
Epi-Convergence of Lossy Likelihoods

Matthew Harrison

Division of Applied Mathematics
Brown University

Providence, RI 02912 USA
Matthew Harrison@Brown.EDU

April 2, 2003

Abstract

Given a sequence of observations (Xn)n≥1 and a family of probability distribu-
tions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data
Xn

1 := (X1,X2, . . . ,Xn) is defined as

Qθ(B(Xn
1 ,D)),

where B(Xn
1 ,D) is the distortion-ball of radius D around the source sequence Xn

1 .
Here we investigate the epi-convergence of

− 1
n

log Qθ(B(Xn
1 ,D)).

Epi-convergence is useful for studying the asymptotic behavior of minima and min-
imizers.

1 Introduction

Consider a random data source (Xn)n≥1 and a collection of probability measures {Pθ}θ∈Θ

on the sequence space. In statistics, the likelihood of a particular distribution Pθ given
the empirical data Xn

1 := (X1, . . . , Xn) is defined by

Pθ(X
n
1 ).

We are often interested in the asymptotic behavior of maximizers (over Θ) of the likeli-
hood (maximum likelihood estimators), or equivalently, of minimizers of

−1

n
logPθ(X

n
1 ).

When written in this form, we notice that the (per symbol) negative log-likelihood is
exactly the (per symbol) ideal Shannon code length for the data Xn

1 and the source
Pθ. This is a fundamental quantity in information theory, particularly, lossless data
compression. The corresponding quantity in lossy data compression is

−1

n
logQθ(B(Xn

1 , D)), (1.1)
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where B(Xn
1 , D) is the distortion ball around Xn

1 of radius D and {Qθ}θ∈Θ are probability
measures on the reproduction sequence space [11]. Reversing the analogy, we define the
lossy likelihood as

Qθ(B(Xn
1 , D))

and we are interested in the asymptotic behavior of maximizers of this quantity, or equiva-
lently, of minimizers of (1.1). See Harrison and Kontoyiannis (2002) [9] and Kontoyiannis
(2000) [10] for a more detailed discussion of the motivations and possible applications.

A useful tool for studying the asymptotics of minimums and minimizers is epi-
convergence [1, 2, 13]. Let (Θ, ν) be a metric space and let O(θ, ε) be the ε-neighborhood
around θ. Given a sequence of functions fn : Θ → [−∞,∞], n ≥ 1, we define

epi-lim inf
n→∞

fn(θ) := lim
ε↓0

lim inf
n→∞

inf
θ′∈O(θ,ε)

fn(θ′),

epi-lim sup
n→∞

fn(θ) := lim
ε↓0

lim sup
n→∞

inf
θ′∈O(θ,ε)

fn(θ′).

Notice that the limits as ε ↓ 0 are actually suprema over ε > 0, so everything is well-
defined. Also notice that it is more precise to write(

epi-lim inf
n→∞

fn

)
(θ)

and similarly for epi-lim sup, because epi-lim infn fn is a limiting function which we eval-
uate at θ, instead of the limit of the sequence of numbers fn(θ), n ≥ 1. The functions
epi-lim infn fn and epi-lim supn fn are lower semicontinuous (l.sc.) and we always have
epi-lim infn fn(θ) ≤ epi-lim supn fn(θ). If the reverse inequality is also true then we can
define epi-limn fn(θ) as the common value. When we are in the situation that the epi-limit
exists for each θ ∈ Θ, we can talk about the function epi-limn fn, which is l.sc.

Epi-convergence of the functions (fn)n≥1 to a function f is neither stronger nor
weaker than pointwise convergence. It is not hard to see that epi-lim infn fn ≥ f im-
plies lim infn fn ≥ f and that lim supn fn ≤ f implies epi-lim supn fn ≤ f . Counter
examples to each of the reverse implications are easy to construct. In this paper we are
interested in the epi-convergence of (1.1) almost surely (a.s.), meaning that the collection
of x∞1 for which the sequence of functions

θ �→ −1

n
logQθ(B(xn

1 , D)), n ≥ 1,

epi-converges has probability one. The pointwise convergence (a.s.) of (1.1) to a deter-
ministic limit has been established in the literature under a variety of conditions [4, 5, 8].
Our work here will focus on the epi-lim inf lower bound and we will appeal to the point-
wise convergence results in the literature for the epi-lim sup upper bound. The main
result that we need is the following:

Proposition 1.1. Let (Θ, ν) be a metric space and let (fn)n≥1 and g be extended real-
valued functions on Θ. Define f := lim supn fn. If {θ : f(θ) < r} is dense in {θ : g(θ) <
r} for each r ∈ R, then epi-lim supn fn ≤ g.

The proof is only a few lines and is given in the Appendix.
In the next section we give the main results. We will always assume that the source

(Xn)n≥1 is stationary and ergodic. The reproduction distributions {Qθ}θ∈Θ are assumed
to be stationary and to satisfy certain strong mixing assumptions. We also assume that
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the distributional properties and the rates of mixing of the Qθ are well behaved (locally)
as θ varies over Θ. We only consider average single-letter distortion, that is

B(xn
1 , D) :=

{
yn

1 :
1

n

n∑
k=1

ρ(xk, yk) ≤ D

}

for some function ρ, called the single-letter distortion function. We can get the epi-lim inf
lower bound using only one-sided mixing assumptions on the Qθ, so these are the only
assumptions that we mention. To get the epi-lim sup upper bound, we assume that the
pointwise limits exist for many Qθ in the spirit of Proposition 1.1. Using the pointwise
results in the literature (at the time that this was written) will require additional two-
sided mixing assumptions and perhaps further restrictions on ρ, such as boundedness.

After the main results, we consider the special case where Θ is convex and each Qθ

is independent and identically distributed (i.i.d.), or memoryless. In this case, we are
able to obtain a complete characterization of the asymptotic behavior of the epi-limit,
including necessary and sufficient conditions for epi-convergence (a.s.) analogous to the
pointwise results of Harrison (2003) [8].

2 Main Results

We begin with the setup used throughout the remainder of the paper. (S,S) and (T, T )
are standard measurable spaces.1 (Xn)n≥1 is a stationary and ergodic random process on
(SN,SN) with distribution P which is assumed to be complete (that is, all subsets of sets
with probability 0 are measurable). ρ : S × T → [0,∞) is an S × T -measurable function
(S × T denotes the smallest product σ-algebra).

Let Θ be a separable metric space with metric ν and let O(θ, ε) := {θ′ ∈ Θ : ν(θ, θ′) <
ε} denote the ε-neighborhood of θ. To each θ ∈ Θ we associate a stationary probability
measure Qθ on (TN, T N). We use (Yn)n≥1 to denote a stationary random sequence on TN.
Typically, its distribution will be one of the Qθ and this will be clear from the context.
We use Eθ to denote EQθ

, the expectation with respect to (w.r.t.) Qθ.
We allow for two different ways that the topology on Θ is related to the measures

Qθ. Let Qθ,n be the nth marginal of Qθ, i.e., the distribution on (T n, T n) of (Y1, . . . , Yn)
under Qθ. We assume that either

θm → θ implies Qθm,n
τ→ Qθ,n as m→ ∞ for each n, (2.1)

or

(T, T ) is a separable metric space with its Borel σ-algebra, (2.2a)

ρ(x, ·) is continuous for each x ∈ S, (2.2b)

θm → θ implies Qθm,n
w→ Qθ,n as m→ ∞ for each n. (2.2c)

τ -Convergence is setwise convergence of probability measures.2 w-Convergence is weak
convergence of probability measures.3 When T is finite, assumptions (2.1) and (2.2) are

1Standard measurable spaces include Polish spaces and let us avoid uninteresting pathologies while
working with random sequences [7].

2Qm
τ→ Q if EQmf → EQf for all bounded, measurable f , or equivalently, if Qm(A) → Q(A) for all

measurable A.
3Qm

w→ Q if EQmf → EQf for all bounded, continuous f , or equivalently, if Qm(A) → Q(A) for all
measurable A with Q(∂A) = 0.
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equivalent. When each Qθ is i.i.d., then (2.1) and (2.2c) will hold whenever they hold for
n = 1.

