estimation of unknowns.
We assume that the observed deformation is a noisy version of
the one dictated by the GRID model, i.e.,

(8)

where is a vector of independent Gaussian random
variables, with mean zero and a fixed variance . Each of the

s are as specified in (7). The number of seeds is unknown
and also needs to be estimated from the observed data. Ac-
cording to this model, the observed deformation is a superpo-
sition of several template deformations, each having an associ-
ated ADF , an RDF that depends on parameters , and a seed
placement . Note that (8) is a simplification of the original
GRID dynamics, based on the assumption that seeds are placed
far enough to have nonoverlapping displacements in the image.
That is, for

. This is motivated by the exponential decay in the in-
fluence of a seed as a function of the radial distance. In case
these displacements interact, the overall displacements will not
be a simple linear combination. We can view this model as a
decomposition of a cumulative deformation into simpler, more
elementary deformations, each of which belongs to the space

Note that this space of elementary deformations is not a vector
space. This decomposition is different from more traditional
component analysis of observations (e.g., principal component
analysis or sparse representations of signals) in that the compo-
nents here are restricted to be predefined elementary deforma-
tions, elements of the space given above.

Under this model, the negative of log-likelihood function,
also referred to as likelihood energy, is given by

(9)

where implies the 2-norm of a vector. Let be the set of all
unknowns: . Here, is
a non-negative integer, , or depending
upon the parametric family for RDF, and is a
square-integrable function, i.e., .

C. Maximum Likelihood Estimation

Choosing MLE as the framework for variable estimation, we
formulate the estimation problem . This so-
lution is equivalent to maximizing the magnitude of the projec-
tion of onto the space of GRID deformations. We will es-
timate using an iterative approach, where the elements of
are updated iteratively. Since this approach is gradient based, it
is important to have a good initialization of unknown variables.
In this section, we derive and outline steps for updating compo-
nents of , while the remaining components are held fixed.

For each , define the residual deformation,
. is the residual defor-

mation field in after removing contributions from all seeds
except the th seed. These residual are computed using the
current values of GRID variables. To minimize computational
cost, we first construct the templates ,

. Note that s are nonzero only on a small
subset of around and zero on the remaining locations.
The GRID variables associated with the th seed are updated as
follows.

1) Update : According to

(10)

where denotes the set of all such that the vector
makes the angle with the positive horizontal axis.

The mapping was introduced in Section V-A
2) Update : Since the gradient-based update of

seems complicated, we resort to a direct estimation of
as follows:

The computation of this minimizer is cheap since the tem-
plate needs to be constructed only once. De-
composing the cost function

(11)

The last step results from assuming that , contained in
, is small enough and lies in the interior of the image

domain so that does not change
with . Defining to be , the inner product in
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Fig. 9. MLE of GRID variables for deformation shown in Fig. 7. (a) Original deformation d^�, (b) estimated GRID deformation, (c) residual deformation, (d) ADFs,
and (e) estimated (solid line) and observed (dotted line) RDFs.

(11) becomes a 2-D convolution between and . Define
the 2-D Fourier transforms

for . Then, we can obtain the maximizer as
. Since the func-

tion to be maximized is the inverse Fourier transform of the
product , it is fast to compute.

3) Update : Again, we perform this step using an exhaustive
search since a gradient-based update will be computation-
ally expensive. The update is

.
In this iterative strategy, one has to specify a stopping criterion
to the algorithm. Here, the stopping criterion also corresponds
to determining the estimated value of , the number of seeds.
Since is unknown beforehand, one can use a penalty func-
tion, perhaps a complexity criterion, in addition to the likeli-
hood function. An equivalent strategy is to stop when the con-
tribution from the next seed, measured by the quantity

, is smaller than a certain threshold. We have used

this criterion for stopping the algorithm with a threshold value
determined through experimentation.

