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Abstract

Given a sequence of observations (Xn)n≥1 and a family of probability distribu-
tions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data
Xn

1 := (X1,X2, . . . ,Xn) is defined as

Qθ(B(Xn
1 ,D)),

where B(Xn
1 ,D) is the distortion-ball of radius D around the source sequence Xn

1 .
Here we investigate the convergence of maximizers of the lossy likelihood.

1 Introduction

Consider a random data source (Xn)n≥1 and a collection of probability measures {Pθ}θ∈Θ

on the sequence space. In statistics, the likelihood of a particular distribution Pθ given
the empirical data Xn

1 := (X1, . . . , Xn) is defined by

Pθ(X
n
1 ).

The maximizer (over Θ) of the likelihood is called a maximum likelihood estimator
(MLE). In many situations, the sequence of MLEs (in n) converges to θ∗ ∈ Θ, where Pθ∗

is the distribution of the source. An MLE is also a minimizer of

− log Pθ(X
n
1 ). (1.1)

When written in this form, we notice that the negative log-likelihood is exactly the ideal
Shannon code length for the data Xn

1 and the source Pθ. So we can conceptualize the
MLE as searching for probability measures that would induce short codewords for the
data. Indeed Pθ∗ would give the optimal first order lossless compression performance.

Kontoyiannis and Zhang (2002) [15] argue that an analog of (1.1) for fixed distortion
lossy data compression is

− log Qθ(B(Xn
1 , D)), (1.2)
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where B(Xn
1 , D) is the distortion ball around Xn

1 of radius D and where {Qθ}θ∈Θ are
probability measures on the reproduction sequence space (see below for precise defini-
tions). Reversing the analogy, we define the lossy likelihood as

Qθ(B(Xn
1 , D))

and we are interested in the asymptotic behavior of maximizers of this quantity, or
equivalently, of minimizers of (1.2). We call these lossy maximum likelihood estimators or
lossy MLEs. We can conceptualize the lossy MLE as searching for probability measures
that would induce short codewords for the data allowing for distortion. Here we give
conditions under which a sequence of lossy MLEs converges to a limit (or a limiting
set). This limiting probability distribution will be optimal in that it induces the shortest
codewords among all the distributions that are under consideration.

The connection between statistics and lossless data compression resulting from the
dual interpretations of (1.1) has led to many interesting insights and applications. Per-
haps similar connections exist for lossy data compression. See Harrison and Kontoyiannis
(2002) [11] (where some of these results were reported without proof) and Kontoyiannis
(2000) [14] for a more detailed discussion of the motivations and possible applications.

We always assume that the source sequence (Xn)n≥1 is stationary and ergodic and
that the reproduction measures Qθ satisfy certain strong mixing conditions. We only
consider the case of single letter distortion (see the definition of B(xn

1 , D) below), but
we allow for arbitrary alphabets and arbitrary distortion functions. Naturally, we also
need some assumptions about how the probability distributions {Qθ}θ∈Θ are related to
the topology of the parameter space Θ.

2 Epi-convergence

We take the epi-convergence approach for studying the convergence of minimums and
minimizers [1, 19], where we think of the lossy MLE as a minimizer of (1.2). Let Θ be a
metric space and let (fn)n≥1 be a sequence of functions fn : Θ → [−∞,∞]. We say that
fn epi-converges to a function f : Θ → [−∞,∞] at the point θ if

lim inf
n→∞

fmn(θn) ≥ f(θ), for any θn → θ and any subsequence mn → ∞, and

lim sup
n→∞

fn(θ′n) ≤ f(θ), for some θ′n → θ.

If these conditions hold for every θ ∈ Θ, then we say that fn epi-converges to f and
we write f = epi-limn fn. In this case, the convergence of minimizers (minima) of fn to
minimizers (minima) of f simplifies to a compactness condition as the following result
shows:

Proposition 2.1. [1, 2] Let Θ be a metric space and let (fn)n≥1 be a sequence of functions
fn : Θ → [−∞,∞] such that f := epi-lim fn exists on Θ. Then f : Θ → [−∞,∞] is
lower semicontinuous (l.sc.) and

lim sup
n→∞

inf
θ∈Θ

fn(θ) ≤ inf
θ∈Θ

f(θ). (2.1)

Let (θn)n≥1 be a sequence of points from Θ satisfying

lim sup
k→∞

fnk
(θnk

) ≤ lim sup
k→∞

inf
θ∈Θ

fnk
(θ), for all subsequences nk → ∞. (2.2)
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If (θn)n≥1 is relatively compact, then

θn → arg inf
Θ

f :=

{
θ ∈ Θ : f(θ) = inf

θ′∈Θ
f(θ′)

}
, (2.3)

lim
n→∞

fn(θn) = lim
n→∞

inf
θ∈Θ

fn(θ) = inf
θ∈Θ

f(θ). (2.4)

On the other hand, if (θn)n≥1 satisfies (2.3) and arg infΘ f is compact, then (θn)n≥1 is
relatively compact and (2.4) holds.

In fact, every sequence (θn)n≥1 satisfying (2.2) is relatively compact if and only if
arg infΘ f is compact and every sequence (θn)n≥1 satisfying (2.2) satisfies (2.3).

In Proposition 2.1, we think of the sequence (θn)n≥1 as a sequence of minimizers of
fn. Indeed, (2.2) is just about the weakest possible notion of a sequence of minimizers.
Any sequence of (θn)n≥1 satisfying

fn(θn) ≤ −Mn ∨ inf
θ∈Θ

fn(θ) + εn,

for some sequences εn → 0 and Mn → ∞, satisfies (2.2). Such sequences always exist.
Under the condition that f = epi-limn fn, every cluster point of a sequence of minimizers
of fn is a minimizer of f . An easy way to ensure cluster points is with a compactness
assumption. A subset of a metric space is relatively compact if it has compact closure. For
a sequence (θn)n≥1, this is equivalent to saying that every subsequence has a convergent
subsequence. When a sequence of minimizers of fn is relatively compact, then (2.3)
says that these minimizers of fn converge to the set of minimizers of f . By converging
to a subset A of a metric space Θ with metric ν, we mean that ν(θn, A) → 0, where
ν(θ, A) := infθ′∈A ν(θ, θ′). Since we always define inf ∅ = +∞, θn → arg infΘ f implies
that arg infΘ f is not empty, that is, minimizers of f exist.

The epi-convergence approach essentially splits convergence of minimizers into a local
and a global component. The local component is epi-convergence. For the case of lossy
MLEs (and several variants), the required epi-convergence results are given in Harrison
(2003) [10]. The global component is a compactness requirement. We want to prevent
the sequence of lossy MLEs from “wandering to infinity” and to ensure that they are
eventually contained in a compact set. Then we can use Proposition 2.1 to show that
the sequence of lossy MLEs converges to minimizers of the limiting function. The main
results of this paper consist of describing some examples where this global compactness
condition holds.

3 Lossy MLEs

We begin with the setup used throughout the remainder of the paper. (S,S) and (T, T )
are standard measurable spaces.1 (Xn)n≥1 is a stationary and ergodic random process
on (SN,SN) with distribution P which is assumed to be complete. ρ : S × T → [0,∞) is
an S × T -measurable function (S × T denotes the smallest product σ-algebra).

Let (Θ,B) be a separable metric space with its Borel σ-algebra and metric ν. We
use O(θ, ε) := {θ′ ∈ Θ : ν(θ, θ′) < ε} to denote the ε-neighborhood of θ. To each θ ∈ Θ
we associate a probability measure Qθ on (TN, T N). We use (Yn)n≥1 to denote a random

1Standard measurable spaces include Polish spaces and let us avoid uninteresting pathologies while
working with random sequences [8].
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sequence on TN. Typically, its distribution will be one of the Qθ and this will be clear
from the context. We use Eθ to denote EQθ

, the expectation with respect to (w.r.t.) Qθ.
We allow for two different ways that the topology on Θ is related to the measures

Qθ. Let Qθ,n be the nth marginal of Qθ, i.e., the distribution on (T n, T n) of (Y1, . . . , Yn)
under Qθ. We assume that either

θm → θ implies Qθm,n
τ→ Qθ,n as m → ∞ for each n, (3.1)

or

(T, T ) is a separable metric space with its Borel σ-algebra, (3.2a)

ρ(x, ·) is continuous for each x ∈ S, (3.2b)

θm → θ implies Qθm,n
w→ Qθ,n as m → ∞ for each n. (3.2c)

τ -Convergence is setwise convergence of probability measures.2 w-Convergence is weak
convergence of probability measures.3 When T is discrete, assumptions (3.1) and (3.2)
are equivalent. When each Qθ is independent and identically distributed (i.i.d.), then
(3.1) and (3.2c) will hold whenever they hold for n = 1.

Fix D ≥ 0. For each xn
1 ∈ Sn, yn

1 ∈ T n and θ ∈ Θ, define

ρn(xn
1 , y

n
1 ) :=

1

n

n∑
k=1

ρ(xk, yk), B(xn
1 , D) := {yn

1 ∈ T n : ρn(xn
1 , y

n
1 ) ≤ D} ,

Ln(θ, xn
1 ) := −1

n
log Qθ(B(xn

1 , D)),

Λn(θ, λ) :=
1

n
EP log Eθe

λnρn(Xn
1 ,Y n

1 ), Λ∞(θ, λ) := lim sup
n→∞

Λn(θ, λ),

Λ∗
n(θ) := sup

λ≤0
[λD − Λn(θ, λ)], n = 1, . . . ,∞,

where log denotes the natural logarithm loge. B(xn
1 , D) is called the single-letter dis-

tortion ball of radius D around xn
1 and ρ is called the single-letter distortion function.

Ln is just (1.2) normalized to give per-symbol code lengths. Many properties of these
quantities can be found in the literature [9, 10]. An important property here is that
Ln(·, xn

1 ) is l.sc. on Θ for each xn
1 [9].