We also need to control the mixing properties of the Qθ. In particular, we assume
that each Qθ is ψ+-mixing, that is, there exists finite C(θ) ≥ 1 and d(θ) ≥ 1 such that

Qθ(A ∩B) ≤ C(θ)Qθ(A)Qθ(B) (2.3)

for all A ∈ σ(Y n
1 ) and B ∈ σ(Y ∞

n+d(θ)) and any n (c.f. Chi, 2001 [4]). This includes all

i.i.d. processes (C, d ≡ 1) and all finite state Markov chains. Finally, we need to relate
these mixing constants to the topology on Θ. We assume that C and d are both locally,
uniformly bounded, that is, for each θ ∈ Θ

inf
ε>0

sup
θ′∈O(θ,ε)

d(θ′) <∞ and inf
ε>0

sup
θ′∈O(θ,ε)

C(θ′) <∞. (2.4)

For the case when each Qθ is i.i.d., this condition is valid because we can take C, d ≡ 1.
Fix D ∈ R. We define the following standard quantities:

ρn(xn
1 , y

n
1 ) :=

1

n

n∑
k=1

ρ(xk, yk), B(xn
1 , D) := {yn

1 ∈ T n : ρn(xn
1 , y

n
1 ) ≤ D} ,

Ln(θ, xn
1 ) := −1

n
logQθ(B(xn

1 , D)),

Λn(θ, λ) :=
1

n
EP logEθe

λnρn(Xn
1 ,Y n

1 ), Λ∞(θ, λ) := lim sup
n→∞

Λn(θ, λ),

Λ∗
n(θ) := sup

λ≤0
[λD − Λn(θ, λ)], n = 1, . . . ,∞,

where log denotes the natural logarithm loge. Many properties of these quantities can
be found in the literature (see, for example, the Appendix of Harrison, 2003 [8]). When
λ ≤ 0, then we actually have

Λ∞(θ, λ) = lim
n→∞

Λn(θ, λ). (2.5)

When Qθ is i.i.d., then Λn(θ, ·) and Λ∗
n(θ) do not depend on n. An important property

is that Λ∗
n is lower semicontinuous (l.sc.) on Θ for all 1 ≤ n ≤ ∞.

Several recent papers [4, 5, 8] give conditions for which

lim
n→∞

Ln(θ,Xn
1 )

a.s.
= Λ∗

∞(θ), (2.6)

which Dembo and Kontoyiannis (2002) [5] call the generalized AEP (Asymptotic Equipar-
tition Property). When Qθ satisfies a strong two-sided mixing condition, Harrison (2003)
[8] provides necessary and sufficient conditions for this property (see Section 2.1 below).
Here we are interested in proving an analogous result for epi-convergence, which is neither
stronger nor weaker than pointwise convergence. Defining

Θlim :=

{
θ ∈ Θ : lim sup

n→∞
Ln(θ,Xn

1 )
a.s.

≤ Λ∗
∞(θ)

}
,

Θr := {θ ∈ Θ : Λ∗
∞(θ) < r} , r ≤ ∞,

we are ready for our main result.
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Theorem 2.1. Λ∗
∞ is lower semicontinuous on Θ and

Prob

{
epi-lim inf

n→∞
Ln(θ,Xn

1 ) ≥ Λ∗
∞(θ), ∀θ ∈ Θ

}
= 1. (2.7)

Suppose that for each r <∞, Θlim ∩ Θr is dense in Θr. Then

Prob

{
epi-lim

n→∞
Ln(θ,Xn

1 ) = Λ∗
∞(θ), ∀θ ∈ Θ

}
= 1. (2.8)

The proof of Theorem 2.1 is relatively straightforward, although ensuring that every-
thing is measurable and moving the ∀θ ∈ Θ inside the probability requires a little care.
The epi-lim inf lower bound, although stronger than the pointwise lower bound, follows
from Chebyshev’s inequality in the same manner that the lower bound of the pointwise

limit (2.6) is typically established. Notice that (2.7) implies that lim infn Ln(θ,Xn
1 )

a.s.

≥
Λ∗

∞(θ), so we see that Θlim is actually

Θlim =
{
θ ∈ Θ : lim

n→∞
Ln(θ,Xn

1 )
a.s.
= Λ∗

∞(θ)
}
.

The epi-lim sup upper bound is weaker than the pointwise upper bound and we essentially
get it for free from Proposition 1.1 by assuming that pointwise limits exist all over the
parameter space, i.e., that Θlim ∩ Θr is dense in Θr for each r. In some ways the result
would be more general if we just assumed that the epi-lim sup behaved appropriately,
since we do not use anything about the pointwise limits in deriving the epi-lim inf lower
bound. However, epi-limits are much less familiar objects than pointwise limits and
results about pointwise limits can be found in the literature. Chi (2001) [4], Dembo and
Kontoyiannis (2002) [5] and Harrison (2003) [8] each contain further conditions that will
allow us to establish pointwise limits for most parameter values and then infer (2.8).
Before turning to examples, we consider a special case.

2.1 Convex, memoryless families

In this section only, we consider the special case when Θ is convex and each Qθ is
i.i.d. Convexity arises frequently in nonparametric settings and in mixture models. The
nice thing about this setting is that we can completely characterize the behavior of
the epi-limit in Theorem 2.1 in exactly the same manner that the pointwise limit was
characterized in Harrison (2003)[8][Theorem 2.1].

We still need all of the assumptions detailed in the previous section, and we add some
more. First, we assume that each Qθ is i.i.d. This simplifies several of the assumptions
from the previous section. (2.3) and (2.4) are trivially true (take C(θ) = d(θ) = 1).
(2.1) and (2.2c) will be true whenever they are true for n = 1. Also, Λn and Λ∗

n do not
depend on n. This turns out to be crucial here because Λ∗

1 is convex (under the following
convexity assumptions), which means Λ∗

∞ is convex.
Second, we assume that Θ is convex set with the property that

λθ′ + (1 − λ)θ → θ as λ ↓ 0, and (2.9a)

Qλθ′+(1−λ)θ,1 = λQθ′,1 + (1 − λ)Qθ,1 (2.9b)

for each θ, θ′ ∈ Θ and 0 ≤ λ ≤ 1. (2.9a) just says that the topology on Θ is continuous
w.r.t. convex combinations. (2.9b) says that the convexity properties on Θ extend to the
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first marginals of the Qθ. The reason that we do not use the easier to state assumption
that Θ is a convex set of probability measures on T and each Qθ is i.i.d. with distribution
θ is that the latter rules out the common situation (in mixture models, for example)
where multiple θ correspond to the same probability measure.

Define
m(θ, x) := ess inf

Qθ

ρ(x, Y1), Dmin(θ) := Em(θ,X1).

Here are the pointwise results (which are for a specific θ and do not need any of the
assumptions on Θ):

Theorem 2.2. [8][Theorem 2.1] Fix θ. We have

Prob {Ln(θ,Xn
1 ) = ∞ eventually} = 1 if Dmin(θ) > D ,

Prob {Ln(θ,Xn
1 ) <∞ eventually} = 1 if Dmin(θ) < D .

(2.10)

If either Dmin(θ) �= D or Λ∗
∞(θ) = ∞ or m(θ,X1) is a.s. constant, then

lim
n→∞

Ln(θ,Xn
1 )

a.s.
= Λ∗

∞(θ). (2.11)

Otherwise, 0 < D = Dmin(θ) <∞, and

Prob {Ln(θ,Xn
1 ) = ∞ infinitely often} > 0, (2.12a)

Prob {Ln(θ,Xn
1 ) <∞ infinitely often} = 1, (2.12b)

lim
m→∞

Lnm(θ,Xnm
1 )

a.s.
= Λ∗

∞(θ) <∞, (2.12c)

where (nm)m≥1 is the (a.s.) infinite subsequence of (n)n≥1 for which Ln(θ,Xn
1 ) is finite,

or (a.s.) equivalently, the subsequence where
∑n

k=1m(θ,Xk) ≤ nD.

The epi-limit results that we prove here are quite similar. Define

m(Θ, x) := inf
θ∈Θ

m(θ, x), Dmin(Θ) := Em(Θ, X1), Λ∗
∞(Θ) := inf

θ∈Θ
Λ∗

∞(θ).

Theorem 2.3. We have

Prob

{
inf
θ∈Θ

Ln(θ,Xn
1 ) = ∞ eventually

}
= 1 if Dmin(Θ) > D ,

Prob

{
inf
θ∈Θ

Ln(θ,Xn
1 ) <∞ eventually

}
= 1 if Dmin(Θ) < D .

(2.13)

If either Dmin(Θ) �= D or Λ∗
∞(Θ) = ∞ or m(Θ, X1) is a.s. constant, then

Prob

{
epi-lim

n→∞
Ln(θ,Xn

1 ) = Λ∗
∞(θ), ∀θ ∈ Θ

}
= 1. (2.14)

Otherwise 0 < D = Dmin(Θ) = minθ∈ΘDmin(θ) < ∞, Θ∞ �= ∅ whereas Θlim ∩ Θ∞ = ∅,
and

Prob

{
inf
θ∈Θ

Ln(θ,Xn
1 ) = ∞ infinitely often

}
> 0 (2.15a)

Prob

{
inf
θ∈Θ

Ln(θ,Xn
1 ) <∞ infinitely often

}
= 1 (2.15b)

Prob

{
epi-lim
m→∞

Lnm(θ,Xnm
1 ) = Λ∗

∞(θ), ∀θ ∈ Θ

}
= 1, (2.15c)

where (nm)m≥1 is the (a.s.) infinite subsequence of (n)n≥1 for which infθ∈Θ Ln(θ,Xn
1 ) is

finite, or (a.s.) equivalently, the subsequence where
∑n

k=1m(Θ, Xk) ≤ nD.
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Proposition 2.4. If infθ∈ΘDmin(θ) <∞, then infθ∈ΘDmin(θ) = Dmin(Θ).

