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Abstract

We develop an unsupervised general methodology for partitioning
data into clusters. The notion of clusters is based on information-
theoretic terms for the entropy of the partitions given the data. The
model produces a hierarchy of nested clusterings (coarse to fine), where
each partition is expressed as a mixture of a set of fixed Gaussian
kernel functions. As our model splits clusters solely based on their
“connectedness”, it can deal with clusters of general shapes and sizes.

1 Introduction

In exploratory data analysis, one often needs to partition high-dimensional
data into clusters. The underlying assumption is that these clusters
are generated by different classes of stimuli or objects. By partition-
ing the data, we are able to gain a better understanding of the hidden
structures in the data, as well as classify and interpret new observa-
tions. Partitioning general data is however a difficult problem due
to the high variability in size, density, and shape of naturally occur-
ing clusters. The clusters can, for example, be compact, elongated
or ring-shaped. Furthermore, there may exist several sensible ways
of dividing the data. The criterion for a “good” partitioning often
depends on which scale (coarse or fine) one views the system.

In this paper, we develop a data partitioning model that origi-
nates from work by S. Roberts et al. As in [2, 3], we model both the
unconditional and the class-conditional probability density functions
of the data as Gaussian mixtures. The partitioning of the data is
furthermore decided by information-theoretic terms for how well the
partitions are separated.



The main contributions of this paper are two: (i) We introduce a
clustering criterion that is suitable for clusters of general shapes and
sizes. (The original algorithm by S. Roberts et al. favors partitions
of equal sizes.) (ii) Instead of producing a single clustering for a fixed
number of clusters, we build a multi-scale hierarchy of nested clus-
terings. The different clusterings are arranged according to ascending
“partitioning energy” in a tree (see Fig. 2), where a cluster on a finer
scale is a subset of a cluster on a coarser scale. The model selection (of
the number of clusters in the final partitioning) is automatically de-
cided by the maximum allowed partitioning energy or connectedness
of a cluster.

In Sec. 2 we describe the theoretical framework of our model in
detail. In Sec. 3, we show a 2D example of how the hierarchical al-
gorithm can be applied to data with clusters of different sizes and
shapes. We discuss our results in Sec. 4, and illustrate with a 1D
analytical example in Appendix some of the problems in the original
partitioning algorithm of S. Roberts et al.

2 Theory

2.1 Data Partitioning through Penalized Con-
ditional Entropy Minimization

In this section, we consider the problem of partitioning a given set
of data points 1,22, -+ ,zn € Q (Q is a subset of Euclidean space)
into K partitions. Assume that the data points {z;} are generated
by a probability density function 7(z). We write 7(z) as a linear
combination

K
m(z) =Y w(alk)m(k) (1)
k=1

where m(x|k) is the density function conditioned on the kth partition
set. The coefficients {7 (k)} satisfy S5  7(k) = 1 and are the prior
probabilities or weights of the partitions. We say that a data point
Tp € Q belongs to the kth partition if the partition posteriors satisfy

m(k|lzy,) > w(K'|z,), VE #k . (2)

We can formulate data partitioning as an energy minimization
problem. An information-theoretic quantity suggested by S. Roberts [2]



is the conditional entropy of k given z, i.e.

K
H(k|z) = —/Q (Z 7(k|x) log, 7r(k|$)> m(z)dz (3)

k=1

where 0 < H(k|z) < logy(K). For an ideal partitioning of a dataset
with well-separated clusters, the partition posteriors are either close to
0 or 1. This implies a small value for the conditional entropy H (k|z).
However, direct minimization of H(k|z) leads to the trivial solution
where all data points are assigned to a single cluster k', and all other
clusters k # k' are empty; the global minimum of H(k|z) is equal to
0.

In [3], the authors minimize
V' = H(k|z) — H(k) = —MI(k,z) <0, (4)

where H(k) = — Z,le m(k)log, m(k) is the Shannon entropy of the
partitions, and MI(k,xz) represents the mutual information of & and
x. Note that the unconditional entropy 0 < H(k) < log,(K), where
the maximum value H(k) = logy(K) occurs when (k) = 1/K for
all partitions k. Our experiments show that the partitioning model
defined by Eq. 4 works well for datasets where the “natural” clusters
are of approximately equal weights, but fails when the clusters are of
different sizes/weights. In the appendix, we give an analytical example
in one dimension to illustrate this problem.