Several recent papers [5, 7, 10] give conditions for which

lim
n→∞

Ln(θ, Xn
1 )

a.s.
= Λ∗

∞(θ), (3.3)

which Dembo and Kontoyiannis (2002) [7] call the generalized AEP (Asymptotic Equipar-
tition Property). Because of this, we are interested in approximating minimizers of Λ∗

∞ via
minimizers of Ln(·, Xn

1 ). We say that a sequence of mappings (θ̂n)n≥1 with θ̂n : SN → Θ
is a sequence of lossy MLEs if

Prob

{
lim sup

k→∞
Lnk

(θ̂nk
(X∞

1 ), Xnk
1 ) ≤ lim sup

k→∞
inf
θ∈Θ

Lnk
(θ, Xnk

1 ), ∀nk → ∞
}

= 1. (3.4)

2Qm
τ→ Q if EQmf → EQf for all bounded, measurable f , or equivalently, if Qm(A) → Q(A) for all

measurable A.
3Qm

w→ Q if EQmf → EQf for all bounded, continuous f , or equivalently, if Qm(A) → Q(A) for all
measurable A with Q(∂A) = 0.
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(3.4) is just a probabilistic translation of (2.2) into the lossy MLE terminology. (nk)k≥1

is any infinite subsequence. In the special case where

Ln(θ̂n(x∞
1 ), xn

1 ) = inf
θ∈Θ

Ln(θ, xn
1 ), for each n and each x∞

1 ∈ SN,

we say that θ̂n is an exact lossy MLE. Notice that exact lossy MLEs are also lossy MLEs.
Lossy MLEs always exist, but exact lossy MLEs may not exist. If Θ is compact, however,
exact lossy MLEs do exist because Ln is l.sc. on Θ.

In this paper we do not need to assume that the lossy MLEs are measurable functions.
The completeness of P takes care of a lot of problems. More detailed analysis of lossy
MLEs, such as distributional properties, will require the assumption that the lossy MLEs
are measurable (as will a relaxation of the completeness assumption). It also seems
reasonable to require that lossy MLEs are predictable and independent of P , in the sense
that the value of θ̂n only depends on xn

1 , the data up to time n, and that (3.4) holds for
every realization x∞

1 , not just for almost every realization. In the Appendix we prove that
lossy MLEs with these properties always exist as long as Θ is σ-compact, and whenever
possible, we can suppose that this lossy MLE is exact.4

Proposition 3.1. Suppose Θ is σ-compact and εn : Sn → (0,∞) is (Borel) measurable.
Then there exists an Sn/B-measurable mapping θ̂n : Sn → Θ such that for each xn

1 ∈ Sn

Ln(θ̂n(xn
1 ), xn

1 ) = min
θ∈Θ

Ln(θ, xn
1 ) if the minimum exists, and (3.5)

Ln(θ̂n(xn
1 ), xn

1 ) ≤ inf
θ∈Θ

Ln(θ, xn
1 ) + εn(xn

1 ) otherwise. (3.6)

4 Consistency of Lossy MLEs

For easy reference, we translate Proposition 2.1 into the lossy MLE terminology.5 Hence-
forth, we suppress the dependence of θ̂n on x∞

1 . If we are making a probabilistic statement
about θ̂n, then we mean θ̂n(X∞

1 ). Define the (possibly empty) set

Θ∗ := arg inf
θ∈Θ

Λ∗
∞(θ) := {θ ∈ Θ : Λ∗

∞(θ) = Λ∗
∞(Θ)} , where Λ∗

∞(Θ) := inf
θ∈Θ

Λ∗
∞(θ).

Corollary 4.1. Suppose

Prob

{
epi-lim

n→∞
Ln(·, Xn

1 ) = Λ∗
∞

}
= 1. (4.1)

Then every sequence of lossy MLEs (θ̂n)n≥1 satisfies

Prob

{
lim sup

n→∞
Ln(θ̂n, Xn

1 ) ≤ lim sup
n→∞

inf
θ∈Θ

Ln(θ, Xn
1 ) ≤ Λ∗

∞(Θ)

}
= 1. (4.2)

If (θ̂n)n≥1 is a sequence of lossy MLEs such that

Prob
{

(θ̂n)n≥1 is relatively compact
}

= 1, (4.3)

4We do not need the assumption that P is complete to show the existence of measurable lossy MLEs
(Proposition 3.1). A metric space is σ-compact if it is a countable union of compact sets. Every locally
compact, separable metric space is σ-compact.

5Notice that Corollary 4.1 does not actually make use of assumptions (3.1) or (3.2), however, these are
used later to establish the hypotheses of the Corollary and also to establish the existence of measurable
lossy MLEs.
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then

Prob
{
θ̂n → Θ∗

}
= 1, (4.4)

Prob

{
lim

n→∞
Ln(θ̂n, Xn

1 ) = lim
n→∞

inf
θ∈Θ

Ln(θ, Xn
1 ) = Λ∗

∞(Θ)

}
= 1. (4.5)

If (θ̂n)n≥1 is a sequence of lossy MLEs satisfying (4.4) and Θ∗ is compact, then (θ̂n)n≥1

satisfies (4.3) and (4.5).
In fact, every sequence of lossy MLEs satisfies (4.3) if and only if Θ∗ is compact and

every sequence of lossy MLEs satisfies (4.4).

The epi-limit in (4.1) is a functional convergence and must hold at each point in
Θ. More specifically, (4.1) says that the set of x∞

1 for which the sequence of functions
Ln(·, xn

1 ), n ≥ 1, epi-converges to the function Λ∗
∞ at every point θ ∈ Θ has P -probability

1. (4.4) is the main result that we want to prove in this paper. The next two sections are
devoted to establishing the hypotheses of the Corollary, in particular, epi-convergence
of Ln and relative compactness of lossy MLEs, so that we can conclude (4.4). We often
need to assume that Λ∗

∞(Θ) < ∞ to conclude that lossy MLEs are relatively compact.
For the purpose of establishing (4.4), however, this causes no loss of generality. When
Λ∗

∞(Θ) = ∞, then Θ∗ = Θ and (4.4) is trivially true.
If Λ∗

∞ has a unique minimizer θ∗, that is Θ∗ = {θ∗}, then (4.4) becomes

Prob
{

θ̂n → θ∗
}

= 1.

In a typical statistical setting, θ∗ is the unique point corresponding to the distribution
of the source and (4.4) is called (strong) consistency of the estimator θ̂n. Consistency is
often a starting point for more detailed analysis, such as asymptotic normality. One of
the nice properties of MLEs is consistency under a wide variety of conditions [12]. As we
will show, this property carries over to lossy MLEs. We call (4.4) the (strong) consistency
of lossy MLEs. Note, however, that in the lossy setting θ∗ need not be unique and even if
it is unique it need not correspond with the source distribution, so this is not consistency
in the usual sense.

Harrison (2003) [9] gives conditions for which (4.1) holds, including necessary and
sufficient conditions when Θ is a convex family of probability measures with Qθ i.i.d. θ.
We cannot ensure that (4.3) holds for every sequence of lossy MLEs without further
assumptions. The simplest assumption to add is that Θ is compact. Then (4.3) is trivially
true and epi-convergence (4.1) implies consistency (4.4). When Θ is not compact, (4.3)
seems difficult to verify with any generality and we must verify it for specific settings.6

In the presence of epi-convergence, there are other characterizations and implications
of consistency. Here is a useful one. A proof can be found in the Appendix.

Proposition 4.2. Suppose (4.1) holds. For each ε > 0, let Θ∗
ε :=

⋃
θ∈Θ∗ O(θ, ε) be the

ε-neighborhood of Θ∗ (and empty if Θ∗ is empty). If

Prob

{
lim inf
n→∞

inf
θ �∈Θ∗

ε

Ln(θ, Xn
1 ) > Λ∗

∞(Θ)

}
= 1 for each ε > 0, (4.6)

then every sequence of lossy MLEs is consistent (4.4) and Λ∗
∞(Θ) < ∞. If Θ∗ is compact,

then the converse is also true.
6This seems to be a common situation in statistical minimization. The local convergence conditions

can be verified in great generality and the global compactness conditions must be verified on a case-by-
case basis.
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4.1 A special nonparametric case

We begin with a special case where the reproduction distributions Qθ are i.i.d. and every
possible (i.i.d.) distribution is indexed by the parameter space Θ. Assume (3.2a) and
(3.2b) and let Θ be the set of all probability measures on (T, T ) with a metric that
metrizes weak convergence of probability measures, such as the Prohorov metric. For
each θ ∈ Θ, let Qθ be i.i.d. with distribution θ, that is Qθ,1 = θ. Θ is convex and
separable and (3.2c) holds [4].

Assume that either

E

[
inf
y∈T

ρ(X1, y)

]
	= D or inf

y∈T
ρ(X1, y) is a.s. constant or Λ∗

∞(Θ) = ∞. (4.7)

Under these conditions (and the rest of the setup from Section 3) (4.1) holds [9].
Assume that for each ε > 0 and each M > 0 there exists a K ∈ S such that

P1(K) > 1 − ε and B(K, M) :=
⋃
x∈K

B(x, M) is relatively compact. (4.8)

P1 is the first marginal of P , that is, the distribution of X1. These assumptions give (4.3)
and the existence of measurable lossy MLEs (Proposition 3.1) as shown in the Appendix.

Proposition 4.3. (4.1) is true and Θ is σ-compact. If Λ∗
∞(Θ) < ∞, then every sequence

of lossy MLEs satisfies (4.3), (4.4) and (4.5) and Θ∗ is nonempty, convex and compact.

Combining Corollary 4.1 and Proposition 4.3 shows that lossy MLEs are consistent.

Theorem 4.4. Every sequence of lossy MLEs is consistent (4.4).

The setup described here includes several standard cases. If infy∈T ρ(x, y) ≤ D for all
x, then (4.7) is trivially true. If T is compact, then (4.8) is trivially true. This includes
the case where T is a finite alphabet. If S and T are both subsets of (the same) finite
dimensional Euclidean space, T is complete and inf‖x−y‖>m ρ(x, y) → ∞ as m → ∞, then
(4.8) is true. For example, if S = T ⊂ R

d is complete and ρ(x, y) = ‖x − y‖p is Lp-error
distortion for some 1 ≤ p ≤ ∞, then both (4.7) and (4.8) are true. Notice that this last
case includes S = T ⊂ Z with Lp-error distortion.