Notice that (2.15) implies that the epi-limit in (2.14) does not exist for some θ with
positive probability, so the conditions for (2.14) are both necessary and sufficient. Because
of the conclusion that Θlim ∩ Θ∞ = ∅ when (2.14) does not hold, we see that a sufficient
condition for (2.14) is the conceptually simple requirement that the generalized AEP
(2.11) holds with a finite limit for at least one point θ in the parameter space. The
reason that we can extend a pointwise limit at a single point to an epi-limit over the
entire space is the convexity assumption, which lets us infer properties of one parameter
value from another. Another easy condition to verify for (2.14) is m(Θ, X1) a.s. constant,
since in many examples m(Θ, ·) ≡ 0.

The proof of Theorem 2.3 is somewhat complicated because it has several parts. We
use the strikingly similar pointwise results and the convexity assumption both to derive
the conditions for Theorem 2.1 when (2.14) holds and to derive the pathological behavior
when (2.15) holds. The pointwise results can be extended verbatim to the case where Qθ

satisfies certain strong two-sided mixing conditions [8]. For the epi-convergence results,
however, it is not exactly clear how one should extend the convexity assumption to
include cases when Qθ is not a product measure. The main problem is that Λ∗

∞ might
not be convex.

2.2 Examples

In this section we go through several examples that are covered by Theorems 2.1 or 2.3.
We always assume that (S,S) and (T, T ) are standard measurable spaces, that (Xn)n≥1

is stationary and ergodic, taking values in S, with a distribution P that is complete and
that ρ : S × T → [0,∞) is S × T -measurable.4 The rest of the assumptions that are
needed for the theorems are addressed on a case by case basis.

2.2.1 Example: memoryless families

Suppose that (Θ, ν) is a separable metric space, that each Qθ is i.i.d. (memoryless) and
that either (2.1) or (2.2) holds. Assumptions (2.3) and (2.4) are always true for i.i.d. fam-
ilies and we can apply Theorem 2.1 to get (2.7). Theorem 2.2 essentially describes Θlim.
To verify that Θlim ∩Θr is dense in Θr for a particular example will require an investiga-
tion of m(θ,X1) and perhaps an additional constraint on D to avoid any pathologies. A
common assumption is that Dmin(θ) < D for all θ ∈ Θ. In this case, we see that Θlim = Θ
and we can conclude (2.8). Another situation that is rare in practice but that comes up
in theory (when thinking about lossless data compression as a special case of lossy data
compression) is when D = 0. Again, we see that Θlim = Θ and we can conclude (2.8).

We are often in the situation where the statistics of the source (Xn)n≥1 are unknown.
In this case it might be difficult to verify that every point of Θ satisfies the generalized
AEP (that is, Θ = Θlim). In Example 2.2.2 we describe a common situation where we
always have (2.8) (even though Θlim �= Θ), regardless of the source statistics. The proof
takes advantage of the special structure of the example to calculate Λ∗

∞ explicitly and
show that Θlim ∩ Θr is dense in Θr.

4If ρ(·, y) is measurable for each y ∈ T and ρ(x, ·) is continuous for each x ∈ S (which is trivial if T
is finite), then ρ is product measurable.
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Another way to show that (2.8) holds regardless of the source statistics is to use the
methods of Section 2.1. Examples 2.2.3–2.2.5 are convex families. We can use Theorem
2.3 to show that (2.8) holds regardless of the source statistics.

2.2.2 Example: memoryless Gaussian families, squared-error distortion

Take S = T := R and ρ(x, y) := |x−y|2 to be squared-error distortion. Let Θ := M×Σ :=
R × [0,∞) and write θ := (µ, σ) for θ ∈ Θ. Define Q(µ,σ) to be i.i.d. Normal(µ,σ2),
where we define Normal(µ,0) to be the point mass at µ. Any metric ν equivalent to
the Euclidean metric on Θ will give (2.2c), so (2.2) holds and we are in the situation
described by Example 2.2.1. We are about to show that Θlim∩Θr is dense in Θr for each
r, so we can also conclude (2.8).

First of all, if σ > 0, then m((µ, σ), x) = 0 and Theorem 2.2 shows that (µ, σ) ∈ Θlim.
If Dmin((µ, 0)) �= D or D = 0, then (µ, 0) ∈ Θlim as well. So we need only analyze
the situation where 0 < D = Dmin((µ, 0)) < ∞. We have m((µ, 0), x) = (x − µ)2 and
Dmin((µ, 0)) = E[(X1 − µ)2]. When D = Dmin((µ, 0)) < ∞ we see that X1 has finite
variance v2 ≤ D.

If v2 < D, then in any neighborhood of a µ with Dmin((µ, 0)) = D, there are µ′

with Dave((µ
′, 0)) := EPE(µ′,0)[(X1 − Y1)

2] < D. This implies that (µ′, 0) ∈ Θlim and
Λ∗

∞((µ′, 0)) = 0 [8]. So in this case, any problem point (µ, 0) �∈ Θlim is a limit point of
Θlim ∩ Θr for any r > 0.

If 0 < Dmin((µ, 0)) = D = v2 <∞, then we see that µ = EX1. We have [5]

Λ∗
∞((EX1, σ)) =

1

2
log

a

D
− (a−D)2

2aσ2
, a :=

1

2

(
σ2 +

√
σ4 + 4D2

)
, σ > 0.

Letting σ ↓ 0 shows that Λ∗
∞((EX1, σ)) → 0 as σ ↓ 0. Since (EX1, σ) ∈ Θlim for each

σ > 0, we have shown that the problem point (EX1, 0) is a limit point of Θlim ∩ Θr for
any r > 0. In both cases Θlim ∩ Θr is dense in Θr for each r. (Note that Θr is always
empty for r ≤ 0, so there is nothing to verify.)

2.2.3 Example: memoryless, nonparametric, weak topology

Let (T, T ) be a separable metric space with its Borel σ-algebra. Let Θ be the set of
all probability measures on (T, T ) with a metric ν that metrizes weak convergence of
probability measures, for example, the Prohorov metric. Take Qθ to be i.i.d. θ and
suppose that ρ(x, ·) is continuous for each x ∈ S. Billingsley (1999) [3] shows that Θ is
separable and that (2.2c) holds, so we are in situation (2.2). It is easy to see that (2.9)
is also valid.

In this case, we can apply Theorem 2.3. Suppose that for every x ∈ S, there exists
a y ∈ T with ρ(x, y) ≤ D. For each y, Θ contains the distribution that puts unit mass
on {y}, so m(Θ, x) ≤ D for each x ∈ S. This means that either Dmin(Θ) < D or
m(Θ, X1)

a.s.
= D, a constant, so (2.14) is valid. Of course, there are many other situations

where (2.14) is valid as detailed in Theorem 2.3.

2.2.4 Example: memoryless, discrete alphabet, strong topology

Let T be countable and let Θ be the set of all probability measures on T (or, equivalently,
the probability simplex on RN). Take the metric ν on Θ to be the total variation distance
(or, equivalently, the supremum metric on RN). Then Θ is separable. Defining Qθ to
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be i.i.d. θ makes situations (2.1) and (2.9) valid, so Theorem 2.3 holds. Under the same
conditions on ρ and D in the previous example (Section 2.2.3), we can infer (2.14).

If T = {1, . . . , N} is finite, then the same arguments hold. If we are conceptualizing
Θ as the probability simplex on RN , then we can take ν to be the Euclidean metric.

2.2.5 Example: memoryless, discrete mixture proportions

Let {qn}n≥1 be a countable family of probability measures on (T, T ). Let Θ be the
probability simplex on RN with the supremum metric. Θ is separable. Defining Qθ to be
i.i.d. with first marginal

Qθ,1 :=
∑
n≥1

θnqn, θ := (θ1, θ2, . . .),
∑
n≥1

θn = 1, θn ≥ 0,

gives (2.1) and (2.9), so Theorem 2.3 holds. There are a variety of conditions that ensure
that (2.14) holds. A common situation is that m(Θ, x) = 0 for all x ∈ S. Note that this
does not depend on the source statistics.

If {qn}1≤n≤N is a finite family and Θ is the probability simplex on RN with the
Euclidean metric, then the same arguments hold.

2.2.6 Example: finite state, irreducible Markov chains

Let T be a finite set and let {Qθ}θ∈Θ be the class of stationary, first-order, irreducible
Markov chains on T . Let Θ be the corresponding set of probability transition matrices,5

which we can think about as a subset of RT×T , and let ν be a metric on Θ that is
equivalent to the Euclidean metric when Θ is viewed as a subset of RT×T . We will show
that if E[miny∈T ρ(X1, y)] �= D or D = 0, then (2.8) is true. In the special case where
S = T and ρ(x, x) = 0 (such as Hamming distortion), then we get (2.8) without any
restriction on the source statistics.

Let pθ := pθ(i, j), i, j ∈ T , be the transition probability matrix for Qθ. Each Qθ

has a unique stationary distribution, which we denote πθ := πθ(i), i ∈ T . Since pθ is
irreducible, each πθ(i) > 0. It is also not hard to see that we can take d(θ) = 1 and
C(θ) = 1/ [mini∈T πθ(i)] < ∞ for each θ. This gives (2.3). By assumption θn → θ
implies pθn(i, j) → pθ(i, j) for each i, j, and it is not hard to see that this implies that
πθn(i) → πθ(i) for each i. From this we get both (2.1) and (2.4). Theorem 2.1 gives (2.7).

