
An Exact Jitter Method using Dynamic Programming

Matthew Harrison

Division of Applied Mathematics
Brown University

Providence, RI 02912 USA
Matthew Harrison@Brown.EDU

Stuart Geman

Division of Applied Mathematics
Brown University

Providence, RI 02912 USA
geman@dam.brown.edu

March 8, 2004

APPTS Report #04-3, Division of Applied Math, Brown University
http://www.dam.brown.edu/ptg/REPORTS/04-3.pdf

1 Introduction

We are given a neural spike train with spike times t1, . . . , tn and we want to discover
something about the resolution over which these spike times were generated. A heuristic
approach is to fix a statistic of the spike train, say f(t1, . . . , tn), and then Monte Carlo
jitter each of the spike times by some small random amount, computing the statistic
over and over again for each jitter. Presumably, if the jitter amount is smaller than the
meaningful resolution of the spike train, then the original value of the statistic will not
be an outlier in the distribution of jittered statistics. The jitter heuristic is designed to
create a lot of “similar” spike trains in the sense that it preserves the “rate of spiking”
measured over windows larger than the jitter amount. Failing to account for a non-
constant firing rate has been the downfall of many statistical methods which look at the
time resolution of spike trains.

A close analysis of the jitter method reveals several drawbacks. Perhaps the easiest to
see is that the jittered spike trains may not obey known physiological constraints, such
as the absolute refractory period. Furthermore, spikes may swap positions, which is in-
tuitively unsettling at the very least. Han Amarasingham’s thesis [1] contains a detailed
discussion of various jitter methods, including an exact (not Monte Carlo) method that
includes physiological constraints in an agnostic way. Unfortunately, this exact method
is computationally intensive and may not be appropriate for online physiological experi-
ments where a jitter method is applied to data from one trial in order to generate stimuli
for the next trial.

Here we describe a fast and exact jitter method that allows for some predefined
physiological constraints. We feel that it is a reasonable compromise between the well
formulated and agnostic methods in [1] and the obviously deficient original jitter heuristic.
We will first describe a Monte Carlo formulation of our method. Then we will show that
it can be solved exactly and quickly using dynamic programming. That our method is
exact and is not a Monte Carlo method is important for reducing the variance of our
estimates. Reduced variance translates into reduced numbers of trials in physiological
experiments.

1

2 Monte Carlo Constrained Jitter

The original jitter method effectively jitters all spikes simultaneously, irrespective of each
other. Of course, we can think about this as jittering the first spike, then jittering the
second spike, and so on. The main thing is that the amount of jitter for the second spike
did not depend on the amount of jitter for the first spike. This is easy enough to modify,
though.

First, we jitter the initial spike according to some initial distribution. Maybe this
initial distribution is uniform over some small time window, but it need not be. Then,
given the jittered position of the first spike, we jitter the second spike using a distribution
that captures some known physiological constraints. These constraints can be hard: we
might want to prevent the second spike from preceding the first, or we might want to
prevent it from falling into the absolute refractory period of the first spike. They can
be soft: we might want to have only a small probability that the second spike falls into
the relative refractory period of the first spike, or we might want the jitter probability to
obey a given distribution of interspike intervals. They can even vary from spike to spike:
we might want to preserve bursting, so if the second spike closely followed the first in the
original spike train, then we can have the jitter probability preserve this closeness.

Once we have jittered the second spike, then we move on. Given the jittered position of
the second spike, we jitter the third spike according to some distribution. This continues
until all the spikes are jittered. The important thing for our exact method detailed below
is that the jittered position of a spike only depends on the jittered position of the previous
spike. This can be relaxed to depend on the jittered position of the previous m spikes,
but m will need to be very small for the algorithm to be fast.

This method for jittering spikes is more general than the original jitter method. It
allows us to incorporate certain structure into the jittered train. Suppose we repeated
this process over and over to create many jittered versions of the same spike train. If
the original spike train was produced by some process operating at a resolution much
coarser than our jitter, except for the physiological constraints that we included, then
the underlying assumption is that jittered spike trains will show up with about the same
relative frequency that we might expect if we were to run the “identical” physiology
experiment over and over again, whatever that means. This is the null hypothesis.

This particular null hypothesis is not mathematically well-defined, but it captures the
intuition that we are interested in. Mathematically well-defined or not, the jitter process
(which is well-defined) effectively creates a null-hypothesis which we can test using a
permutation test. The Monte Carlo version of this test is simple. Create many jittered
spike trains. Compute the same statistic on all of them (we haven’t discussed choice of
statistics, yet) and create the distribution of these statistics. The p-value of the test is
the tail probability of the distribution at the value of the statistic for the original spike
train. That is, the p-value is how much the original train is an outlier.

2.1 Choosing the statistic

In principle the statistic is any function f of the entire spike train. For our exact method
to work, the function must be of an appropriate form. In particular, we will assume that

f(t1, . . . , tn) =
n∑

k=1

fk(tk),

2

that is, f evaluated on a spike train with many spikes is just the sum of a sequence of
functions fk each evaluated on individual spikes.

Within this additive constraint, we are free to choose f . We believe that a particularly
powerful f for rejecting the null-hypothesis will involve some sort of synchrony measure
between the jittered spike and a fixed, comparison spike train. For example, let t̃1, . . . , t̃ñ,
be the spike times of another spike train, perhaps recorded at the same time as the original
spike train. A common measure of synchrony is

fk(t) = g(t) = 1

{
min

1≤j≤ñ
|t − t̃j | ≤ ∆

}
,

where 1 {A} is the indicator function of the event A. The particular application will
dictate the specifics of the test statistic.