Since each Qθ is i.i.d. Λ∗
n does not depend on n, 1 ≤ n ≤ ∞, and we have [10]

Λ∗
∞(θ) = R(P1, θ, D) := inf

W
H(W‖P1 × θ),

where the infimum is taken over all probability measures W on (S × T,S ×T ) such that
W has S-marginal P1 and EW ρ(X, Y ) ≤ D. H(µ‖ν) denotes the relative entropy in nats

H(µ‖ν) :=

{
Eµ log dµ

dν
if µ � ν,

∞ otherwise.

Any θ∗ ∈ Θ∗ thus satisfies [7, 21]

R(P1, θ
∗, D) = inf

θ∈Θ
R(P1, θ, D) = R(P1, D) := inf

W
I(X; Y ),

where the final infimum is over the same set as in the definition of R(P1, θ, D) and I(X; Y )
is the mutual information in nats between the random variables X on S and Y on T
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which have joint distribution W . R(P1, D) is the (information) rate distortion function
in nats for a memoryless source with distribution P1. If the source (Xn)n≥1 is actually
memoryless, then R(P1, D) = R(P, D) = R(D) is the rate distortion function for this
source and any θ∗ ∈ Θ∗ “achieves” the optimal rate [10, 15]. (See Section A.2 in the
Appendix.)

We can relax (4.7). Indeed, if (4.7) does not hold, then (4.1) still holds along the
subsequence (which is a.s. infinite) where infθ∈Θ Ln(θ, Xn

1 ) < ∞ [9]. If we insist that
lossy MLEs do not change value if Ln(θ, Xn

1 ) = ∞ for all θ, then any such sequence will
still be relatively compact and consistent. In situations, such as those described above,
where (4.8) does not depend on the structure of P1, lossy MLEs are always consistent
(with this caveat when Ln ≡ ∞) regardless of the source statistics P1 or the distortion
level D.

4.2 General parametric conditions

Now we give some general conditions for which both (4.1) and (4.3) are true. Unlike the
previous section, we allow the reproduction distributions Qθ to have some memory and
we allow more freedom in the parameterization Θ. We continue to assume everything
from Section 3, in particular we assume that either (3.1) or (3.2) holds.

We begin with conditions that control the mixing properties of the Qθ. Assume that
each Qθ is stationary and assume that there exists a finite C ≥ 1 such that for each
θ ∈ Θ we have

Qθ(A ∩ B) ≤ CQθ(A)Qθ(B), (4.9)

for all A ∈ σ(Y n
1 ) and B ∈ σ(Y ∞

n+1) and any n. Variants of this mixing condition arise
when extending the generalized AEP to cases with memory [5, 9, 10]. If each Qθ is i.i.d.,
then this is trivially true (C = 1). When the Qθ are allowed to have memory, then the
assumption that C is fixed independent of θ is quite restrictive.

Define

Θlim :=

{
θ : lim sup

n→∞
Ln(θ, Xn

1 ) ≤ Λ∗
∞(θ)

}
, (4.10)

Θr := {θ : Λ∗
∞(θ) < r} , r ≤ ∞, (4.11)

and assume that
Θlim ∩ Θr is dense in Θr for each r. (4.12)

This assumption is discussed further in Harrison (2003) [9] where it is shown that (4.9)
and (4.12) imply (4.1).

Now we introduce a condition that gives (4.3). Assume that there exists a ∆ > 0 and
a K ∈ S with P1(K) > D/(D + ∆) such that for every ε > 0 the set

Aε := {θ : Qθ(B(K, D + ∆)) ≥ ε} is relatively compact, (4.13)

where B(K, M) :=
⋃

x∈K B(x, M). If Θ is compact, then this condition is trivially true
(take K = S). Note that this property only depends on the distribution P1 of X1 and
the first marginals Qθ,1, i.e., the allowed distributions of Y1. The strong mixing condition
(4.9) lets us handle cases with memory using only the first marginals. The intuition for
this assumption is illustrated somewhat by the next two results, the proofs of which can
be found in the Appendix.
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Proposition 4.5. Suppose that S = T := R
d is finite dimensional Euclidean space

and that limm→∞ inf‖x−y‖>m ρ(x, y) > D. Then we can choose K ∈ S and ∆ > 0 with
P (K) > D/(D + ∆) so that B(K, D + ∆) is bounded.

Proposition 4.6. Let Z be a random vector on R
d with a distribution that is absolutely

continuous w.r.t. d-dimensional Lebesgue measure. For each vector µ ∈ R
d and each

d × d matrix M ∈ R
d×d, let qµ,M be the distribution of MZ + µ. Then for each ε > 0

and each bounded subset B ⊂ R
d,{

(µ, M) ∈ R
d+d×d : qµ,M (B) ≥ ε

}
is relatively compact.

In the Appendix we show that this compactness assumption gives (4.3).

Proposition 4.7. (4.1) is true. If Λ∗
∞(Θ) < ∞, then every sequence of lossy MLEs

satisfies (4.3), (4.4) and (4.5) and Θ∗ is nonempty and compact.

Combining Corollary 4.1 and Proposition 4.7 gives the consistency of lossy MLEs.

Theorem 4.8. Every sequence of lossy MLEs is consistent (4.4).

4.3 Examples

We now give some examples that satisfy the assumptions needed for Theorem 4.8. We
always assume that (S,S) and (T, T ) are standard measurable spaces, that (Xn)n≥1 is
stationary and ergodic, taking values in S, with a distribution P that is complete and
that ρ : S × T → [0,∞) is S × T -measurable.7 The rest of the assumptions that are
needed are addressed on a case by case basis. We closely follow the examples in Harrison
(2003) [9], which satisfy (4.1). Some useful notation is

m(θ, x) := ess inf
Qθ

ρ(x, Y1), Dmin(θ) := Em(θ, X1).

4.3.1 Example: memoryless families, compact parameter space

Suppose that Θ is a compact, separable metric space, that each Qθ is i.i.d. (memoryless)
and that either (3.1) or (3.2) holds. (4.9) and (4.13) are trivially true. If (4.12) is true,
then Theorem 4.8 gives the consistency of lossy MLEs. There are many situations where
(4.12) holds, including the case where Dmin(θ) < D for all θ ∈ Θ [9]. The following
examples in Harrison (2003) [9] all work: Example 2.2.3 (the class of all probability
measures on T with the weak convergence topology) with the modification that T is
compact (and thus Θ is compact [4]) and the finite dimensional cases of Examples 2.2.4
(finite alphabet T ) and 2.2.5 (finite mixing coefficients).

4.3.2 Example: memoryless location-scale families

Suppose S = T := R
d is finite dimensional Euclidean space, that ρ is continuous and

satisfies the hypotheses of Proposition 4.5, that each Qθ is i.i.d. (memoryless) and that
{Qθ,1}θ∈Θ is a location-scale family (scale family, location family, etc.) whose canonical

7If ρ(·, y) is measurable for each y ∈ T and ρ(x, ·) is continuous for each x ∈ S (which is trivial if T
is finite), then ρ is product measurable.
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member has a density w.r.t. Lebesgue measure. Most typical parameterizations of Θ
will give (3.2) and if we include degenerate cases, so that the parameter space is closed,
Proposition 4.6 can often be used to show that (4.13) holds. All of this depends on the
parameterization, of course, and needs to be checked for specific cases. (4.9) is trivially
true. If (4.12) is true, then Theorem 4.8 gives the consistency of lossy MLEs. In the next
example, we give a simple example of a location-scale family where everything works out.

4.3.3 Example: memoryless Gaussian families, squared-error distortion

Take S = T := R with the Euclidean metric and with squared-error distortion ρ(x, y) :=
|x − y|2. Let Θ := R × [0,∞) and write θ := (µ, σ) for θ ∈ Θ. Define Q(µ,σ) to be
i.i.d. Normal(µ,σ2), where we define Normal(µ,0) to be the point mass at µ. (3.2), (4.9)
and (4.12) are all valid [9][Example 2.2.2]. Propositions 4.5 and 4.6 show that (4.13) is
satisfied as well, so Theorem 4.8 gives the consistency of lossy MLEs.

4.3.4 Example: finite state Markov chains

Let T be a finite set and let {Qθ}θ∈Θirr
be the class of stationary, first-order, irreducible

Markov chains on T . Let Θirr be the corresponding set of probability transition matrices,
which we can think about as a subset of R

T×T , and let ν be a metric on Θirr that is
equivalent to the Euclidean metric when Θirr is viewed as a subset of R

T×T . Suppose
Θ ⊂ Θirr is closed (and thus compact). (4.13) holds. For example, let Θ correspond
to the set of all Qθ that have stationary probabilities bounded below by a fixed ε > 0.
If E[miny∈T ρ(X1, y)] 	= D or D = 0, then the remaining conditions for Theorem 4.8
are valid [9][Example 2.2.6] and we have the consistency of lossy MLEs. In the special
case where S = T and ρ(x, x) = 0 (such as Hamming distortion), then lossy MLEs are
consistent regardless of the source statistics.

Notice that we had to artifically make Θ compact to apply Theorem 4.8. The set of all
possible transition probabilities is also compact and would be a more natural parameter
space, however, (4.9) is no longer true, and more importantly, we do not know if (4.1)
holds. Redefine Θ to be the set of all probability transition matrices with the same
metric as before and let each Qθ be a Markov chain as before except with uniform initial
distribution. Under the same conditions on D, Harrison (2003) [9] shows that Ln(θ, Xn

1 )
epi-converges to lsc Λ∗

∞(θ), the l.sc. envelope of Λ∗
∞. This shows that lossy MLEs converge

to minimizers of lscΛ∗
∞. We do not know if these minimizers always agree with minimizers

of Λ∗
∞. If Λ∗

∞ is l.sc. on all of Θ, then it is equal to its l.sc. envelope and lossy MLEs are
consistent.

4.3.5 Example: maximizing the approximate lossy likelihood

Assume everything from Section 3. Define

Rn(θ, xn
1 ) := sup

λ≤0

[
λD − 1

n
log Eθe

λnρn(xn
1 ,Y n

1 )

]
.

We think of Rn as an approximation to Ln. This can be a useful analytic approximation
[21] and can sometimes be simpler to compute than Ln in applications [M. Madiman,
personal communication].