Consider the subset Θ′ ⊂ Θ of probability transition matrices with all positive ele-
ments. For θ ∈ Θ′ we can apply the results in Harrison (2003) [8][Theorem 2.1] to see
whether or not θ ∈ Θlim. As long as E[miny∈T ρ(X1, y)] �= D or D = 0, we see that
θ ∈ Θlim and we have Θ′ ⊂ Θlim.

Now consider a point θ �∈ Θ′. We want to construct a point in Θlim that is (arbitrarily)
close to θ with (arbitrarily) similar Λ∞. This will show that Θlim ∩ Θr is dense in Θr.
Pick any point θ′ ∈ Θ′. For any 0 ≤ ε ≤ 1, consider the point θε corresponding to the
transition probability matrix pθε := (1 − ε)pθ + εpθ′. If ε > 0, pθε has all positive entries
because pθ′ does. Also, pθε → pθ as ε ↓ 0, so θε → θ as well.

5Every (time homogenous) finite state, irreducible Markov chain has a unique stationary distribution.
The transition probabilities thus determine the whole process, because we assume that each Qθ is
stationary.
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Fix 0 < α < mini∈T πθ(i). We can choose δ > 0 small enough so that 0 ≤ ε < δ
implies mini∈T πθε(i) > α and − log(1 − ε) < α. For λ < 0 we have

Λn(θε, λ) =
1

n
EP


log

∑
yn
1 ∈T n

eλρn(Xn
1 ,yn

1 )πθε(y1)
n∏

k=2

pθε(yk−1, yk)




≥ 1

n
EP


log

∑
yn
1 ∈T n

eλρn(Xn
1 ,yn

1 )πθ(y1)α

n∏
k=2

(1 − ε)pθ(yk−1, yk)




=
logα + (n− 1) log(1 − ε)

n
+ Λn(θ, λ).

So
Λ∞(θε, λ) ≥ Λ∞(θ, λ) + log(1 − ε) ≥ Λ∞(θ, λ) − α

and we have
Λ∗

∞(θε) ≤ Λ∗
∞(θ) + α

for each 0 ≤ ε < δ. Since θε ∈ Θlim for each ε > 0, θε → θ as ε ↓ 0 and α is arbitrary, we
see that Θlim ∩ Θr is dense in Θr for each r. Theorem 2.1 gives (2.8) as claimed.

2.2.7 Example: ψ-mixing, parametric family

Suppose that all the assumptions of Section 2 are valid so that we can apply Theorem
2.1. Suppose also that S and T are Polish spaces, that ρ is bounded and that each Qθ is
also ψ-mixing with

sup
n≥1

E

[
ess inf

Qθ

ρn(Xn
1 , Y

n
1 )

]
�= D, ∀θ ∈ Θ.

Chi (2001) [4] shows that Θ = Θlim, so (2.8) holds.

2.2.8 Example: penalized lossy likelihoods

In the next two examples we point out certain interesting extensions of Theorem 2.1 that
are part corollary and part simple modifications of the proof. We always assume that all
of the assumptions of Section 2 are valid so that we can apply Theorem 2.1.

Let Fn : Θ× Sn → (−∞,∞], n ≥ 1, be a sequence of functions with Fn(θ, ·) measur-
able for each θ ∈ Θ. We are interested in establishing the epi-convergence of Ln + Fn.
Fn is thought of as a penalty. Assume that

Prob

{
epi-lim inf

n→∞
Fn(θ,Xn

1 ) ≥ 0, ∀θ ∈ Θ

}
= 1. (2.16)

Then (2.7) holds with Ln replaced by Ln +Fn. This is easy to see since epi-lim infn(Ln +
Fn) ≥ epi-lim infn Ln + epi-lim infn Fn.

Define

ΘF
lim :=

{
θ : lim sup

n→∞
[Ln(θ,Xn

1 ) + Fn(θ,Xn
1 )]

a.s.

≤ Λ∗
∞(θ)

}
.

If ΘF
lim ∩ Θr is dense in Θr for each r < ∞, then (2.8) also holds with Ln replaced by

Ln + Fn. The proof is exactly the same as the proof of (2.8) in Section 3.2. Notice that
because of (2.7) and (2.16), ΘF

lim is actually

ΘF
lim =

{
θ : lim

n→∞
[Ln(θ,Xn

1 ) + Fn(θ,Xn
1 )]

a.s.
= Λ∗

∞(θ)
}
.
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Typically, we will have Fn ≥ 0, so that (2.16) is trivially true. Also, typically Fn does
not depend on Xn

1 , so measurability is not an issue and

ΘF
lim = Θlim ∩

{
θ : lim

n→∞
Fn(θ) = 0

}
.

In many examples, we always have Fn(θ) → 0 as n → ∞, so that ΘF
lim = Θlim. In this

special case, epi-convergence of Ln implies epi-convergence of Ln + Fn.

2.2.9 Example: approximate lossy likelihoods

Assume that all of the assumptions of Section 2 are valid. Define

Rn(θ, xn
1 ) := sup

λ≤0

[
λD − 1

n
logEθe

λnρn(xn
1 ,Y n

1 )

]
.

We think of Rn as an approximation to Ln. This can be a useful analytic approximation
[15] and can sometimes be simpler to compute than Ln in applications [M. Madiman,
personal communication]. An inspection of the proof of (2.7) in Section 3.1 shows that
we can replace Ln with Rn in (2.7). Indeed, the only fact that we use about Ln in the
proof is that it satisfies the following Chebyshev inequality for any λ ≤ 0:

Ln(θ, xn
1 ) ≥ λD − 1

n
logEθe

λnρn(xn
1 ,Y n

1 ).

Trivially, Rn satisfies this same inequality. Furthermore, the same inequality shows that
Ln ≥ Rn. In particular, if (2.8) holds, then it also holds with Ln replaced by Rn.

2.3 Applications

In this section we describe two applications of the results. The first is an extension of
the Markov chain example. This demonstrates how to extend the results to parameter
spaces that might violate some of the assumptions. The second is a result about the
convergence of maximizers and maxima of the lossy likelihood for compact Θ.

2.3.1 Finite state Markov chains

Let T be a finite set of size |T |. We want to extend Example 2.2.6 to the class of all first
order (homogenous) Markov chains on T . We cannot use Theorem 2.1 directly. Some of
the problems include: we do not know if Λ∗

∞ is l.sc.; the uniform mixing condition (2.4)
does not hold; we cannot simultaneously make each Qθ stationary and satisfy (2.1) (which
is equivalent to (2.2) in this case). We continue to assume that (S,S) is a standard space,
that (Xn)n≥1 is stationary and ergodic taking values in S and that ρ(·, y) is measurable
for each y ∈ T (which gives product measurability for discrete T ).

Let Θ be the set of all possible probability transition matrices for first order (ho-
mogenous) Markov chains on T with a metric equivalent to the Euclidean metric on
RT×T . For each θ ∈ Θ, we use pθ to denote the transition matrix so that pθ(i, j) =
Prob {Yk+1 = j|Yk = i}. For each θ, let Qθ be a Markov chain on T with uniform ini-
tial distribution and with transition probability matrix pθ. Notice that Qθ need not be
stationary.
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The definition Λ∗
∞ still makes sense. We first show that if Qθ is irreducible, then

Λ∗
∞(θ) does not change if we use the uniform initial distribution instead of the (unique)

stationary initial distribution. This lets us use the results from Example 2.2.6.
Then we show that

Prob

{
epi-lim inf

n→∞
Ln(θ,Xn

1 ) ≥ lsc Λ∗
∞(θ), ∀θ ∈ Θ

}
= 1, (2.17)

where
lsc Λ∗

∞(θ) := sup
ε>0

inf
θ′∈O(θ,ε)

Λ∗
∞(θ′)

is the lower semicontinuous envelope of Λ∗
∞. Example 2.2.6 shows that Λ∗

∞ is l.sc. on the
open subset Θirr ⊂ Θ of irreducible Markov chains. So Λ∗

∞ is equal to its l.sc. envelope on
Θirr and (2.17) is a generalization of (2.7) when restricted to irreducible Markov chains.

Finally, if E [miny∈T ρ(X1, y)] �= D or D = 0, then we show that

Prob

{
epi-lim

n→∞
Ln(θ,Xn

1 ) = lsc Λ∗
∞(θ), ∀θ ∈ Θ

}
= 1. (2.18)

Notice that Θ is compact, so epi-convergence immediately implies the convergence of
minima and minimizers (see Section 2.3.2).

Suppose that Qθ is irreducible and let πθ be its unique stationary distribution (which
has all positive elements). We use Q̃θ to denote the unique stationary Markov chain with
the same probability transition matrix as Qθ and similarly for the other notation. For
any set A ∈ T n

Qθ(A) =
∑
yn
1 ∈A

1

|T |

n∏
k=2

pθ(yk−1, yk) ≤ K(θ)
∑
yn
1 ∈A

πθ(y1)

n∏
k=2

pθ(yk−1, yk) = K(θ)Q̃θ(A),

where K(θ) := [|T |miny∈T πθ(y)]
−1 <∞. Similarly,

Qθ(A) ≥
∑
yn
1 ∈A

πθ(y1)

|T |

n∏
k=2

pθ(yk−1, yk) = |T |−1Q̃θ(A).