In this paper, we propose a different criterion for partitioning data.
Our proposed model can deal satisfactorily with outliers and variable-
sized clusters. The energy function is defined as

E:{ H(k|lz) ifXp #0forVke{1,--- K} (5)

logy(K) otherwise

where X, = {z € Q : n(klz) > n(K'|z),Vk' # k} denotes the kth
partition, and H (k|z) is given by Eq. 3. Note that the penalty term
logy(K) > H(k|z) for most “sensible” partitions. By minimizing the
penalized conditional entropy function above we can avoid all empty
sets X}, without favoring partitions of equal weights.

2.2 Partitions as Gaussian Mixture Models

Before partitioning the data, we set some initial structure on the data.
More precisely, we describe the unconditional probability density func-



tion 7(z) as a Gaussian mixture

where the Gaussian kernel functions are given by

1

Pll) = g e |5~ S )| @

and the number of Gaussians J < K. The mixture coefficients {p(j)}
in the model satisfy 2;21 p(j) = 1. From Bayes’ theorem, the kernel
posteriors are given by

p(zli)p()
iy p(li)p()

where both p(z|j) and p(j) are assumed to be known quantities. (The
parameters {uj, X, P(j )}] ; in the Gaussian mixture model can be
fit to the data by using standard EM techniques [1].)

As in [2], we furthermore describe the conditional density functions
{m(z|k)} as Gaussian mixtures. Assume that the density function of
the data, conditioned on partition k, is written as

p(ilz) = (8)

J

m(xlk) = plalj)pr (i) (9)

j=1

where the mixture coefficients {py(j)} sum to unity. Inserting Eq. 9
into Eq. 1 gives

K J

r(z) = 3 w(alk)r Z(Epk >x|y) (10)

k=1 =

From the equivalence of Eq. 6 and Eq. 10, we have that

K
0 =Y (k) j=1,--,J (11)
k=1

By using Bayes’ theorem and the Gaussian mixture model (GMM)
in Eq. 9, we can express the unknown partition posteriors 7(k|z) in



terms of the known kernel posteriors p(j|z):

r(alk)m(k) i p(@ld)pk(i)m (k)

Y (@)
_ Ll
= ]; o0) pr(9)m (k)
J
= Zijp(ﬂx), (12)
j=1
where (k)
()
S T0) (13)
fork=1,--- ,Kand 7 =1,---,J. We have the constraints
ij € [0, 1] (14)
and . .
e pe(g)m(k)
;Wkﬂ B p(j) - (1%)

For convenience, we introduce the unconstrained variables {f;} €
(—00,00) and let
exp(O;)
> exp(prj) |
The energy function in Eq. 5 is a function of the variables {6y;}.
For a given data set {z1,--- ,zx}, and a fixed number of partitions
K, we want to find the values {6;;} that minimize

Wi = (16)

[ H(klzy) if {n:n(klzn) > n(k'|zp)} #0forVE=1,...,K
E({0ks}) = { log,(K) otherwise

(17)
where o .
H(kfea) = = > (Zw(km) logzw(km)) (18)
n=1 \k=1
and ;
(kg ) — exp(f;) |
(klzn) j:zl—zk' exp(O) PV (19)



2.3 Model Selection through Nested Binary
Trees

So far we have only discussed the problem of assigning data to different
partitions when the number of partitions is known. In this section, we
consider the model selection part of data clustering.

As mentioned, there often exist many sensible ways of dividing
a data set. We here propose a hierarchical algorithm that builds a
binary tree of partitions at different scales. At each level of the tree,
we divide an existing cluster into two new clusters using the methods
above. The energy function £ in Eq. 17 (with K = 2) should be small
if the two new clusters are well-separated. We choose some suitable
positive number Ej as an upper threshold for the partitioning energy,
and only split clusters if £ < Fy. The final partitioning of the data
set is given by the leaves of the tree.