We are interested in the behavior of minimizers of Rn. We can define a sequence of
lossy R-minimizers (θ̂n)n≥1 exactly like in (3.4) except with Ln replaced by Rn. The proof
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of Proposition 3.1 in the Appendix shows that Proposition 3.1 holds with Ln replaced by
Rn. Because Corollary 4.1 comes exactly from Proposition 2.1, we can replace Ln by Rn

and “lossy MLEs” by “lossy R-minimizers” in Corollary 4.1. The proof of Proposition
4.2 shows that we can make the same changes there as well.

Suppose that (4.9) and (4.12) hold. Then (4.1) holds with Ln replaced by Rn

[9][Example 2.2.9]. Suppose that (4.13) also holds. The proof of Proposition 4.7 shows
that it holds with “lossy MLEs” replaced by “lossy R-minimizers”, so Theorem 4.8 holds
with this replacement as well.

Notice that in each of the above examples where we demonstrated the consistency
of lossy MLEs, we also have the consistency of lossy R-minimizers. This is also true
in Section 4.1, where in the proofs we actually prove relative compactness (and thus
consistency) for lossy R-minimizers first and then infer the consistency of lossy MLEs.

Consider the situation and assumptions in Section 4.1. In this case

Rn(θ, xn
1 ) = R(Pxn

1
, θ, D) and Λ∗

∞(θ) = R(P1, θ, D)

which implies that

inf
θ∈Θ

Rn(θ, xn
1 ) = R(Pxn

1
, D) and Λ∗

∞(Θ) = R(P1, D),

where R(P̃ , Q̃, D) and R(P̃ , D) are defined in Section A.2 for probability measures P̃ and
Q̃ on S and T , respectively. Pxn

1
is the empirical probability distribution on S defined

by xn
1 . P1 is the first marginal of P . See Section A.2 and the proof of Proposition 4.3 for

details.
The important point here is that R(P̃ , D) is the rate distortion function for an

i.i.d. source with distribution P̃ . The lossy R-minimizer version of Proposition 4.3, in
particular (4.5), implies that whenever R(P1, D) < ∞ we have

Prob
{
R(PXn

1
, D) → R(P1, D)

}
= 1.

If the source (Xn)n≥1 is i.i.d., then the rate distortion function computed from the data
converges to the true rate distortion function of the source.

4.3.6 Example: penalized lossy MLEs

Assume everything from Section 3. Let (Fn)n≥1 be a sequence of l.sc. functions Fn : Θ →
[0,∞]. We think of Fn as a penalty and we want to minimize Ln(·, Xn

1 ) + Fn(·) over
Θ. Just like in the previous example we can define penalized lossy MLEs by replacing
Ln with Ln + Fn. Propositions 3.1 and 4.2 and Corollary 4.1 continue to hold with the
corresponding changes.

Suppose that

Θlim ∩ Θr ∩ {θ : Fn(θ) → 0} is dense in Θr for each r

and that (4.1) holds for Ln. Then (4.1) holds with Ln replaced by Ln + Fn [9][Example
2.2.8]. If all lossy MLEs are consistent, Θ∗ is compact and Λ∗

∞(Θ) < ∞, then (4.6) holds
for Ln and thus it holds with Ln replaced by Ln + Fn. So penalized lossy MLEs are
consistent as well. Notice that in each of the above examples where we demonstrated the
consistency of lossy MLEs, we also have the consistency of penalized lossy MLEs.8

8All of this can be extended to the more general case where Fn is allowed to depend on Xn
1 . Ap-

propriate conditions for ensuring (4.1) with Ln replaced by Ln + Fn can be found in Harrison (2003)
[9][Example 2.2.8]. In this case and if Fn ≥ 0, then the arguments (via Proposition 4.2) that the
consistency of lossy MLEs implies the consistency of penalized lossy MLEs continue to hold.

11



One of the reasons for adding a penalty is to ensure that (4.3) holds for any sequence
of penalized lossy MLEs even though it may not hold for all lossy MLEs. We will now
give a contrived example of this phenomenon. We begin with a class of examples where
an exact lossy MLE is not consistent.

Fix D ≥ 0. Let S = T := N with the discrete topology and let

ρ(x, y) :=

{
0 if x ≤ y,

f(x) otherwise,

for some nonnegative, real-valued function f . Take (Xn)n≥1 i.i.d. with Ef(X1) = ∞.
Define Θ := N ∪ {0} with the discrete topology. Let Q0 be any i.i.d. probability with
a generalized AEP with a finite limit. (For example, if P has finite entropy, we can
take Q0 = P .) Let Qθ be i.i.d. point masses on θ for each θ ≥ 1 (i.e., Yk

a.s.
= θ for all k

w.r.t. Qθ).
For θ ≥ 1, we have Dmin(θ) := E[f(X1)I(θ,∞)(X1)] = ∞ and thus Ln(θ, Xn

1 )
a.s.→

Λ∗
∞(θ) = ∞ [10]. So Θ = Θlim and Θ∗ = Θ∞ = {0}. Notice that (3.1), (4.9) and (4.12)

all hold, so (4.1) holds.
Define

θ̂n(xn
1 ) := max

1≤k≤n
xk.

We have Ln(θ̂n(xn
1 ), xn

1 ) = 0, so θ̂n is an exact lossy MLE. Notice that θ̂n ↑ ∞ a.s. It does
not converge and cannot be consistent. This shows the importance of the compactness
assumption (4.3) for convergence of minimizers.

Now we will show that a penalty can correct things, at least in a specific instance.

Consider the same setup. Let X1 have distribution p(x) := 2−x, define f(x) := 222x

and
take Fn(θ) := f(θ)/n. Notice that Fn(θ) → 0 for each θ so (4.1) holds with Ln replaced
by Ln +Fn. We will show that every sequence of penalized lossy MLEs is consistent with
this penalty. Before going through the details, however, we have two remarks.

First, since we are using the discrete topology on Θ, consistency actually means that
our estimator is eventually a.s. equal to a minimizer of Λ∗

∞. The convergence happens in
finite time. Second, the penalty that we chose satisfies

Fn(θ) =
1

n
F (θ) with

∑
θ∈Θ

2−F (θ) ≤ 1. (4.14)

Barron (1985) [3] shows that penalties satisfying (4.14) lead to consistent estimators in
the penalized (lossless) MLE setting under great generality if the source distribution P
is in the parameter space and F (P ) < ∞. We do not know if an equivalent result holds
for penalized lossy MLEs. We suspect that a special reproduction distribution Q∗ will
need to be in the parameter space to take the place of P in the lossless setting. That
some such assumption is needed is demonstrated at the end of this section, where we
show that in this particular example we can choose a penalty satisfying (4.14) for which
penalized lossy MLEs are not consistent.

Define θ̂n as before. For n large enough we can bound

βn := Prob

{
θ̂n := max

1≤k≤n
Xk ≤ log2 log2 n

}
=

(
1 − 2− log2 log2 n

)n

=

[(
1 − 1

log2 n

)log2 n
]n/ log2 n

≤ e−n/ log2 n.
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So for n large enough

2nβ2n ≤ 2ne−2n/n ≤
[
2

e

]n

,

which is summable. This implies that βn is summable [18][Theorem 3.27] and the Borel-
Cantelli Lemma gives

Prob
{
θ̂n > log2 log2 n eventually

}
= 1

which implies

Prob

{
1

n
f(θ̂n) >

2n

n
> D eventually

}
= 1. (4.15)

Suppose that 1 ≤ θ < θ̂n(xn
1 ) for some xn

1 . Then

1

n

n∑
k=1

ρ(xk, θ) ≥
1

n
ρ(θ̂n(xn

1 ), θ) =
1

n
f(θ̂n(xn

1 )).

If the left side is greater than D then Ln(θ, xn
1 ) = ∞, so (4.15) gives

Prob
{

Ln(θ, Xn
1 ) = ∞, 1 ≤ θ < θ̂n, eventually

}
= 1.

Since Ln(θ̂n(xn
1 ), xn

1 ) = 0 for each xn
1 and since the penalty is increasing in θ, we have

Prob

{
inf
θ≥1

[Ln(θ, Xn
1 ) + Fn(θ)] = Fn(θ̂n) eventually

}
= 1. (4.16)

The only fact about the penalty that we used to derive (4.16) is that Fn is increasing
in θ. When Fn(θ) := f(θ)/n, we can combine (4.15) and (4.16) to get

Prob

{
lim inf
n→∞

inf
θ≥1

[Ln(θ, Xn
1 ) + Fn(θ)] = ∞

}
= 1.

The (penalized modification of) Proposition 4.2 shows that every sequence of penalized
lossy MLEs is consistent with this penalty as claimed.

On the other hand, suppose we were using the penalty Fn(θ) := [2 log2(θ + 2)]/n,
which also satisfies (4.14). Since it is increasing in θ, (4.16) holds. We have

Prob

{
θ̂n := max

1≤k≤n
Xk > 3 log2 n

}
≤ n Prob {X1 > 3 log2 n} = n2−3 log2 n = n−2

which is summable, so the Borel-Cantelli Lemma gives

Prob
{

θ̂n ≤ 3 log2 n eventually
}

= 1.

Combining this with (4.16) gives

Prob

{
lim inf
n→∞

inf
θ≥1

[Ln(θ, Xn
1 ) + Fn(θ)] = 0

}
= 1.

Proposition 4.2 implies the existence of an inconsistent sequence of penalized lossy MLEs
with this penalty. If Λ∗

∞(Θ) > 0, then every sequence of penalized lossy MLEs is incon-
sistent with this penalty.
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A Appendix

The Appendix begins with justification of Proposition 2.1 and its Corollary 4.1. Then we
prove some results needed for Section 4.1 and Proposition 4.3. Some of these may have
independent interest so we allow for slightly more generality than is needed in the text.
Next, we state some measurability results that are needed for establishing the existence
of measurable lossy MLEs (Proposition 3.1) and also for showing that lossy likelihoods
are well-behaved from a stochastic minimization perspective (Proposition A.11). The
end of the Appendix is devoted to the proofs of the propositions found in the text.

A.1 Epi-convergence

Proposition 2.1 is well known, but I did not find a reference that states it in the form given
here, particularly when minimizers are defined like (2.2). The proof is simple. The l.sc. of
f and (2.1) can be found in any reference on epi-convergence [1]. Let Θ∗ := arg infΘ f ,
let f(Θ) := infΘ f and let ν be the metric on Θ.