Combining these gives

Λ̃n(θ, λ) − n−1 log |T | ≤ Λn(θ, λ) ≤ Λ̃n(θ, λ) + n−1 logK(θ)

L̃n(θ, xn
1 ) − n−1 logK(θ) ≤ Ln(θ, xn

1 ) ≤ L̃n(θ, xn
1 ) + n−1 log |T |

which implies

Λ∞(θ, λ) = Λ̃∞(θ, λ),

lim inf
n→∞

Ln(θ, xn
1 ) = lim inf

n→∞
L̃n(θ, xn

1 ) and lim sup
n→∞

Ln(θ, xn
1 ) = lim sup

n→∞
L̃n(θ, xn

1 ). (2.19)

So for irreducible Qθ, Λ∗
∞(θ) and asymptotic limits of Ln(θ,Xn

1 ) do not change if we use
the uniform initial distribution in place of the stationary initial distribution.

Now we will verify (2.17). Fix α > 0 and for each θ ∈ Θ choose δ := δ(θ, α) < α/2
such that

c(θ, δ) := max
y∈T

∑
y′∈T

sup
θ′∈O(θ,δ)

pθ′(y, y
′) < 1 + α

12



and such that θ∗ := θ∗(θ, α) ∈ O(θ, α/2) where θ∗ has

pθ∗(y, y
′) :=

supθ′∈O(θ,δ) pθ′(y, y
′)∑

y′′∈T supθ′∈O(θ,δ) pθ′(y, y′′)
.

Notice that pθ∗ has all positive entries and is thus irreducible. Choose θ1, . . . , θm with
corresponding δ1, . . . , δm and θ∗1, . . . , θ

∗
m such that the {O(θj , δj)}m

j=1 cover Θ.
Fix θ ∈ Θ and choose 1 ≤ j ≤ m such that θ ∈ O(θj, δj). For ε > 0 sufficiently small

so that O(θ, ε) ⊂ O(θj , δj) we have

inf
θ′∈O(θ,ε)

Ln(θ′, xn
1 ) ≥ inf

θ′∈O(θj ,δj)
Ln(θ′, xn

1 )

≥ −1

n
log

∑
yn
1 ∈B(xn

1 ,D)

1

|T |

n∏
k=2

sup
θ′∈O(θj ,δj)

pθ′(yk−1, yk)

≥ −1

n
log

∑
yn
1 ∈B(xn

1 ,D)

1

|T |

n∏
k=2

[pθ∗j (yk−1, yk)c(θj , δj)]

≥ Ln(θ∗j , x
n
1 ) − log c(θj, δj) ≥ L̃n(θ∗j , x

n
1 ) − log(1 + α) − n−1 logK(θ∗j ).

Taking limits and using Example 2.2.6 gives

Prob

{
sup
ε>0

lim inf
n→∞

inf
θ′∈O(θ,ε)

Ln(θ′, Xn
1 ) ≥ Λ∗

∞(θ∗j ) − log(1 + α)

}
= 1. (2.20)

ν(θ∗j , θ) < α and the exceptional sets in (2.20) only depend on θ∗j , of which there are only
finitely many. So we have

Prob

{
epi-lim inf

n→∞
Ln(θ,Xn

1 ) ≥ inf
θ′∈O(θ,α)

Λ∗
∞(θ′) − log(1 + α), ∀θ ∈ Θ

}
= 1.

Letting α→ 0 gives (2.17).
Let Θ′ denote the set of θ with all positive transition probabilities. We will show that

Θ′ ∩ Θr is dense in Θr for each r. This proceeds in a similar manner as Example 2.2.6.
Fix θ ∈ Θr and θ′ ∈ Θ′. For each 0 < ε < 1, let θε ∈ Θ′ correspond to the transition
probability matrix pθε := (1 − ε)pθ + εpθ′ . We have

Λn(θε, λ) ≥ 1

n
EP


log

∑
yn
1 ∈T n

eλnρn(Xn
1 ,yn

1 ) 1

|T |

n∏
k=2

(1 − ε)pθ(yk−1, yk)


 ≥ Λn(θ, λ)+ log(1− ε)

and this gives Λ∗
∞(θε) ≤ Λ∗

∞(θ) + log(1 − ε). Taking ε small enough shows that Θ′ ∩ Θr

is dense in Θr for each r.
This implies that the l.sc. envelope of Λ∗

∞ is completely specified by the value of Λ∗
∞

on Θ′

lsc Λ∗
∞(θ) = sup

ε>0
inf

θ′∈O(θ,ε)∩Θ′
Λ∗

∞(θ′).

So we see that Θ′ ∩ Θlsc
r is dense in Θlsc

r for each r where Θlsc
r := {θ : lsc Λ∗

∞(θ) < r}.
Suppose that E [miny∈T ρ(X1, y)] �= D or D = 0, so that Θ′ ⊂ Θlim as shown in

Example 2.2.6. Then we must have Θlim ∩ Θlsc
r is dense in Θlsc

r for each r and (2.18) is
true.
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2.3.2 Maximizers of the lossy likelihood

Assume everything in from Section 2 and suppose that Θ is compact with metric ν.
Choose

θ̂n(xn
1 ) ∈ arg max

θ∈Θ
Qθ(B(xn

1 , D))

to be a maximizer of the lossy likelihood, or equivalently, choose

θ̂n(xn
1 ) ∈ arg min

θ∈Θ
Ln(θ, xn

1 )

to be a minimizer of Ln. We will show that Ln(·, xn
1) is l.sc. for each xn

1 , so a minimizer
always exists. If there are multiple minimizers, just choose one.

Let Θ∗ := arg minθ∈Θ Λ∗
∞(θ) be the set of minimizers of Λ∗

∞, which is not empty
because Λ∗

∞ is l.sc. and Θ is compact. If (2.8) holds, then the fact that Θ is compact
immediately gives [1]

Prob
{

lim
n→∞

ν(θ̂n(Xn
1 ),Θ∗) = 0

}
= 1,

Prob

{
lim

n→∞
Ln(θ̂n(Xn

1 ), Xn
1 ) = inf

θ∈Θ
Λ∗

∞(θ)

}
= 1.

Notice that if we are in the setting of Example 2.2.8 and the penalties Fn(·, xn
1 ) are

l.sc. for each xn
1 , then all of this holds with Ln replaced by Ln + Fn. Similarly, for the

setting of Example 2.2.9. The approximation Rn(·, xn
1 ) is l.sc. because it is a supremum

of continuous functions (see (A.2) in the Appendix).
We need only show that Ln(·, xn

1) is l.sc., or equivalently, that θ �→ Qθ(B(xn
1 , D))

is u.sc. If (2.1) holds, then the latter is continuous by definition. If (2.2) holds, then
B(xn

1 , D) is closed and u.sc. follows from a well known property of weak convergence of
probability measures [14][pp. 311].

The l.sc. of Ln follows from (2.1) or (2.2). Suppose we are in a setting where either
of these hold and where (2.8) holds with Λ∗

∞ possibly replaced by another (necessarily
l.sc.) function Γ. Then the results of this section hold with Λ∗

∞ replaced by Γ. An
example of this is given in Section 2.3.1 where many of the assumptions of Section 2 are
not valid, but (2.1) holds and (2.8) holds with Λ∗

∞ replaced by lsc Λ∗
∞.

3 Proof of Theorem 2.1

We deal with most measurability issues in the Appendix. That the distribution of (Xn)n≥1

is assumed to be complete clears up many problems. If we assume that Θ is locally
compact, then (with a lot of extra work) we can relax this assumption using the results
of Pfanzagl (1969) [12]. It is worth noting that we do not assume that eachQθ is complete,
because then (T, T ) might vary with θ (unless we assumed some dominating measure).
In the case where we are dealing with w-convergence (2.2), the assumption that ρ(x, ·) is
continuous is important for establishing measurability. Most of the arguments actually
extend to the case where ρ(x, ·) is l.sc. and where all of the quantities that we need are
measurable.

The Appendix also contains a listing of several nice properties of Λ and Λ∗ as functions
of θ. These are useful for the proofs. We begin with the lower bound.
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3.1 Proof: Lower bound

Fix θ ∈ Θ and use (2.4) to choose finite C, d ≥ 1 and δ := δθ > 0, so that

sup
θ′∈O(θ,δ)

C(θ′) ≤ C and sup
θ′∈O(θ,δ)

d(θ′) ≤ d.

Define

hn(xn
1 , y

n
1 ) :=

{∑n−d+1
k=1 ρ(xk, yk) if d ≤ n,

0 otherwise.