Shown in Figs. 9 and 10 are results of this estimation pro-
cedure on the deformations shown in Figs. 7 and 8, respec-
tively. In each row of these figures, we show estimated con-
tributions from individual seeds in rectangular regions around
them. The first picture shows a portion of the original , the
second shows the estimated function for that seed, and the
third shows the residual in the same region (with the
seed location shown by a star). The next two plots show the
ADFs and the RDFs associated with that seed placement. The
negative and positive values of ADFs denote directional decay
and growth, respectively. In some cases, ADF shows a unipolar
source or sink, while in other cases we see multipolar behaviors.
It can be seen that in cases where has sharp boundaries (e.g.,
Fig. 9 third row), the GRID model does not explain completely
the observed variations. This is due to the smoothness of RDFs
and can be addressed by choosing different RDFs. In all cases,
the estimated GRID variables seem to capture the general de-
formation patterns and may prove sufficient for characterizing
and classifying the overall growth. Fig. 11 shows the evolutions
of the likelihood energy as successive seeds are detected by
the iterative algorithm, for the two datasets. After a stage, ad-
dition of another seed does not result in a substantial decrease
in and the algorithm terminates. We can reconstruct the dis-
placement feed attributed to the estimated radial patterns using
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Fig. 10. MLE of GRID variables for deformation shown in Fig. 8.

Fig. 11. Evolution of L as seeds are detected sequentially for two datasets,
respectively.

Fig. 12. GRID reconstruction of growth: in each row, left panel is J , middle
panel is I(�̂), and right panel is I(~�).

, so that .
Shown in Fig. 12 are two examples of , compared to images

resulting from originally estimated deformations.

Fig. 13. Examples of different coordinate systems: cartesian (first), polar
(second), and curvilinear (third). Bottom diagram shows Darcyan (curvilinear)
coordinate system.

VI. POSSIBLE EXTENSIONS

Although the model presented so far provides a valuable de-
composition of an observed growth in biological plausible el-
ementary units, there are several extensions of this model that
can make it even more useful. In this section, we outline some
of these ideas.

1) Darcyan Coordinate System: In the problem of growth
analysis, it will be useful to perform analysis in a coor-
dinate system that changes with the anatomy. Shown in
Fig. 13 are three examples of coordinate systems imposed
on an MRI image of a rat brain. Rather than choosing
a fixed Cartesian system Fig. 13(a) or a polar system
Fig. 13(b), we suggest a time-varying coordinate system,
say with the coordinates . This system
is usually curvilinear in as shown in the third and
the bottom panels of Fig. 13. The solid lines denote the
level sets of variable , while the dotted lines denote
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the level sets of . One can view as a permanent “tag”
associated with each particle in the object, while the actual
location of that point is given by the function , such
that . As the or-
ganism develops, the Darcyan coordinate system too will
develop, and the time-varying locations of are given by

. We call this system the Darcyan, after the
celebrated author D’Arcy Thompson [23]. All biological
decisions during development should be expressed in
Darcyan coordinates. The time parameter measures time
from the instant when the initial image is taken.

2) Parametric Forms of ADF: So far, we have used a non-
parametric form for the ADFs, but it may be possible to use
a mixture of von Mises density functions to make it a fully
parametric model. The von Mises density function on
is given by , where

denotes the mean value, is a measure of variance, and
is a modified Bessel function that normalizes the den-

sity function. This density can model unipolar seeds, but
for multipolar seeds we suggest a mixture of von Mises
variables.

3) Catalog of Growth and MAP Estimation: Perhaps the
most significant future work in this approach is to develop
a probabilistic catalog of ADFs using annotated datasets.
One would like to associate certain types of deformations,
represented by their corresponding ADFs, with specific
growth conditions. For example, in case of later stages of
a malignant tumor what ADFs can model the growths with
high probability? Such probabilistic catalogs will have
multiple uses: they can then be used as prior models for
MAP estimation of GRID variables or they can be used to
classify a particular growth into predetermined classes.