Let (θn)n≥1 be a relatively compact sequence satisfying (2.2). Suppose that (2.3) does
not hold. Choose (θnk

)k≥1 such that ν(θnk
, Θ∗) > ε for all k and some ε > 0 and such

that θnk
→ θ for some θ ∈ Θ. Clearly ν(θ, Θ∗) ≥ ε, so θ 	∈ Θ∗. However, epi-convergence,

(2.1) and (2.2) imply that f(θ) ≤ lim infk fnk
(θnk

) ≤ f(Θ). So θ ∈ Θ∗ and (2.3) must
hold. Similarly, supposing that (2.4) does not hold, lets us have limk fnk

(θnk
) < f(Θ)

and θnk
→ θ. Epi-convergence, (2.1) and (2.2) give us the same contradiction.

Now let (θn)n≥1 satisfy (2.2) and suppose that Θ∗ is compact. Choose θ∗n ∈ Θ∗ so
that ν(θn, θ∗n) < ν(θn, Θ∗) + 1/n. Since (θ∗n)n≥1 is relatively compact and ν(θn, θ∗n) → 0,
we see that (θn)n≥1 is relatively compact.

Now suppose that every sequence satisfying (2.2) is relatively compact, but that
Θ∗ is not compact. Choose θ∗n ∈ Θ∗ and εn > 0 such that (θ∗n)n≥1 has no convergent
subsequence, εn ↓ 0 and the O(θ∗n, εn) are mutually disjoint. For each n ≥ 1, use epi-
convergence to choose a θn ∈ O(θ∗n, εn) such that fn(θn) ≤ −n∨ f(θ∗n)+1/n. Notice that
(θn)n≥1 is not relatively compact and that lim supn fn(θn) ≤ f(Θ) = limn infΘ fn, where
the last equality comes from (2.4). But this means that (θn)n≥1 satisfies (2.2), which is
a contradiction and Θ∗ must be compact. This completes the proof of Proposition 2.1.

Translating Proposition 2.1 into Corollary 4.1 is straightforward. We just apply
Proposition 2.1 along each realization x∞

1 where epi-convergence and either relative com-
pactness or consistency hold. Such realizations have probability 1. The only possible
problem is the statement that if every sequence of lossy MLEs satisfies (4.3), then Θ∗ is
compact. There may be no particular realization x∞

1 such that each sequence of lossy
MLEs is actually a minimizer, much less relatively compact, so we cannot immediately
apply Proposition 2.1. We can, however, imitate the proof in the preceeding paragraph.

Suppose that every sequence of lossy MLEs satisfies (4.3). Pick one, say (θ̂n)n≥1.
Pick a realization x∞

1 such that (4.1) holds and such that (3.4) and (4.3) hold for x∞
1

and θ̂n(x∞
1 ). Notice that (4.5) also holds for this x∞

1 and that the set of such x∞
1 has

probability 1. Assuming that Θ∗ is not compact and repeating the proof from Proposition
2.1, shows that we can choose a sequence (θn)n≥1 that is not relatively compact but that
has lim supn Ln(θn, xn

1 ) ≤ Λ∗
∞(Θ) = limn infθ∈Θ Ln(θ, xn

1 ). The sequence of mappings
x∞

1 �→ θn thus defines a sequence of lossy MLEs that is relatively compact with probability
0. This is a contradiction and Θ∗ must be compact.
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A.2 Minimizers of a rate distortion function

Let (S,S) and (T, T ) be measurable spaces. Let ρ : S×T → [0,∞) be S×T -measurable.
For each probability measure P on (S,S) and D ≥ 0 define

W (P, D) :=
{
probability measures W on (S × T,S × T ) : W S = P and EW ρ ≤ D

}
,

where we use the notation W S and W T to denote the marginal distribution of W on S
and T , respectively. The following definitions and equivalences are well known: [7, 21]

R(P, Q, D) := inf
W∈W (P,D)

H(W‖P × Q) = inf
W∈W (P,D)

[
H(W‖W S × W T ) + H(W T‖Q)

]
,

R(P, D) := inf
W∈W (P,D)

H(W‖W S × W T ) = inf
Q

R(P, Q, D),

Λ(P, Q, λ) := EP log EQeλρ(X,Y ), Λ∗(P, Q, D) := sup
λ≤0

[λD − Λ(P, Q, D),

where Q denotes an arbitrary probability measure on (T, T ) and X and Y denote random
variables on S and T , respectively. H(·‖·) is the relative entropy in nats (see Section
4.1). If (X, Y ) has joint distribution W , then H(W‖W S × W T ) = I(X; Y ), the mutual
information (in nats) between X and Y . So R(P, D) is the (information) rate distortion
function (in nats) for the memoryless source with distribution P . Notice that we can
replace W S with P in each of the above definitions because W ∈ W (P, D). As is typical,
we define the infimum of the empty set to be +∞.

The infimum is actually achieved in the definition of R(P, Q, D).

Proposition A.1. [10] R(P, Q, D) = Λ∗(P, Q, D). If W (P, D) is not empty, then there
exists a W ∈ W (P, D) such that R(P, Q, D) = H(W‖P × Q).

Here we give some conditions for which the infimum is achieved in the two represen-
tations of R(P, D) given above. This issue is addressed in detail by Csiszár (1974) [6].
The assumptions here are more general, although Csiszár allows ρ to be infinite valued
and we do not.

We further assume that (T, T ) is a metric space with its Borel σ-algebra and that
ρ(x, ·) is l.sc. for each x ∈ S. In the appropriate topologies, R(P, Q, D) is sequentially
l.sc.

Proposition A.2. If Pn
τ→ P and Qn

w→ Q and Dn → D, then lim infn R(Pn, Qn, Dn) ≥
R(P, Q, D).

(Note that in this section Pn and Qn refer to sequences of probability measures on S and
T , respectively, and not the nth marginals of probability measures on a sequence space.)
We use

τ→ to denote setwise convergence of probability measures and
w→ to denote weak

convergence of probability measures (see footnotes 2 and 3). If Q is a set of probability
measures on (T, T ), we use Qn

w→ Q to mean that every open neighborhood of Q (in
the topology of weak convergence) contains each Qn for large enough n (depending on
the neighborhood). Since the topology of weak convergence is metrizable [20], this is
convergence to a set in the usual manner for metric spaces.

A sequence of probability measures (Qn)n≥1 on (T, T ) is said to be tight if

sup
F⊂T

F compact

lim inf
n→∞

Qn(F ) = 1.
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If the sequence Qn is tight, then Prohorov’s Theorem states that the sequence Qn is
relatively compact in the topology of weak convergence of probability measures [13]. In
particular, every subsequence has a subsequence that converges weakly to a probability
measure.

Now we state the crucial assumption. This takes the place of the typical assumption
that T is compact (c.f. Csiszár, 1974 [6]) and is trivial if T is compact. Assume that
for each ε > 0 and each M > 0 there exists a K ⊂ S such that P (K) > 1 − ε and
B(K, M) ⊂ T is relatively compact, where

B(K, M) := {y ∈ T : ρ(x, y) ≤ M for some x ∈ K} =
⋃
x∈K

B(x, M)

in the notation of the text. Notice that this immediately implies that T is σ-compact.
Section 4.1 describes some common situations where this assumption is valid. The key
technical result is

Proposition A.3. If Pn
τ→ P and Dn → D and lim supn R(Pn, Qn, Dn) ≤ R(P, D) < ∞,

then the sequence Qn is tight.

We can use it to easily deduce the following:

Corollary A.4. The set of minimizers of R(P, ·, D)

arg infQ R(P, Q, D) := {Q : R(P, Q, D) = infQ′ R(P, Q′, D)}
= {Q : R(P, Q, D) = R(P, D)}

is not empty. If R(P, D) < ∞, then arg infQ R(P, Q, D) is compact in the topology of
weak convergence of probability measures.

Corollary A.5. If Pn
τ→ P and Dn → D and lim supn R(Pn, Qn, Dn) ≤ R(P, D), then

Qn
w→ arg infQ R(P, Q, D).

Corollary A.6. There exists a Q such that R(P, D) = R(P, Q, D). If W (P, D) is not
empty, then there exists a W ∈ W (P, D) such that R(P, D) = H(W‖W S × W T ).

A.2.1 Proof of Proposition A.2

Fix λ ≤ 0 and x ∈ S. Since eλρ(x,·) is bounded and u.sc. and since Qn
w→ Q, we

have lim supn EQneλρ(x,Y ) ≤ EQeλρ(x,Y ) [20][pp.313]. A generalization of Fatou’s Lemma
[17][p.269] gives

lim inf
n

EPn

[
− log EQneλρ(X,Y )

]
≥ EP

[
− log EQeλρ(X,Y )

]
,

which implies
lim inf

n
[λDn − Λ(Pn, Qn, λ)] ≥ λD − Λ(P, Q, λ).

Taking the supremum over λ ≤ 0 first inside the lim inf on the left and then on the right
gives lim infn Λ∗(Pn, Qn, D) ≥ Λ∗(P, Q, D). Proposition A.1 completes the proof.
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A.2.2 Proof of Proposition A.3

For n large enough, R(Pn, Qn, Dn) < ∞, so W (Pn, Dn) is not empty and we can use
Proposition A.1 to choose Wn ∈ W (Pn, Dn) with R(Pn, Qn, Dn) = H(Wn‖Pn × Qn).
Thus

R(P, D) ≥ lim sup
n

R(Pn, Qn, Dn) = lim sup
n

H(Wn‖Pn × Qn)

= lim sup
n

[
H(Wn‖Pn × W T

n ) + H(W T
n ‖Qn)

]
≥ lim inf

n
H(Wn‖Pn × W T

n ) + lim sup
n

H(W T
n ‖Qn)

≥ lim inf
n

R(Pn, W T
n , Dn) + lim sup

n
H(W T

n ‖Qn). (A.1)

Suppose that W T
n is tight. Then every subsequence has a subsequence that con-

verges weakly. So we can choose a subsequence nk such that R(Pnk
, W T

nk
, Dnk

) →
lim infn R(Pn, W T

n , Dn) and such that W T
nk

w→ Q for some probability measure Q on
(T, T ). Applying Proposition A.2 to (A.1) gives

R(P, D) ≥ R(P, Q, D) + lim sup
n

H(W T
n ‖Qn) ≥ R(P, D) + lim sup

n
H(W T

n ‖Qn).