For each λ ≤ 0 and any 0 < ε ≤ δ, we have

sup
θ′∈O(θ,ε)

logEθ′e
λhn+m(xn+m

1 ,Y n+m
1 ) + logC

≤ sup
θ′∈O(θ,ε)

logEθ′e
λhn(xn

1 ,Y n
1 )eλhm(xn+m

n+1 ,Y n+m
n+1 ) + logC

≤ sup
θ′∈O(θ,ε)

[
logEθ′e

λhn(xn
1 ,Y n

1 ) + logC + logEθ′e
λhm(xn+m

n+1 ,Y m
1 )

]
+ logC

≤ sup
θ′∈O(θ,ε)

logEθ′e
λhn(xn

1 ,Y n
1 ) + logC + sup

θ′′∈O(θ,ε)

logEθ′′e
λhm(xn+m

n+1 ,Y m
1 ) + logC,

where the first inequality follows since ρ is nonnegative and λ ≤ 0 and the second from
the stationarity and mixing properties of each Qθ′ . Since each of these terms is bounded
above by logC, the pointwise subadditive ergodic theorem gives

lim
n→∞

1

n
sup

θ′∈O(θ,ε)

logEθ′e
λhn(Xn

1 ,Y n
1 ) a.s.

= lim
n→∞

1

n
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λhn(Xn

1 ,Y n
1 )

]

= inf
n≥N

1

n
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λhn(Xn

1 ,Y n
1 ) + logC

]
(3.1)

for each N , where we have removed the (logC)/n in the first two expressions because it
becomes negligible in the limit.

Notice that

hn(xn
1 , y

n
1 ) ≤ nρn(xn

1 , y
n
1 ) = hn+d−1(x

n+d−1
1 , yn+d−1

1 )

so that for λ ≤ 0

logEθ′e
λhn(xn

1 ,Y n
1 ) ≥ logEθ′e

λnρn(xn
1 ,Y n

1 ) = logEθ′e
λhn+d−1(x

n+d−1
1 ,yn+d−1

1 ).

Combining this with (3.1) gives

lim
n→∞

1

n
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 ) a.s.

= lim
n→∞

1

n
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]

= inf
n≥N

1

n+ d− 1
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 ) + logC

]
(3.2)

for any N . Notice that we can repeat each step of the proof so far without the supθ′∈O(θ,ε)

to get that limn→∞ Λn(θ, λ) exists. So we have

Λ∞(θ, λ) = lim
n→∞

Λn(θ, λ), λ ≤ 0, θ ∈ Θ. (3.3)
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This proves (2.5).
Finally, letting ε ↓ 0 (take ε rational to control the exceptional sets) in (3.2) gives

lim
ε↓0

lim
n→∞

1

n
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 ) a.s.

= lim
ε↓0

lim
n→∞

1

n
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]

= inf
ε>0

inf
n≥N

1

n+ d+ 1
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 ) + logC

]

= inf
n≥N

[
1

n+ d+ 1
inf
ε>0

EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]
+

logC

n+ d− 1

]

= inf
n≥N

[
1

n+ d+ 1
EP

[
inf
ε>0

sup
θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]
+

logC

n + d− 1

]

= inf
n≥N

[
n

n+ d− 1
Λn(θ, λ) +

logC

n+ d− 1

]
= Λ∞(θ, λ), (3.4)

where the fourth equality follows from the monotone convergence theorem, the fifth
equality from the fact that logEθe

λnρn(xn
1 ,Y n

1 ) is continuous in θ for each xn
1 as shown in

the Appendix, and the final equality from (3.3) and the fact that N is arbitrary.
When λ ≤ 0, Chebyshev’s inequality gives

−1

n
logQθ′(B(xn

1 , D)) ≥ −1

n
logEθ′e

λn(ρn(Xn
1 ,Y n

1 )−D) = λD − 1

n
logEθ′e

λnρn(xn
1 ,Y n

1 ). (3.5)

Combining this with (3.4) gives

lim
ε↓0

lim inf
n→∞

inf
θ′∈O(θ,ε)

Ln(θ′, Xn
1 ) ≥ λD − lim

ε↓0
lim sup

n→∞

1

n
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

a.s.
= λD − Λ∞(θ, λ).

Optimizing over λ (take λ rational to control the exceptional sets) gives

lim
ε↓0

lim inf
n→∞

inf
θ′∈O(θ,ε)

Ln(θ′, Xn
1 )

a.s.

≥ Λ∗
∞(θ)

and we have proved that

Prob

{
epi-lim inf

n→∞
Ln(θ,Xn

1 ) ≥ Λ∗
∞(θ)

}
= 1, ∀θ ∈ Θ.

The reason we can restrict the supremum to rational λ ≤ 0, is that λD − Λ∞(θ, λ) is
concave in λ [8].

Now we want to move the ∀θ ∈ Θ inside the probability. We begin with (3.4) to
compute that

lim
ε↓0

sup
λ≤0

[
λD − lim

n→∞
1

n
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]]

= sup
λ≤0

sup
ε>0

[
λD − lim

n→∞
1

n
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]]

= sup
λ≤0

[
λD − inf

ε>0
lim

n→∞
1

n
EP

[
sup

θ′∈O(θ,ε)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]]

= sup
λ≤0

[λD − Λ∞(θ, λ)] = Λ∗
∞(θ). (3.6)
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Fix α > 0. Using (3.6), for each θ choose 0 < r = rθ,α < δθ ∧ α small enough that

sup
λ≤0

[
λD − lim

n→∞
1

n
EP

[
sup

θ′∈O(θ,r)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]]
> α−1 ∧ Λ∗

∞(θ) − α. (3.7)

Using Chebyshev’s inequality (3.5) and (3.2) gives

lim inf
n→∞

inf
θ′∈O(θ,r)

Ln(θ′, Xn
1 ) ≥ λD − lim sup

n→∞

1

n
sup

θ′∈O(θ,r)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

a.s.
= λD − lim

n→∞
1

n
EP

[
sup

θ′∈O(θ,r)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]
.

The final expression is shown to be concave in λ in the Appendix. Optimizing over λ (λ
rational as before) and using (3.7) gives

lim inf
n→∞

inf
θ′∈O(θ,r)

Ln(θ′, Xn
1 )

a.s.

> α−1 ∧ Λ∗
∞(θ) − α. (3.8)

The collection of neighborhoods {O(θ, r)}θ∈Θ is an open cover for Θ. Since Θ is a
separable metric space, we can choose a countable subcover {O(θ, r)}θ∈G for some G ⊂ Θ.
Since G is discrete, we can use (3.8) to get

Prob

{
lim inf
n→∞

inf
θ′∈O(θ,r)

Ln(θ′, Xn
1 ) > α−1 ∧ Λ∗

∞(θ) − α, ∀θ ∈ G

}
= 1. (3.9)

For each θ ∈ Θ, there is a θ̃ := θ̃θ,α ∈ G so that θ ∈ O(θ̃, r̃), where r̃ := rθ̃,α. For all ε

small enough, O(θ, ε) ⊂ O(θ̃, r̃) and we have

lim
ε↓0

lim inf
n→∞

inf
θ′∈O(θ,ε)

Ln(θ′, xn
1 ) ≥ lim inf

n→∞
inf

θ′∈O(θ̃,r̃)
Ln(θ′, xn

1 ).

So {
lim
ε↓0

lim inf
n→∞

inf
θ′∈O(θ,ε)

Ln(θ′, Xn
1 ) > α−1 ∧ inf

θ′∈O(θ,α)
Λ∗

∞(θ′) − α, ∀θ ∈ Θ

}

⊃
{

lim inf
n→∞

inf
θ′∈O(θ̃,r̃)

Ln(θ′, Xn
1 ) > α−1 ∧ Λ∗

∞(θ̃) − α, ∀θ̃ ∈ G

}
, (3.10)

where we have used the fact that r̃ < α to get θ̃ ⊂ O(θ, α). (3.9) shows that the last
expression in (3.10) has probability 1, so we must have

Prob

{
lim
ε↓0

lim inf
n→∞

inf
θ′∈O(θ,ε)

Ln(θ′, Xn
1 ) > α−1 ∧ inf

θ′∈O(θ,α)
Λ∗

∞(θ′) − α, ∀θ ∈ Θ

}
= 1

as well. Letting α ↓ 0 (α rational) will complete the proof of (2.7) as long as we can
show that Λ∗

∞ is l.sc. on Θ.
The Appendix shows that Λn(·, λ) is u.sc. for each λ ≤ 0 and n < ∞. (3.4) thus

shows that Λ∞(·, λ) is an infimum of u.sc. functions and so it is also u.sc. for each λ ≤ 0.
This shows that Λ∗

∞ is a supremum of l.sc. functions, which is l.sc.
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3.2 Proof: Upper bound

For each r < ∞, let Gr ⊂ Θlim be a countable, dense subset of Θr. If Θr is empty (as it
will always be for r ≤ 0), then we take Gr = ∅. By assumption, we can always find such
a collection of Gr. Define

G :=
⋃
r∈Q

Gr

to be the union of all Gr for rational r. Then G ⊂ Θlim is at most countable and we have

Prob

{
lim sup

n→∞
Ln(θ,Xn

1 ) ≤ Λ∗
∞(θ), ∀θ ∈ G

}
= 1.

If θ ∈ Θr for some r ∈ R, then θ ∈ Θq ⊂ Θr for some q ∈ Q with Λ∗
∞(θ) < q < r.