We initialize the tree by choosing X = {z,}_, as the initial clus-
ter. For binary trees, we set the number of partitions K to 2. The
probability density function of the data points in the cluster is given
by a Gaussian mixture with kernel posteriors pp = {p(j|mn)}‘j]i\{’n:1
and mixing coefficients p = {p(j)}‘j]:l.

The algorithm for building a nested tree of clusters or partitions
can be stated as follows:

Data_Partitioning(X, p, pp, K)
1. N=length of X; J=length of p.
2. Set the threshold Ej.

3. Randomly choose {ij}f:"{ =1 from a standard normal distribu-
tion.

4. Minimize the energy function E({6;}) by simulated annealing.
Let

N . - xp(0;, ;
{0k;} = argming, E({04;}) ; Wi; = Zzgx(irj(%ig)
T (k|zn) = Zj:l Wip(ilzn) 5 #1(k) = & S0 #(k|z,)  (20)

B =% S0 (T #(kfea) log, 7(kle) )
where k=1,--- K, j=1,--- ,Jandn=1,--- /| N.
5. If E > E)
e Return X



Else

o Let
G, = {_] : Wk]‘ > 0}
Xi = {zn € X :7(klzy) > 7k |xn), VK # k}
; o Wigp() | (21)
Pe = {pk(J)}Z{—frW} ,J € Gi
ppe = {p(jlzn)},.j € Gk, 20 € Xi

where k=1,--- | K.
e Return {{Data_Partitioning(Xy, pi,ppr, K)} ,k=1,--- K}

3 Experiments

In this section, we apply our data partitioning model to a complex data
set that consists of clusters of different sizes and types (ring-shaped,
elongated and compact).

3.1 Data set

We use 20 Gaussians to generate a data set with 1000 data points;
see Fig. 1. The Gaussian mixture is given by

e 8 Gaussians, each with weight 0.05, that generate data in a ring
structure;

e 1 Gaussian with weight 0.1 that creates data in the center of the
ring;

e 10 Gaussians, each with weight 0.04, that generate data in two
semi-circular clusters;

e 1 isolated Gaussian, with weight 0.1, near the semi-circles.

In this example, we assume that the Gaussian mixture model (GMM)
is already known. In more general cases, one can use standard EM
techniques to fit a GMM to the data [1].

3.2 Building a Binary Tree of Clusters

The algorithm in Sec. 2.3 with the stopping criterion £ > FEy = 0.01
bits leads to a nested binary tree with four levels of clusters (Fig. 2).
On the first level (or the root of the tree), we have the original dataset.



Figure 1: Data set

We denote the initial cluster by root. The energy value below the fig-
ure represents the minimum partitioning energy F (defined according
to Eq. 5) for dividing the dataset into two new clusters. As the energy
is less than Ej, we let these two clusters form Level 2 in the tree. We
denote the new clusters by 0 and 1. The partitioning energies of these
clusters are also less than Ey. Thus, on Level 3 we have four clusters:
00,01,10 and 11, with energies 5-1072, 1, 10~%, and 1 bits, respec-
tively. As the energy of the cluster 10 is less than Ejy, we continue
splitting this cluster into two new clusters. On Level 4, we have the
new clusters 100 and 101, which both have partition energies larger
than FEy. The final partitioning is defined by the leaves of the tree,
that is by clusters 00,01,100,101, and 11.

Note that the iterative scheme produces a hierarchy of nested clus-
terings. Kach cluster on level L > 1 in the tree is a subset of a cluster
on level L' < L. By definition, we always start by splitting the par-
tition that requires the least energy. Raising the threshold Ey will
produce a finer final partitioning with a larger number of clusters,
and lowering the threshold leads to a coarser partitioning.
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Figure 2: Hierarchical data partitioning. The value below each figure rep-
resents the minimum partitioning energy F for dividing the corresponding
dataset into two new clusters; the binary numbers above the figure is used to
label the clusters. We apply the iterative scheme in Sec. 2.3 until all clusters
have a partitioning energy E > Ej, for some threshold Ejy. The final parti-
tioning of the data consists of the leaves of the tree. In this case, we have
the partitioning {00,01,100,101,11}.