4) Direct Estimation of GRID Variables: In this paper, we
have used a two-step procedure to estimate GRID vari-
ables. A more desirable approach will be to directly es-
timate GRID variables from the image data. We sketch an
approach for estimating the Poison intensity measure un-
derlying the placement of seeds. Say we want to solve the
minimization problem:

, where

A measure is an extremum of the cost function if it sat-
isfies the condition

for all where
. To understand this condition,

consider the term . This is the
total resulting displacement vector of the particle , over
the interval [0, ], if a seed is placed at . As a function

of , this term defines a vector field on the set .
is the expected new location of the particle at time ,
the expectation is with respect to the Poisson measure .

is the gradient of image evaluated on a background
space that has been deformed from to . The
term
denotes the inner product of these two vector fields and
defines a scalar field on . The extremum condition
stated above says that the inner product of the scalar field

and is zero for all .
5) Statistical Analysis of Growth: An important application

of this framework is in analyzing observed growth for
classification into normal and abnormal growth. Using
statistics of the deformations, it should be possible to
efficiently classify local growth patterns. In this paper,
we have developed efficient representations of anatomical
growth and statistical analysis of these quantities under
different classes should lead to tools for growth classifi-
cation. Another important area of research can be the use
of ideas from functional analysis of variance (FANOVA)
for studying effects of drugs and treatments on anatom-
ical growth, when growth is represented using the GRID
variables.

6) 3-D Growth Models: The discussion in this paper is
mostly restricted to 2-D image data, while the study of
biological growth is more natural in 3-D spaces. In prin-
ciple, except for increased computational cost, it should
be straightforward to extend the GRID framework to
3-D growth analysis. An important change is going from
2-D to 3-D will be that the angular deformation function
ADF will now be from to , and one will need some
parametric families to make this representation efficient.

VII. SUMMARY

We have proposed a mathematical framework for modeling
growth of biological objects, such as anatomical parts, with a
focus on locally active growth. This GRID model uses random
placements of seeds and radial deformations around those seeds
to capture growth-based deformations. The resulting growth
patterns can be characterized using these GRID variables. We
have demonstrated MLE of GRID variables using MRI images
of a rat’s brain growth. This paper accomplishes the following
tasks.

1) It introduces a mathematical representation of deformation
(resulting from anatomical growth) that seems natural for
growth analysis.

2) It presents some useful analytical properties (Jacobian,
divergence, curl, etc.) of these deformations that can be
useful in growth analysis and anatomical interpretations.

3) It presents potential probability models for variables mod-
eling GRID deformations, for future Bayesian inferences.

4) It outlines possible extensions of this framework to handle
more practical situations and to eliminate some of its
shortcomings.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Zhang of the Johns
Hopkins University for providing them with the MRI data used



GRENANDER et al.: PATTERN-THEORETIC CHARACTERIZATION OF BIOLOGICAL GROWTH 659

in this paper. The authors gratefully acknowledge several useful
remarks by the three anonymous reviewers.

REFERENCES

[1] J. A. Sherratt and M. A. Chaplain, “A new mathematical models for
avascular tumour growth,” J. Math. Biol., vol. 43, no. 4, pp. 291–312,
2001.

[2] I. L. Dryden and K. V. Mardia, Statistical Shape Analysis. New York:
Wiley, 1998.

[3] F. Bookstein, The Measurement of Biological Shape and Shape
Changes, ser. Lecture Notes Biomathematics. New York: Springer
Verlag, 1978, vol. 24.

[4] D. G. Kendall, D. Barden, T. K. Carne, and H. Le, Shape and Shape
Theory. New York: Wiley, 1999.

[5] U. Grenander and M. I. Miller, “Computational anatomy: An emerging
discipline,” Quart. Appl. Math., vol. LVI, no. 4, pp. 617–694, 1998.