Since G ∩ Θq is dense in Θq for each q ∈ Q, G ∩ Θr is also dense in Θr for each r ∈ R.
Proposition 1.1 gives{

lim sup
n→∞

Ln(θ,Xn
1 ) ≤ Λ∗

∞(θ), ∀θ ∈ G

}
⊂

{
epi-lim sup

n→∞
Ln(θ,Xn

1 ) ≤ Λ∗
∞(θ), ∀θ ∈ Θ

}

and we have

Prob

{
epi-lim sup

n→∞
Ln(θ,Xn

1 ) ≤ Λ∗
∞(θ), ∀θ ∈ Θ

}
= 1.

This is the epi-lim sup upper bound. Combining it with (2.7) gives (2.8) and completes
the proof of Theorem 2.1.

4 Proof of Theorem 2.3

As before, measurability issues are addressed in the Appendix. Since Λ∗
n does not depend

on n, we will drop the subscript. The Appendix shows that Λ∗ is convex. Proposition
2.4 and (2.13) are proved in Section 4.1, although we refer to the results here.

We first note that Theorem 2.1 immediately gives us

Prob

{
epi-lim inf

n→∞
Ln(θ,Xn

1 ) ≥ Λ∗(θ), ∀θ ∈ Θ

}
= 1, (4.1)

so to establish (2.14) and (2.15c) we need only establish the epi-lim sup upper bound.
Theorem 2.2 implies that Θc

∞ ⊂ Θlim, so there are three mutually exclusive possibili-
ties:

Θ∞ = ∅, (4.2)

Θlim ∩ Θ∞ �= ∅, (4.3)

Θc
lim = Θ∞ �= ∅. (4.4)

In words, (4.2) says that Λ∗(θ) = ∞ for all θ. (4.3) says that there is at least one θ with
a finite, pointwise limit (2.11). And (4.4) says that every θ with a finite Λ∗(θ) does not
have an a.s. pointwise limit (2.12) and there is at least one such “bad” θ. We will first
show that (4.2) or (4.3) implies (2.14) and that (4.4) implies Dmin(Θ) = D.

Suppose (4.2) is true. Then Λ∗ ≡ ∞ and (4.1) gives (2.14).
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Suppose (4.3) is true and choose θ0 ∈ Θlim ∩ Θ∞. Pick r so that Θr is not empty
and choose θ ∈ Θr and ε > 0. In the next paragraph, we will construct a point θ′ ∈
Θlim∩Θr∩O(θ, ε) by taking a convex combination of θ and θ0. This shows that Θlim∩Θr

is dense in Θr for each r and we can apply Theorem 2.1 to get (2.14).
Λ∗ is convex and Λ∗(θ0) < ∞, so we can choose 0 < λ0 < 1 such that 0 < λ < λ0

implies
Λ∗(λθ0 + (1 − λ)θ) ≤ (1 − λ)Λ∗(θ) + λΛ∗(θ0) < r.

Furthermore, since λθ0 + (1 − λ)θ → θ as λ ↓ 0, we can choose 0 < λ < λ0 such that
θ′ := λθ0 + (1− λ)θ ∈ Θr ∩O(θ, ε). Recalling that we can write Qθ′,n = [Qθ′,1]

n, we have

lim sup
n→∞

Ln(θ′, Xn
1 ) = lim sup

n→∞
−1

n
log[λQθ0,1 + (1 − λ)Qθ,1]

n(B(Xn
1 , D))

≤ lim sup
n→∞

−1

n
log[λQθ0,1]

n(B(Xn
1 , D)) = − log λ+ lim sup

n→∞
Ln(θ0, X

n
1 )

a.s.
= − log λ+ Λ∗(θ0) <∞,

so (2.12a) cannot be true for θ′ and Theorem 2.2 implies that θ′ ∈ Θlim. So θ′ ∈
Θlim ∩ Θr ∩O(θ, ε) as desired and we have finished case (4.3).

Suppose (4.4) is true. Fix θ0 ∈ Θ∞ = Θc
lim. Theorem 2.2 shows that 0 < Dmin(θ0) =

D <∞. This shows that infθ∈ΘDmin(θ) ≤ D. Suppose there exists a θ withDmin(θ) < D.
Let θ′ = λθ0 + (1 − λ)θ for some 0 < λ < 1. The Appendix shows that Λ∗(θ′) ≤
Λ∗(θ0) − log λ < ∞, so θ′ ∈ Θ∞. But it is easy to see that Dmin(θ

′) ≤ Dmin(θ) < D, so
Theorem 2.2 implies that θ′ ∈ Θlim. We have shown that θ′ ∈ Θ∞∩Θlim which contradicts
(4.4) and there cannot be any θ with Dmin(θ) < D. Thus, infθ∈ΘDmin(θ) = D <∞ and
Proposition 2.4 shows that Dmin(Θ) = D, which is what we wanted to prove. In fact, we
have proved

0 < Dmin(Θ) = min
θ∈Θ

Dmin(θ) = D <∞ and Dmin(θ) = D for all θ ∈ Θ∞. (4.5)

Since we must have m(Θ, x) ≤ m(θ, x) for any θ, (4.5) shows that

m(Θ, X1)
a.s.
= m(θ,X1), for all θ ∈ Θ∞. (4.6)

Now we will prove (2.14). If D �= Dmin(Θ), then we cannot be in situation (4.4). We
must be in either situation (4.2) or situation (4.3), so (2.14) holds. If Λ∗

∞(Θ) = ∞, then
we are in situation (4.2) and (2.14) holds. If m(Θ, X1) is a.s. constant, then we are either
in one of (4.2) or (4.3), in which case (2.14) holds, or we are in (4.4). In the latter case,
(4.6) shows that m(θ,X1) is a.s. constant for each θ ∈ Θ∞. For any such θ, Theorem
2.2 shows that θ ∈ Θlim, which contradicts (4.4). So the latter case is impossible and we
have proved (2.14).

Now we will prove (2.15). Suppose D = Dmin(Θ), Λ∗
∞(Θ) < ∞ and m(Θ, X1) is not

a.s. constant. We must have 0 < Dmin(Θ) < ∞. Theorem 2.2 can be used to infer that
Dmin(θ) ≤ D for each θ ∈ Θ∞, which is not empty by assumption. Using Proposition
2.4 gives both parts of (4.5). As before, this leads to (4.6). Since m(Θ, X1) is not
a.s. constant, neither is m(θ,X1) for each θ ∈ Θ∞ and Theorem 2.2 shows that θ �∈ Θlim.
So Θ∞ = Θc

lim �= ∅ and we must be in situation (4.4).
Fix θ′ ∈ Θ∞. Theorem 2.2 shows that

Prob

{
n∑

k=1

m(θ′, Xk) > nD i.o.

}
> 0 and Prob

{
n∑

k=1

m(θ′, Xk) ≤ nD i.o.

}
= 1,
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so (4.6) gives

Prob

{
n∑

k=1

m(Θ, Xk) > nD i.o.

}
> 0, (4.7)

Prob

{
n∑

k=1

m(Θ, Xk) ≤ nD i.o.

}
= 1. (4.8)

For any xn
1 we have

inf
θ∈Θ

Ln(θ, xn
1 ) ≥ inf

θ∈Θ
−1

n
logQθ

{
yn

1 :
n∑

k=1

m(θ, xk) ≤ nD

}

≥ inf
θ∈Θ

−1

n
logQθ

{
yn

1 :
n∑

k=1

m(Θ, xk) ≤ nD

}
= ∞ if

n∑
k=1

m(Θ, xk) > nD. (4.9)

Recalling that θ′ ∈ Θ∞, we have the following series of implications

inf
θ∈Θ

Ln(θ,Xn
1 ) <∞ =⇒

n∑
k=1

m(Θ, Xk) ≤ nD
a.s.

=⇒
n∑

k=1

m(θ′, Xk) ≤ nD

a.s.
=⇒ Ln(θ′, Xn

1 ) <∞ =⇒ inf
θ∈Θ

Ln(θ,Xn
1 ) <∞, (4.10)

where the first implication follows from (4.9), the second from (4.6) and the third from
Theorem 2.2. This shows that{

inf
θ∈Θ

Ln(θ,Xn
1 ) <∞

}
and

{
n∑

k=1

m(Θ, Xk) ≤ nD

}
differ by a null set. (4.11)

Combining (4.7) and (4.11) proves (2.15a). Combining (4.8) and (4.11) proves (2.15b)
and shows that (nm)m≥1 satisfies that claims of the theorem.

The last thing to prove is (2.15c). The proof closely follows the steps in Section 3.2.
Choose an at most countable, dense subset Gr ⊂ Θr and let G :=

⋃
r∈QGr, so that

G ⊂ Θ∞ is at most countable and G ∩ Θr is dense in Θr for each r. (4.6) implies{
n∑

k=1

m(Θ, Xk) ≤ nD

}
and

{
n∑

k=1

m(θ,Xk) ≤ nD, ∀θ ∈ G

}
differ by a null set.