R(P, D) < ∞ so lim supn H(W T
n ‖Qn) = 0. Since W T

n is tight, Qn is also tight.
To complete the proof, we will use the compactness assumption to show that W T

n

is tight. Fix ε > 0 and M > 2(D + ε)/ε. Choose K ⊂ S such that P (K) > 1 − ε/2
and such that B(K, M) is relatively compact. We can choose N large enough that
supn≥N Dn < D + ε, supn≥N R(Pn, Qn, Dn) < ∞ and infn≥N Pn(K) > 1 − ε/2.

For n ≥ N , we have

D + ε > Dn ≥ EWnρ(X, Y ) ≥ MWn(K × B(K, M)c) ≥ 2(D + ε)Wn(K × B(K, M)c)/ε.

This implies that Wn(K × B(K, M)c) < ε/2 and we can bound

W T
n (B(K, M)) ≥ W T

n (B(K, M)) ≥ Wn(K × B(K, M))

= Pn(K) − Wn(K × B(K, M)c) > 1 − ε/2 − ε/2 = 1 − ε.

Since B(K, M) is relatively compact, it has compact closure F := B(K, M). We have
just shown that lim infn W T

n (F ) ≥ 1 − ε. Since ε is arbitrary, W T
n is tight and the proof

is complete.

A.2.3 Proof of Corollaries

If R(P, D) = ∞, then R(P, D) = R(P, Q, D) = H(W‖W S × W T ) for every Q and every
W ∈ W (P, D) (if there are any). So each of the Corollaries is trivially true.

Suppose R(P, D) < ∞. Consider the situation in Corollary A.5. Proposition A.3
shows that the sequence Qn is tight. Suppose that Qn 	→ arg infQ R(P, Q, D). Then we
can pick a subsequence Qnk

and an open neighborhood Q of arg infQ R(P, Q, D) such

that Qnk
∈ Qc for all k and such that Qnk

w→ Q∗ for some probability measure Q∗. (If
arg infQ R(P, Q, D) = ∅, we can take Q = ∅.) Since Qc is closed, Q∗ ∈ Qc and thus
Q∗ 	∈ arg infQ R(P, Q, D). On the other hand,

R(P, D) ≥ lim sup
n

R(Pn, Qn, Dn) ≥ lim sup
k

R(Pnk
, Qnk

, Dnk
) ≥ R(P, Q∗, D) ≥ R(P, D)
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where the next to last inequality comes from Proposition A.2. So we have R(P, Q∗, D) =
R(P, D), which means Q∗ ∈ arg infQ R(P, Q, D). This is a contradiction, so Qn

w→
arg infQ R(P, Q, D) which therefore cannot be empty. This proves Corollary A.5.

Taking Pn = P and Dn = D and using the representation R(P, D) = infQ R(P, Q, D),
shows that we can always satisfy the hypotheses of Corollary A.5, so arg infQ R(P, Q, D)
is not empty. Since R(P, ·, D) is l.sc. (Proposition A.2), arg infQ R(P, Q, D) is closed.
If we choose a sequence of Qn from arg infQ R(P, Q, D), then the sequence Qn must be
tight. So every subsequence has a convergent subsequence and the limit must be in
arg infQ R(P, Q, D) because it is closed. This implies that arg infQ R(P, Q, D) is sequen-
tially compact and thus compact, because the topology of weak convergence is metrizable.
This proves Corollary A.4.

We have already shown that R(P, D) = R(P, Q, D) for some Q. For this Q, Proposi-
tion A.1 shows that we can choose W ∈ W (P, D) (which is not empty since R(P, D) < ∞)
such that

R(P, D) = R(P, Q, D) = H(W‖P × Q) = H(W‖P × W T ) + H(W T‖Q)

= H(W‖W S × W T ) + H(W T‖Q) ≥ R(P, D) + H(W T‖Q) ≥ R(P, D).

So H(W T‖Q) = 0 and R(P, D) = H(W‖W S × W T ). This proves Corollary A.6.

A.3 Measurability lemmas

For the lemmas given here let (Θ,B) be a separable metric space with its Borel σ-algebra
and metric ν and let (S,S) be an arbitrary measurable space. S×B denotes the smallest
σ-algebra containing the measurable rectangles. If f : Θ → [−∞,∞] is any function we
use

lsc f(θ) := sup
ε>0

inf
θ′∈O(θ,ε)

f(θ′) and usc f(θ) := inf
ε>0

sup
θ′∈O(θ,ε)

f(θ′)

to denote the l.sc. and u.sc. envelopes of f , respectively. When f : S ×Θ → [−∞,∞] we
use lsc f to denote the l.sc. envelope of f w.r.t. θ ∈ Θ and similarly for usc f .

Lemma A.7. If f : S × Θ → [−∞,∞] satisfies

1. f(s, ·) is u.sc. for each s ∈ S,

2. f(·, θ) is S-measurable for each θ ∈ Θ,

then

a. infθ∈U f(·, θ) is S-measurable for any U ⊂ Θ,

b. (s, θ) �→ infθ′∈O(θ,ε) f(s, θ) is S × B-measurable for each ε > 0,

c. lsc f is S × B-measurable.

Proof. For part a, fix U ⊂ Θ and let U0 ⊂ U be countable and dense (w.r.t. U). Then
infθ∈U f(·, θ) = infθ0∈U0 f(·, θ0), which is measurable.

For part b fix ε > 0 and let Θ0 ⊂ Θ be countable and dense. Notice that

inf
θ′∈O(θ,ε)

f(s, θ′) = inf
θ0∈Θ0∩O(θ,ε)

f(s, θ0) = inf
θ0∈Θ0

[
f(s, θ0)IO(θ0,ε)(θ) + ∞ · IO(θ0,ε)c(θ)

]
,

which is S × B-measurable in (s, θ). Part c follows by letting ε ↓ 0.
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Lemma A.8. If for each n = 1, 2, . . ., fn : S × Θ → [−∞,∞] satisfies

1. fn(s, ·) is l.sc. for each s ∈ S,

2. fn(·, θ) is S-measurable for each θ ∈ Θ,

3. usc fn ≤ supm fm,

then f := supm fm satisfies

a. f(s, ·) is l.sc. for each s,

b. f is S × B-measurable,

c. infθ∈U f(·, θ) is S-measurable for any U ⊂ Θ such that U is a countable union of
compact sets.

Proof. Part a is trivial. By redefining fn = maxk≤n fn, we can assume that fn ↑ f .
Since −fn satisfies the hypotheses of Lemma A.7, we know that usc fn = lsc (−fn) is

S × B-measurable. So usc fn also satisfies the hypotheses of Lemma A.7. Furthermore,
fn ≤ usc fn ≤ f , so usc fn ↑ f . This proves part b.

For part c, first let U ⊂ Θ be compact. Clearly

inf
θ∈U

f(·, θ) ≥ sup
n

inf
θ∈U

usc fn(·, θ),

the latter of which is measurable from Lemma A.7. To show the reverse inequality, fix
s and choose θn ∈ U such that usc fn(s, θn) < max{−n, infθ∈U usc fn(s, θ)} + 1/n. The
compactness of U implies that θnk

→ θ∗ for some subsequence and some θ∗ ∈ U . So for
each m,

sup
n

inf
θ∈U

usc fn(s, θ) = lim
n→∞

usc fn(s, θn) = lim
k→∞

usc fnk
(s, θnk

)

≥ lim inf
k→∞

fm(s, θnk
) ≥ fm(s, θ∗).

Letting m → ∞ gives

sup
n

inf
θ∈U

usc fn(s, θ) ≥ f(s, θ∗) ≥ inf
θ∈U

f(s, θ)

and completes the argument for U compact. If U =
⋃∞

n=1 Un, where Un is compact, then
infθ∈U f(·, θ) = infn infθ∈Un f(·, θ), the latter of which is measurable.

Lemma A.9. Let f : S × Θ → [−∞,∞] and g : Θ → [−∞,∞] satisfy

1. f(s, ·) is l.sc. for each s ∈ S,

2. infθ∈U f(·, θ) is S-measurable for each compact U ⊂ Θ,

3. g is either l.sc. or u.sc.,

4. f(s, θ) + g(θ) is well-defined for all s and θ.

Then infθ∈U [f(·, θ) + g(θ)] is S-measurable for each U ⊂ Θ such that U is a countable
union of compact sets.
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Proof. We need only establish the case where g is l.sc. and bounded below. Indeed, if
g is just l.sc., then max(g,−n) is l.sc. and bounded below and inf[f + g] = infn inf[f +
max(g,−n)], the latter of which is measurable and well-defined. Similarly, if g is u.sc.,
define

gn(θ) := sup
ε>0

inf
θ′∈O(θ,ε)

sup
θ′′∈O(θ′,1/n)

g(θ′′).

gn is l.sc. and gn ↓ g. So inf[f + g] = infn inf[max(f,−n) + gn], the latter of which is
measurable and well-defined.

Also, we need only establish the result for compact U (see the proof of Lemma A.8.c)
and the case where U is compact follows directly from Pfanzagl (1969) [16, Lemma
3.8].

Lemma A.10. If f : S × Θ → [−∞,∞] and ε, δ : S → (0,∞] satisfy

1. f(s, ·) is l.sc. for each s ∈ S,

2. infθ∈U f(·, θ) is S-measurable for each compact U ⊂ Θ,

3. ε and δ are S-measurable,

then for each U ⊂ Θ such that U is a countable union of compact sets, there exists an
S/B-measurable function θ̂ : S → U such that for each s ∈ S

f(s, θ̂(s)) = min
θ∈U

f(s, θ) if the minimum exists, and

f(s, θ̂(s)) ≤ max

{
−δ(s)−1, inf

θ∈U
f(s, θ)

}
+ ε(s) otherwise.

Proof. Choose Un ↑ U , n = 1, 2, . . ., where each Un is compact. Since f(s, ·) is l.sc., the
minimum minθ∈Un f(s, θ) exists for each s. Pfanzagl (1969) [16, Theorem 3.10] shows
that there exists an S/B-measurable function θ̂n : S → Un such that f(s, θ̂n(s)) =
minθ∈Un f(s, θ) for all s ∈ S.