4 Conclusions

We have presented a general methodology for partitioning data into
clusters. The algorithm which originates in work by S. Roberts et al.
is model-free and scales well with the dimensionality of the data space.
Each partition is expressed as a linear combination of a set of fixed
kernel functions.

In the current implementation, we use the partition entropy con-
ditioned on the data as a criterion for data partitioning. Empty parti-
tions are penalized and thus not allowed in the algorithm. We should
point out that, our model splits clusters solely based on their “con-
nectedness”. It can therefore deal with clusters of general shapes and
sizes. The only requirement on the data is that clusters that belong
to different classes are separated by a region with a lower density of
points.

For the model selection part, we build a hierarchy of nested clus-
terings: A cluster on a finer scale is a subset of a cluster on a coarser
scale. The final partitioning is given by the leaves of the tree, where a
leave is defined as a cluster with a “partitioning energy” that exceeds
a certain threshold.

There are many advantages in a hierarchical partitioning model:
Often it makes more sense to produce a hierarchy of nested cluster-
ings, rather than a single “optimal” clustering. There may for example
exist several reasonable ways of partitioning the given data, depend-
ing on which scale (coarse or fine) you are viewing the system. By
producing a complete family of clusterings, we also have the choice of
incorporating context into the final clustering. An “expert” can, for
example, later prune the tree and decide on a partitioning of the data
that best fits the specific problem.

Our hierarchical partitioning algorithm is computationally effi-
cient. The total computational cost to build a tree is O(NJ2K), where
N is the number of data points, J is the number of kernel functions,
and K is the number of subclusters for each parent cluster in the tree.
In our binary tree, K = 2 and the computational cost is O(NJ?).
Compare this with model selection algorithms by brute force (e.g. [2])
which require O(NJ?) operations.
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A. Appendix
In [3], the authors minimize the energy function
V'=H(k|lz) — H(k) = —MI(k,z) <0, (22)

where .
H(k|z) = / (Zw (k]z) logy 7( k|x)> cl@)ds  (23)
1

is the conditional entropy of the partitions £ = 1,..., K given the

data;
K

H(k) = - Y m(k) logy n(k) (24)

k=1
is the Shannon entropy of the partitions; and MI(k,z) represents the
mutual information of £ and x. Below we show with a one-dimensional
example that minimizing F, or equivalently, maximizing the mutual
information MI(k,z), favors partitions with equal weights. The re-
sults imply that the energy function in Eq. 22 may not be suitable for
datasets with outliers and clusters of many different sizes.

A1l. Maximizing the Mutual Information M (k, x)
Favors Partitions with Equal Weights: A 1D
Example

p(x|1) p(x|2) p(x[3)

-a 0 a b

Figure 3: A one-dimensional example where the data is generated by two Gaussian
distributions that are overlapping, and a third Gaussian distribution that is far away and
of less weight.
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Consider a one-dimensional example where the data is generated
by two Gaussian distributions that are overlapping, and a third Gaus-
sian distribution that is far away and of less weight; see Fig. 3. The
random variable z € (—o0, 00) for the data has a density function

p(x) = a [p(x|1) + p(«[2)] + Bp(a(3) , (25)
where ,

plall) = gi(@) = S-exp(-E5h)

p2) = @) = Aewp(-EF) | (26)

pal3) = g(z) = S=exp(—55)
0<pf<Ka,2a+p=1,0<a<landdb>1.
Below we calculate the energy function V' for two different clus-
tering solutions with K = 2. In the first case, the two overlapping
Gaussians ¢ and go are assigned to one partition, and the third Gaus-
sian g3 that is far away (b > a) is assigned to another. We call this
“Ideal Partitioning”, as this is the most sensible way of dividing the
observed data z into two classes. In the second case (”Partitioning
with Equal-Sized Clusters”), the first two clusters g; and g, are as-
signed to different classes; the third cluster g3 with weight f < « is
merged with the second Gaussian gs. This is not a desirable solu-
tion, as data samples from gy are clearly different from samples from
g3. Furthermore, the first two Gaussians are only weakly separated
(a < 1).