So we can take (nm)m≥1 to be the (a.s.) infinite subsequence where the latter event occurs.
Theorem 2.2 (2.12c) gives

Prob

{
lim sup

m→∞
Lnm(θ,Xnm

1 ) ≤ Λ∗(θ), ∀θ ∈ G

}
= 1

and (2.15c) follows from Proposition 1.1 and (4.1) just like in Section 3.2. This completes
the proof of all parts of Theorem 2.3.
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4.1 Proof of Proposition 2.4

Here we prove Proposition 2.4 and (2.13). We always have

inf
θ∈Θ

Dmin(θ) = inf
θ∈Θ

Em(θ,X1) ≥ Em(Θ, X1) = Dmin(Θ). (4.12)

Choose a countable dense subset G ⊂ Θ. The Appendix shows that m(·, x) is u.sc. for
each x, so m(Θ, x) = infθ∈Gm(θ, x) for each x. Let (θn)n≥1 be an enumeration of G.

Define θ̂n :=
∑n

k=1 θk/n. Recalling that Qθ̂n,1 =
∑n

k=1Qθk,1/n, it is easy to see that

0 ≤ m(Θ, x) ≤ m(θ̂n, x) ≤ min
1≤k≤n

m(θk, x) ↓ inf
θ∈G

m(θ, x) = m(Θ, x) (4.13)

as n→ ∞.
If infθ∈ΘDmin(θ) < ∞, then without loss of generality we can assume that θ1 has

Em(θ1, X1) := Dmin(θ1) < ∞. In this case, the dominated convergence theorem applied
to (4.13) will give

Dmin(θ̂n) := Em(θ̂n, X1) ↓ Em(Θ, X1) = Dmin(Θ).

This gives infθ∈ΘDmin(θ) ≤ Dmin(Θ) and completes the proof of Proposition 2.4. We no
longer assume that infθ∈ΘDmin(θ) <∞.

Suppose Dmin(Θ) > D. Then ergodic theorem gives

1

n

n∑
k=1

m(Θ, Xk)
a.s.→ Dmin(Θ) > D

So

Prob

{
n∑

k=1

m(Θ, Xk) > nD, eventually

}
= 1. (4.14)

For any θ, we have the following trivial implications

n∑
k=1

m(Θ, xk) > nD =⇒
n∑

k=1

m(θ, xk) > nD =⇒ Qθ(B(xn
1 , D)) = 0

=⇒ Ln(θ, xn
1 ) = ∞.

Combining this with (4.14) gives the first part of (2.13).
Now suppose Dmin(Θ) < D. Again the ergodic theorem gives

Prob

{
n∑

k=1

m(Θ, Xk) < nD, eventually

}
= 1. (4.15)

Suppose that for some n and some sequence xn
1 we have

n∑
k=1

m(Θ, xk) < nD. (4.16)

Then using (4.13) we can take N large enough so that

n∑
k=1

m(θ̂N , xk) < nD

which implies that Qθ̂N
(B(xn

1 , D)) > 0 and thus Ln(θ̂N , x
n
1 ) < ∞. In particular, (4.16)

implies that infθ∈Θ Ln(θ, xn
1 ) <∞. (4.15) completes the proof of (2.13).

21



A Appendix

We have ignored some important measurability issues in the text. We address them here.
We also discuss some continuity and convexity properties that are used in the proofs.
Unlike the main text, some of the arguments here will differ depending on whether we
are in situation (2.1) or (2.2). We begin with the proof of Proposition 1.1.

Proof of Proposition 1.1. Fix θ. If g(θ) = ∞, there is nothing to prove, so choose finite
r > g(θ). Fix ε > 0. By hypothesis, there exists a θ′ ∈ O(θ, ε) with f(θ′) < r, so

lim sup
n→∞

inf
θ′′∈O(θ,ε)

fn(θ′′) ≤ lim sup
n→∞

fn(θ′) = f(θ′) < r.

Letting ε ↓ 0 gives epi-lim supn fn(θ) ≤ r. Since r > g(θ) was arbitrary, the proof is
complete.

A.1 Measurability and continuity

Define

m(θ, x) := ess inf
Qθ

ρ(x, Y1), Λn(θ, λ, xn
1 ) :=

1

n
logEθe

λnρn(xn
1 ,Y n

1 ).

The measurability of these functions in x or xn
1 for fixed θ and λ ≤ 0 is established in

Harrison (2003) [8]. We will show that

m(·, x) is u.sc. for each x ∈ S, (A.1)

Λn(·, λ, xn
1) is continuous for each xn

1 ∈ Sn and λ ≤ 0. (A.2)

From (A.1), we see that

m(Θ, x) := inf
θ∈Θ

m(θ, x) = inf
θ∈G

m(θ, x)

for any countable dense G ⊂ Θ. Since m(θ, ·) is measurable, m(Θ, ·) is measurable as well.
All measurability issues in Section 4 are taken care of by this fact and the completeness
of P .

Similarly, from (A.2), we see that

Λn(U, λ, xn
1) := sup

θ∈U
Λn(θ, λ, xn

1 ) = sup
θ∈GU

Λn(θ, λ, xn
1 ), λ ≤ 0,

for any countable dense GU ⊂ U and any U ⊂ Θ. Since Λn(θ, λ, ·) is measurable,
Λn(U, λ, ·) is also. All measurability issues in Section 3 are taken care of by this fact and
the completeness of P .

Fix λ ≤ 0. Notice that Λn(θ, λ, xn
1) ≤ 0. Let θm → θ. (A.2) and Fatou’s Lemma give

lim sup
m→∞

Λn(θm, λ) = lim sup
m→∞

EP Λn(θm, λ,X
n
1 ) ≤ EP Λn(θ, λ,Xn

1 ) = Λn(θ, λ).

So Λn(·, λ) is u.sc. for n <∞.
This implies that Λ∗

n is l.sc. for n < ∞ because it is a supremum of l.sc. functions
(namely λD − Λn(·, λ)).
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Proof of (A.1). Fix x ∈ S, ε > 0 and θ, (θn)n≥1 ∈ Θ such that θn → θ. Define A := {y ∈
T : ρ(x, y) < m(θ, x) + ε}. By definition, Qθ,1(A) > 0 and we have

lim inf
n→∞

Qθn,1(A) ≥ Qθ,1(A) > 0. (A.3)

The first inequality is actually an equality in situation (2.1). In situation (2.2) ρ(x, ·) is
continuous, which means A is open and the first inequality is a well known property of
weak convergence of probability measures [14][p.311].

(A.3) implies that
lim sup

n→∞
m(θn, x) ≤ m(θ, x) + ε.

Since ε was arbitrary, this establishes the u.sc. of m(·, x).

Proof of (A.2). Fix xn
1 ∈ Sn, λ ≤ 0 and θ, (θm)m≥1 ∈ Θ such that θm → θ. eλnρn(xn

1 ,·) is
bounded and in situation (2.2) it is also continuous, so

Eθme
λnρn(xn

1 ,Y n
1 ) → Eθe

λnρn(xn
1 ,Y n

1 )

and Λn(·, λ, xn
1 ) is continuous.

A.2 Convexity

We first prove a convexity result used as justification for (3.8). In the notation of
the last section, Λn(θ, ·, xn

1 ) is a log moment generating function and is convex [6]. So
supθ′∈O(θ,r) Λn(θ′, ·, xn

1) is convex and we know from the previous section that it is mea-
surable in xn

1 for fixed λ ≤ 0. Expectations and limits preserve convexity. This shows
that

λD − lim
n→∞

1

n
EP

[
sup

θ′∈O(θ,r)

logEθ′e
λnρn(Xn

1 ,Y n
1 )

]

is concave in λ for λ ≤ 0 as claimed.
Now we prove some convexity results in θ when Θ is convex. Suppose we have the

added assumptions of Section 2.1, namely (2.9). Then

Λ∗
1 is convex and Λ∗

1(εθ + (1 − ε)θ′) ≤ Λ∗
1(θ) − log ε (A.4)

for any 0 ≤ ε ≤ 1 and θ, θ′ ∈ Θ.

Proof of (A.4). For 0 ≤ ε ≤ 1, the concavity of the logarithm gives

Λ1(εθ + (1 − ε)θ′, λ) = EP

[
log

[
εEθe

λρ(X1,Y1) + (1 − ε)Eθ′e
λρ(X1,Y1)

]]
≥ EP

[
ε logEθe

λρ(X1,Y1) + (1 − ε) logEθ′e
λρ(X1,Y1)

]
= εΛ1(θ, λ) + (1 − ε)Λ1(θ

′, λ)

and establishes the concavity of Λ1(·, λ). This means that λD−Λ1(·, λ) is convex. So Λ∗
1

is a supremum of convex functions which is convex.
We also have

Λ1(εθ + (1 − ε)θ′, λ) = EP

[
log

[
εEθe

λρ(X1,Y1) + (1 − ε)Eθ′e
λρ(X1,Y1)

]]
≥ EP

[
log

[
εEθe

λρ(X1,Y1)
]]

= Λ1(θ, λ) + log ε.

This gives

Λ∗
1(εθ + (1 − ε)θ′) ≤ sup

λ≤0
[λD − Λ1(θ, λ) − log ε] = Λ∗

1(θ) − log ε.
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