[6] M. I. Miller and L. Younes, “Group actions, homeomorphisms, and
matching: A general framework,” Int. J. Comput. Vision, vol. 41, no.
1/2, pp. 61–84, 2002.

[7] A. Trouve, “Diffemorphisms groups and pattern matching in image
analysis,” Int. J. Comput. Vision, vol. 28, no. 3, pp. 213–221, 1998.

[8] P. M. Thompson and A. W. Toga, “A framework for computational
anatomy,” Computing Visualization Sci., vol. 5, pp. 13–34, 2002.

[9] M. Miller, G. Christensen, Y. Amit, and U. Grenander, “Mathematical
textbook of deformable neuroanatomies,” in Proc. Nat. Acad. Sci., Dec.
1993, vol. 90, no. 24.

[10] V. Arsigny, X. Pennec, and N. Ayache, Polyrigid and Polyaffine
Transformations: A New Class of Diffeomorphisms for Locally Rigid
or Affine Registration, ser. Lecture Notes Computer Science, vol.
2879, R. E. Ellis and T. M. Peters, Eds. New York: Springer, 2003,
pp. 829–837.

[11] P. R. Andresen and M. Nielsen, “Non-rigid registration by geometry-
constrained diffusion,” in Proc. MICCAI, 1999, vol. 1679, pp. 533–543.

[12] V. G. Kac, Infinite-Dimensional Lie Algebras, 3rd ed. Cambridge,
MA: Cambridge Univ. Press, 1990.

[13] O. Clatz, P.-Y. Bondiau, H. Delingette, G. Malandain, M. Sermesant,
S. K. Warfield, and N. Ayache, “In silico tumor growth: Application
to glioblastomas,” in Proc. MICCAI 2004, LNCS 3217, C. Barillot, D.
Haynor, and P. Hellier, Eds., 2004, p. 337345.

[14] A. R. Kansal, S. Torquato, G. R. H. , IV, E. A. Chioccaeb, and T. S.
Deisboeck, “Simulated brain tumor growth dynamics using a three-
dimensional cellular automaton,” J. Theor. Biol., vol. 203, pp. 367–382,
2000.

[15] K. R. Swanson, C. Bridge, J. Murray, and E. C. A. , Jr., “Virtual and real
brain tumors: Using mathematical modeling to quantify glioma growth
and invasion,” J. Neurological Sci., vol. 216, pp. 1–10, 2003.

[16] M. A. J. Chaplain, Mathematical Modeling of Tumor Growth, ser.
Series: Interdisciplinary Applied Mathematics. New York: Springer,
2006.

[17] Y. Ling and B. He, “Entropic analysis of biological growth models,”
IEEE Trans. Biomed. Eng., vol. 40, no. 12, pp. 1193–1200, Dec. 1993.

[18] W. Harvey, Essays on Generation of Animals 1651.
[19] G. E. Christensen, R. D. Rabbitt, and M. Miller, “A deformable neu-

roanatomy textbook based on viscous fluid mechanics,” in Proc. 27th
Annu. Conf. Information Sciences Systems, J. Prince and T. Runolfsson,
Eds., Baltimore, MD, Mar. 24–26, 1993, pp. 211–216, Dept. Electrical
Engineering, The Johns Hopkins Univ.

[20] B. Kim, J. L. Boes, K. A. Frey, and C. R. Meyer, “Mutual information
for automated unwarping of rat brain autoradiographs,” Neuroimage,
vol. 5, no. 1, pp. 31–40, 1997.

[21] F. L. Bookstein, “Size and shape spaces for landmark data in two di-
mensions,” Stat. Sci., vol. 1, pp. 181–242, 1986.

[22] N. Khaneja, M. Miller, and U. Grenander, “Dynamic programming
generation of curves on brain surfaces,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 20, no. 11, pp. 1260–1264, Nov. 1998.

[23] D. W. Thompson, On Growth and Form: The Complete Revised Edi-
tion. New York: Dover, 1992.