Notice that infθ∈U f(·, θ) = infn infθ∈Un f(·, θ) is S-measurable, so

En :=

{
s : inf

θ∈Un

f(s, θ) = inf
θ∈U

f(s, θ)

}
∈ S

and En ↑ E := {s : the minimum minθ∈U f(s, θ) exists} ∈ S. Let (E, E) be the restriction
of (S,S) to E. Pfanzagl (1969) [16, Theorem 3.10] shows that there exists an E/B-
measurable function θ̂E : E → U such that f(s, θ̂E(s)) = minθ∈U f(s, θ) for all s ∈ E.

Define

An :=

{
s : inf

θ∈Un

f(s, θ) ≤ max

{
−δ(s)−1, inf

θ∈U
f(s, θ)

}
+ ε(s)

}
.

Each An ∈ S and An ↑ S. Define A0 := ∅.
Let Sn := An ∼ An−1, n = 1, 2, . . .. Then S =

⋃
n Sn and the Sn are disjoint. The

function θ̂(s) := θ̂n(s), if s ∈ Sn ∩ Ec, n = 1, 2, . . ., and θ̂(s) := θ̂E(s), if s ∈ E, is
S/B-measurable and has the desired properties.

A.4 Proofs

Throughout the proofs we assume everything from Section 3 and also any of the specifics
from the context where a proposition is stated.
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A.4.1 Proof of Proposition 3.1

We begin with a result that is a common requirement for many statistical applications
of epi-convergence.

Proposition A.11. Ln(·, xn
1) is l.sc. for each xn

1 ∈ Sn. Ln is B × Sn-measurable. For
U ⊂ Θ such that U is a countable union of compact sets, infθ∈U Ln(θ, ·) is Sn-measurable.

Proof. We use different methods for situations (3.1) and (3.2). In both cases, Ln(θ, ·) is
measurable [10].

Suppose (3.1) holds. Ln(·, xn
1 ) is continuous [9], so lsc Ln(·, xn

1 ) = usc Ln(·, xn
1 ) =

Ln(·, xn
1 ). Lemma A.7 completes the proof.

Now suppose (3.2) holds. Since (T, T ) is a separable metric space with its Borel σ-
algebra, (T n, T n) is also. Similarly, ρn is product measurable and ρn(xn

1 , ·) is continuous
for each xn

1 . The structure of the problem does not change with n, so without loss of
generality we will prove the result for n = 1. Let O(y, r) denote the open r-neighborhood
around y ∈ T .

For m ≥ 1 define the functions

ρm(x, y) := sup
ε>0

inf
y′∈O(y,ε+1/m)

ρ(x, y′).

ρm(x, ·) is l.sc. for each x, ρm is S × T -measurable (Lemma A.7) and ρm ↑ ρ as m ↑ ∞.
Define Bm(x, D) := {y ∈ T : ρm(x, y) ≤ D} and Lm(θ, x) := − log Qθ(B

m(x, D)). To
complete the proof we need only show that fm(x, θ) := Lm(θ, x) and f(x, θ) := L(θ, x)
satisfy the assumptions for Lemma A.8.

Since ρm(x, ·) is l.sc., Bm(x, D) is closed and θ �→ Qθ(B
m(x, D)) is u.sc. from a

property of weak convergence [20][pp.311]. This shows that Lm(·, x) is l.sc. for each x.
Since ρm is product measurable, Lm(θ, ·) is measurable [10]. Since ρm ↑ ρ, Bm(x, D) ↓
B(x, D) and Qθ(B

m(x, D)) ↓ Qθ(B(x, D)). This shows that Lm ↑ L.
All that remains to prove is usc Lm ≤ L, where the u.sc. envelope is taken over Θ.

This is equivalent to showing that

lsc EθIBm(x,D)(Y ) ≥ EθIB(x,D)(Y ), (A.2)

where the l.sc. envelope is taken over θ ∈ Θ. Since Bm(x, D) is closed and ρm is product
measurable, IBm(x,D)(y) is u.sc. in y and product measurable in (x, y). Lemma A.7 shows
that lsc IBm(x,D)(y) is product measurable, where the l.sc. envelope is taken over y ∈ T .
We have lsc IBm(x,D)(y) ≥ IB(x,D)(y), so

EθIBm(x,D)(Y ) ≥ Eθ

[
lsc IBm(x,D)(Y )

]
≥ EθIB(x,D)(Y ).

But the middle expression is l.sc. in θ from a property of weak convergence [20][pp.313], so
it is equal to its l.sc. envelope over θ ∈ Θ. This gives (A.2) and completes the proof.

Now we prove Proposition 3.1. If Θ is σ-compact, then it is a countable union of
compact sets. Proposition 3.1 follows from Proposition A.11 and Lemma A.10. We can
ignore δ because Ln is nonnegative.

Lemma A.9 lets us derive the same result for certain types of penalties, namely
l.sc. functions F : Θ → [0,∞). See Example 4.3.6. It is not hard to prove Proposition
A.11 for Rn as defined in Example 4.3.5. Indeed, Rn is a supremum of continuous, mea-
surable functions [9]. The functions are concave in the variable that is being maximized
over [9], so the supremum can be taken over a fixed, countable set. Lemma A.8 will give
the desired results.
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A.4.2 Proof of Proposition 4.2

Suppose (4.6) is true. Combining it with (4.2) shows that every sequence of lossy MLEs
is eventually contained in Θ∗

ε a.s. Since ε > 0 was arbitrary, (4.4) holds. Obviously, (4.6)
can only hold when Λ∗

∞(Θ) < ∞.
Now suppose that Θ∗ is compact, Λ∗

∞(Θ) < ∞ and every sequence of lossy MLEs
satisfies (4.4). Corollary 4.1 shows that every sequence of lossy MLEs satisfies (4.3). If
(4.6) is not true for some ε > 0, then we can find realizations x∞

1 (the collection of which
has positive probability) such that (4.4) and (4.3) hold and such that

lim inf
n→∞

inf
θ �∈Θ∗

ε

Ln(θ, xn
1 ) ≤ Λ∗

∞(Θ) = lim
n→∞

inf
θ∈Θ

L(θ, xn
1 ), (A.3)

where the last equality comes from the second part of (4.5). But this final result implies
that we can find a sequence of lossy MLEs that are not eventually in Θ∗

ε with positive
probability, contradicting (4.4). The reason we need Λ∗

∞(Θ) < ∞ is to ensure that Θ∗
ε

has a nonempty complement via (A.3); otherwise, the left side would be infinite.

A.4.3 Proof of Proposition 4.3

(4.7) implies (4.1) [9]. Since Λ∗
n does not depend on n, we will just write Λ∗. Notice

that Λ∗(θ) = Λ∗(P1, θ, D) = R(P1, θ, D) and infθ∈Θ Λ∗(θ) = R(P1, D) in the notation of
Section A.2. We will make frequent use of the results and methods of that section.

Henceforth we assume (4.8) and that infθ∈Θ Λ∗(θ) < ∞. It is not hard to see that Θ
is σ-compact by covering it with a countable collection of the B(K, M). Corollary A.4
shows that Θ∗ is nonempty, convex and compact.

For each xn
1 ∈ Sn, define the empirical probability measure Pxn

1
on (S,S) by

Pxn
1
(A) :=

1

n

n∑
k=1

IA(xk), A ∈ S.

Using the notation of Section A.2, (4.1) implies [9][Example 2.2.9]

Prob

{
epi-lim

n→∞
Λ∗(PXn

1
, θ, D) = Λ∗(θ), ∀θ ∈ Θ

}
= 1. (A.4)

The equivalence in Proposition A.1 shows that we can rewrite this as

Prob

{
epi-lim

n→∞
R(PXn

1
, θ, D) = R(P1, θ, D), ∀θ ∈ Θ

}
= 1. (A.5)

For each ε > 0 and each M > 0, let K(ε, M) be the set in (4.8). Then the ergodic
theorem gives

Prob
{

lim
n→∞

PXn
1
(K(ε, M)) = P1(K(ε, M)), for all rational ε > 0, M > 0

}
= 1. (A.6)

Let (θ̂n)n≥1 be a sequence of lossy MLEs. (4.1) implies (4.2). Fix a realization x∞
1 of X∞

1

such that (4.1), (4.2), (A.4), (A.5) and (A.6) each hold. Let θ̂n denote θ̂n(xn
1 ). We will

show that the sequence θ̂n is tight in a manner analogous to the proof of Proposition A.3
and we use the notation found there. Although Pxn

1
does not τ -converge to P1 (unless P1

is discrete), (A.6) and (A.5) are sufficient for what we need here.
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Using (4.2), Chebyshev’s inequality (Ln ≥ Λ∗) and the different representations al-
ready mentioned gives

R(P, D) = inf
θ∈Θ

Λ∗(θ) ≥ lim sup
n

Ln(θ̂, xn
1 ) ≥ lim sup

n
Λ∗(Pxn

1
, θ̂n, D)

= lim sup
n

R(Pxn
1
, θ̂n, D). (A.7)

Using (A.7) and repeating the steps of (A.1) with P1, Pxn
1
, θ̂n and D taking the place of

P , Pn, Qn and Dn, respectively, gives

R(P1, D) ≥ lim inf
n

R(Pxn
1
, W T

n , D) + lim sup
n

H(W T
n ‖θ̂n). (A.8)

Θ is the class of all probability measures on (T, T ) with the topology of weak conver-
gence, so each W T

n corresponds to some θn ∈ Θ. Suppose that W T
n is tight. Then θn is

relatively compact and we can choose a subsequence such that θnk
→ θ for some θ ∈ Θ

and such that R(Px
nk
1

, θnk
, D) → lim infn R(Pxn

1
, W T

n , D). Using (A.5) and the definition
of epi-convergence gives

lim inf
n

R(Pxn
1
, W T

n , D) = lim
k

R(Px
nk
1

, θnk
, D) ≥ R(P1, θ, D) ≥ R(P1, D).

Combining this with (A.8) gives

R(P1, D) ≥ R(P1, D) + lim sup
n

H(W T
n ‖θ̂n) ≥ R(P1, D).

So lim supn H(W T
n ‖θ̂n) = 0 and θ̂n is tight. This gives (4.3). Corollary 4.1 gives the rest

of the results.
To complete the proof, we need only show that W T

n is tight. The steps are identical
to those in the proof of Proposition A.3 except that we must choose ε and M rational
and use (A.6) instead of τ -convergence.