Case 1: “Ideal Partitioning”

We use the same notations as in Sec. 2. Assume that the class-
conditional probability density functions are given by

m(x|1) = yp(z|1) + (1 — v)p(z|2)
{ﬂﬂmzpum ' (27)

From Eq. 1, we then have
p(z) = yr(p(z(1) + (1 — 7)m(1)p([2) + 7(2)p(z[3) - (28)

Identifying the mixture coefficients above with the coefficients in Eq. 25
gives

(1) =2a, w(2) =f, 7= % . (29)
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As the Gaussian density functions decrease exponentially, we only
need to consider data = that are around either 0 or b in the integral
in Eq. 23. For z around 0, n(1|z) ~ 1 and n(2|z) ~ 0. For z around
b, m(1|z) ~ 0 and 7 (2|z) ~ 1. Thus, H (k|z) ~ 0 and

2
et = H(klz) + ) m(k)log, m(k)

Case 2: “Partitioning with Equal-Sized Clusters”

Here we assign the first Gaussian to one partition, and the second
and the third Gaussians to a different partition. This leads to two
approximately equal-sized clusters, as f < a. The class-conditional
probability density functions of the data are given by

m(xz[1) = p(z|1)
{ m(x]2) = op(«|2) + (1 = O)p(«(3) . (31)

Identification of mixture coefficients as in “Case 17 gives

ml)=«a, 71(2) =a+p4, 6= (32)

o
a+fB
As before, we use the properties of the Gaussian density function. For
values of z around 0, p(z|3) ~ 0. Thus,

m(l]z) = melrd) ap(z|1) ~_ 0@ _ 1
P(z) T Fap (T ~ 700 @) = Thexpan)

(2]z) = T@AT) _ ap(@2)t8p(als) (@) _ 1
P(w) ap(a[l)+ap(al2)+Bp(3) = gi(z)+92() 1+exp(—(§§x)>

For values of = around b, p(z|1) =~ 0 and p(x|2) ~ 0. Thus,

= ap(z|1) R m(2lz) =1—-n(l|z) =~
) = T ¥ ape) 1 Bp(eE) T = 1w AL
(34)
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This leads to
0
H(klz) = —/
—00

7 (k|z) logy 7r(’flﬂf)) alp(z(1) + p(z|2)] dz

m(k|x) log, 7T(klffﬁ)) PAp(x(3) dx

Q

> g1 g1 g2 g2
—Q lo + lo > 1+ 9o dx
/_oo <g1+gz 82 g1+92 g1 +92 82 g1+ g2 (9 92)

= E[(a) (35)
and
2
elqual = H(k|$) + Z 7T(k) lOgZ 7'('(]{:)
k=1
S () + (o + ) oo+ ) + alog(@)] . (36
where
00 B a 2

I(a) = / exp (—( —; ) ) logy (1 4 exp(2az))dz . (37)

Cases where V! < V!

equal = Videal

We get a “bad” partitioning with approximately equal-sized clusters

when V) < V- In terms of 8 and a, this corresponds to
(5) > ——(a) (39)
a ?
g T 27
where
1 145 144 28
o6) = 5 |1+ 10,01 - )~ 100, (157 - 2o ]
(39)
The derivative
' 1 < 2p )
= 1 — . 40
g(ﬁ) (1_5)2 082 1+/3 ( )

15



is a strictly decreasing function. We denote the inverse of g by g~!.

.o , , .
The condition for equal < Vijea can then be rewritten as

_ 1, 1
It can be shown analytically that I(a) is also a strictly decreasing
function, and that Sy therefore is a strictly increasing function of a.
Numerically, we get the curve in Fig. 4. Note that 8 does not have
to be very small for a bad partitioning with approximately equal-
sized clusters to occur. Take for example the case where a = 0.5 and
B =~ 0.03.

0.15

T

0.1

0.05

T

(I} | | |
0 0.2 0.4 0.6 0.8 1
a

Figure 4: The “mutual information” energy function by S. Roberts et al. favors equal-
sized partitions. In the one-dimensional example above, we get a bad partitioning (with
approximately equal-sized clusters) of the data if the weight § of the third Gaussian is
smaller than fy. The figure shows the relation between £y and a (a < 1).
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