3 Exact Constrained Jitter

As we run more and more Monte Carlo simulations, the empirical distribution and,
thereby, the p-value converge to some limiting values. We have formulated this jitter
method so that these limiting values are easily and quickly obtainable. The key insight
is that the sequence of spike times in a jittered train are the realizations of a Markov
chain. Perhaps this was apparent from our original description of the method, but we
will go through some of the details.

We have an observed spike train with times t1, . . . , tn. These are fixed and known.
Each of these spikes can be jittered by a certain amount. Let us say that spike k can
be jittered to any one of the times Sk = {sk1, . . . , skMk

}. For example, we might have
Sk = {tk − 10, tk − 9, . . . , tk + 10} for a ±10 ms jitter. The Sk must be finite (we do not
allow continuously valued jitter), but this is not a problem in practice. Note that the
method really only makes sense if tk ∈ Sk.

The Sk will be the sequence of state spaces for our Markov chain. In many cases,
Sk = tk ⊕{δ1, . . . , δM}, for all k, in which case we can make the state space the same for
each time step in the Markov chain, but this is not really important.

A realization from the Markov chain is X1, . . . , Xn, with Xk ∈ Sk, corresponding to
the jittered spike times. We begin the jitter process with some initial distribution µ for
X1 over S1. Once X1 is selected, then we use the known (that is, made up according to
reasonable physiological constraints like refractory period) probability transition matrix
P1(x2|x1) to generate X2 ∈ S2 given the value of X1 ∈ S1. Once X2 is chosen we continue
on using our sequence of transition probability matrices Pk, k = 1, . . . , n − 1. Notice
that the Pk can be designed from the original spike times and can thus preserve certain
structure like bursting.

For each jittered spike Xk we compute some deterministic statistic Yk = fk(Xk). The
statistic of the entire jittered spike train is

Z =

n∑
k=1

Yk =

n∑
k=1

fk(Xk) = f(X1, . . . , Xn).

In the next section we describe a dynamic programming approach for computing the
distribution of Z. Once this distribution has been computed, the p-value is again just
the tail probability at the original value of the statistic on the unjittered spike train.
Our initial simulation experiments indicate that this dynamic programming algorithm

3

is sufficiently fast (< 30 ms in Matlab over typical parameter ranges) for use in online,
adaptive neurophysiological experiments.

3.1 The distribution of sums of functions of a Markov chain

Let Xk ∈ Sk, k = 1, . . . , n, be a finite state, first order, time inhomogeneous Markov
chain with initial distribution µ for X1 and with probability transition matrices

Pk(s|s′) = Prob {Xk+1 = s|Xk = s′} .

Let Yk = fk(Xk) for deterministic functions fk : Sk → Ak ⊂ R. Notice that |Ak| ≤ |Sk| <
∞. Define Z =

∑n
k=1 Yk and let p be the distribution of Z over its support B ⊂ R.

Since there are at most
∏n

k=1 |Ak| outcomes for the sequence (Y1, . . . , Yn), we know that
|B| ≤ ∏n

k=1 |Ak| ≤
∏n

k=1 |Sk| < ∞. If the Ak are appropriately chosen, then |B| will
typically be significantly smaller than this bound.

We are given the distribution µ, the transition matrices Pk and the functions fk and
we want to compute p, the distribution of Z. Define

Wk(s, b) = Prob

{
Xk = s,

k∑
j=1

Yj = b

}
,

Bk =

{
b :

∑
s∈Sk

Wk(s, b) > 0

}
.

Bk is the support of Wk. We can iteratively compute Wk and Bk, k = 1, . . . , n, using a
dynamic programming procedure. Notice that

p(z) = Prob

{
n∑

k=1

Yk = z

}
=

∑
s∈Sn

Prob

{
Xn = s,

n∑
k=1

Yk = z

}
=

∑
s∈Sn

Wn(s, z)

and has support B = Bn. So computing Wn and Bn will solve our problem.
First notice that

W1(s, b) = Prob {X1 = s, Y1 = b} = Prob {X1 = s}1 {f1(s) = b} = µ(s)1 {f1(s) = b} ,

B1 =

{
b ∈ A1 :

∑
s∈S1

W1(s, b) > 0

}
.

Both of these are easy to compute.
Now, given Wk and Bk we can compute Wk+1 and Bk+1 as follows. First, notice that

Bk+1 ⊂ Bk ⊕Ak+1, the set of all possible values resulting from a sum of one element from
Bk and one from Ak+1. For each b ∈ Bk ⊕ Ak+1 and s ∈ Sk+1 we can compute

Wk+1(s, b) = Prob

{
Xk+1 = s,

k+1∑
j=1

Yj = b

}
=

∑
s′∈Sk

Prob

{
Xk+1 = s, Xk = s′,

k+1∑
j=1

Yj = b

}

=
∑
s′∈Sk

Prob

{
Xk+1 = s, Xk = s′,

k∑
j=1

Yj = b − fk+1(s)

}

=
∑
s′∈Sk

Prob {Xk+1 = s|Xk = s′}Prob

{
Xk = s′,

k∑
j=1

Yj = b − fk+1(s)

}

=
∑
s′∈Sk

Pk(s|s′)Wk(s
′, b − fk+1(s)).

4

Once Wk+1 has been computed, we can just use the definition to find Bk+1.
Note that if Xk is not first order, then we can always create a new sequence that is

first order by expanding the alphabet.

References

[1] Asohan Amarasingham. PhD thesis, Division of Applied Mathematics, Brown Uni-
versity, 2004.

5