A.4.4 Proof of Proposition 4.5

Fix m and ∆ > 0 so that inf‖x−y‖≥m ρ(x, y) > D + ∆. Since D/(D + ∆) < 1, we can
choose N large enough so that P (K) > D/(D + ∆), where K :=

{
x ∈ R

d : ‖x‖ < N
}

is
the ball of radius N in R

d.
Suppose y ∈ B(K, D + ∆). Then there exists an x with ‖x‖ < N such that ρ(x, y) ≤

D + ∆. But this implies that ‖x − y‖ < m. The triangle inequality gives ‖y‖ < N + m.
So B(K, D + ∆) ⊂ R

d is bounded.

A.4.5 Proof of Proposition 4.6

The proof proceeds by establishing the proposition first for uniformly distributed Z, then
for bounded Z with bounded density and finally for Z with arbitrary density. Note that
the proposition is not true if Z is allowed to have point masses. In the proof, we use ‖ · ‖
to denote both the Euclidean norm for vectors and the operator norm for matrices, i.e.,
‖M‖ := supz:‖z‖=1 ‖Mz‖ for a matrix M and vectors z. Define B : {z ∈ R

d : ‖z‖ ≤ 1} to
be the closed unit ball at the origin, so that rB + z is the ball of radius r centered at z.
We use IB(z) to denote the indicator function that z ∈ B.

Fix F ⊂ R bounded and ε > 0. Choose p so that F ⊂ pB. We will first prove the
proposition under the added assumption that Z has uniform distribution on the unit
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ball, that is, the density of Z is kIB(z), where the k−1 is the volume of the unit ball in
R

d.
For any matrix A with ‖A‖ = 1, there exists a unit vector φA with ‖φA‖ = ‖φT

AA‖ = 1.
Let Z1 ∈ R denote the first coordinate of Z. For m > 0, we have

sup
µ∈Rd;M∈Rd×d:‖M‖=m

qµ,M (F ) = sup
µ;M :‖M‖=m

Prob {MZ + µ ∈ F}

≤ sup
µ;A:‖A‖=1

Prob
{

AZ ∈ p

m
B − µ

}
≤ sup

µ;A:‖A‖=1

Prob
{

φT
AAZ ∈ p

m
φT

AB − φT
Aµ

}
≤ sup

c∈R;a,b∈Rd:‖a‖=‖b‖=1

Prob
{

aT Z ∈ p

m
bT B − c

}
≤ sup

c;a:‖a‖=1

Prob
{
aT Z ∈

[
− p

m
− c,

p

m
− c

]}
= sup

c
Prob

{
Z1 ∈

[
− p

m
− c,

p

m
− c

]}
≤ Prob

{
Z1 ∈

[
− p

m
,

p

m

]}
↓ 0 as m ↑ ∞. (A.9)

We used the fact that Z is uniform over B to reason that aT Z has the same distribution
for all unit vectors a and therefore the same distribution as Z1.

(A.9) implies that we can choose mε large enough so that ‖M‖ > mε implies
qµ,M(F ) < ε for all µ. Suppose M has ‖M‖ ≤ mε. Then ‖MZ‖ ≤ mε a.s. If µ has
‖µ‖ > mε + p, then ‖MZ + µ‖ > p a.s. and

qµ,M (F ) ≤ Prob {MZ + µ ∈ pB} = Prob {‖MZ + µ‖ ≤ p} = 0.

So we have proved that

{(µ, M) : qµ,M (F ) ≥ ε} ⊂ {(µ, M) : ‖M‖ ≤ mε, ‖µ‖ ≤ mε + p}

which is compact. This completes the proof for the case when Z is uniform on the unit
ball.

Now suppose that Z is uniformly distributed on some ball rB + z for r > 0. Then
Z ′ := (Z − z)/r is uniformly distributed on B and we have

sup
µ∈Rd;M∈Rd×d:‖M‖=m

qµ,M(F ) = sup
µ;M :‖M‖=m

Prob {MZ + µ ∈ F}

= sup
µ;M :‖M‖=m

Prob {rMZ ′ + Mz + µ ∈ F}

= sup
µ;‖M‖=rm

Prob {MZ ′ + µ ∈ F} ↓ 0 as m ↑ ∞ (A.10)

from (A.9). Again we can choose mε large enough so that ‖M‖ > mε implies qµ,M(F ) < ε
for all µ. If ‖M‖ ≤ mε but ‖µ‖ > mε(r + z) + p, then ‖MZ + µ‖ ≥ ‖µ‖ − ‖MZ‖ >

mε(r + z) + p − mε‖Z‖
a.s.

≥ mε(r + z) + p − mε(r + z) = p. So just as before we see that
the proposition holds.

Now suppose that Z has a density fZ that is bounded with compact support. Let Z ′

be a random variable that is uniformly distributed on a ball that contains the support
of Z and let fZ′ be its density. Since fZ is bounded we can choose k > 0 large enough
that fZ ≤ kfZ′. So for any set E ⊂ R

d, we have Prob{Z ∈ E} ≤ k Prob{Z ′ ∈ E}. In
particular,

Prob {MZ + µ ∈ F} = Prob {Z ∈ {z : Mz + µ ∈ F}}
≤ k Prob {Z ′ ∈ {z : Mz + µ ∈ F}} = k Prob {MZ ′ + µ ∈ F} .
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Applying the proposition to Z ′ and ε/k gives the proposition for Z.
Finally, suppose that Z has a probability distribution q that is absolutely continuous

w.r.t. d-dimensional Lebesgue measure. It has a density fZ . We can choose N large
enough that q(A) < ε/3, where A := {z : fZ(z) > N}, and we can choose N ′ large
enough that q(A′) < ε/3, where A′ := N ′B. We have

Prob {MZ + µ ∈ F} ≤ Prob {MZ + µ ∈ F |Z 	∈ A ∪ A′} + 2ε/3.

Now the conditional density of Z given that Z 	∈ A ∪ A′ is bounded with compact
support. Applying the proposition to this conditional random variable and with ε/3
gives the proposition for Z and completes the proof.

A.4.6 Proof of Proposition 4.7

We assume everything from Section 3. (4.9) and (4.12) imply (4.1) [9][Theorem 2.1]. Fix
∆ > 0 and K ⊂ S so that P (K) > D/(D + ∆) and so that (4.13) holds for each ε > 0.
We will prove the following: for every finite M , there exists ε > 0 such that

Prob

{
sup
λ≤0

[
lim inf
n→∞

inf
θ∈Ac

ε

[
λD − 1

n

n∑
k=1

log Eθe
λρ(Xk ,Y1)

]]
> M

}
= 1. (A.11)

First, we show how (A.11) gives (4.3).
The stationarity and mixing properties (4.9) of Qθ show that

1

n
log Eθe

λnρn(Xn
1 ,Y n

1 ) ≤ 1

n

n∑
k=1

log Eθe
λρ(Xk ,Y1) + log C,

where 1 ≤ C < ∞ does not depend on θ. (A.11) then implies the following: for every
finite M , there exists ε > 0 such that

Prob

{
sup
λ≤0

[
lim inf
n→∞

inf
θ∈Ac

ε

[
λD − 1

n
log Eθe

λnρn(Xn
1 ,Y n

1 )

]]
> M

}
= 1.

This gives

Prob

{
lim inf
n→∞

inf
θ∈Ac

ε

sup
λ≤0

[
λD − 1

n
log Eθe

λnρn(Xn
1 ,Y n

1 )

]
> M

}
= 1.

And Chebyshev’s inequality gives

Prob

{
lim inf
n→∞

inf
θ∈Ac

ε

Ln(θ, Xn
1 ) > M

}
= 1.

Choosing ε > 0 corresponding to some M > Λ∗
∞(Θ), which is finite by assumption, and

using (4.2) shows that no sequence of lossy MLEs can be in Ac
ε infinitely often with

positive probability. So every sequence of lossy MLEs is contained in Aε eventually with
probability one. Since Aε has compact closure, (4.3) holds. Corollary 4.1 gives the rest
of the results.

Now we will prove (A.11). Define

ρ̃(x, y) :=

{
D + ∆ if x ∈ K and y ∈ B(K, D + ∆)c,

0 otherwise.
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For λ ≤ 0 and θ ∈ Ac
ε

log Eθe
λρ(x,Y1) ≤ log Eθe

λρ̃(x,Y1)

= IK(x) log
[
Qθ(B(K, D + ∆)) + Qθ(B(K, D + ∆)c)eλ(D+∆)

]
≤ IK(x) log

[
ε + (1 − ε)eλ(D+∆)

]
.

So the ergodic theorem gives

lim inf
n→∞

inf
θ∈Ac

ε

[
λD − 1

n

n∑
k=1

log Eθe
λρ(Xk ,Y1)

]

≥ λD − lim sup
n→∞

1

n

n∑
k=1

IK(Xk) log
[
ε + (1 − ε)eλ(D+∆)

]
a.s.
= λD − P (K) log

[
ε + (1 − ε)eλ(D+∆)

]︸ ︷︷ ︸
Λ̃ε(λ)

,

where Λ̃ε(λ) is defined as indicated. Defining

Λ̃∗
ε(D) := sup

λ≤0

[
λD − Λ̃ε(λ)

]
and taking the supremum over (rational) λ ≤ 0 gives

Prob

{
sup
λ≤0

[
lim inf
n→∞

inf
θ∈Ac

ε

[
λD − 1

n

n∑
k=1

log Eθe
λρ(Xk ,Y1)

]]
≥ Λ̃∗

ε(D)

}
= 1.

The reason we can restrict the supremum to rational λ is that both sides are concave
[10]. (A.11) will be true if we can show that Λ̃∗

ε(D) → ∞ as ε ↓ 0.
Let λ∗ satisfy

d

dλ
Λ̃ε(λ

∗) = D.

Some calculus shows that

λ∗ =
1

D + ∆
log

αε

(1 − α)(1 − ε)
, where α :=

D

D + ∆

1

P (K)
< 1.

Substitution and some algebra show that

Λ̃∗
ε(D) = λ∗D − Λ̃ε(λ

∗) = P (K)(α − 1) log ε + O(ε) → ∞ as ε ↓ 0.
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