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Abstract

We give necessary and sufficient conditions for the almost sure convergence of

− 1
n

logQ(B(Xn
1 ,D))

when (Xn)n≥1 is stationary and ergodic and when Q is stationary and satisfies
certain strong mixing conditions. B(xn1 ,D) is the single letter, additive distortion
ball of radius D at the point xn1 := (x1, . . . , xn). The asymptotic behavior of this
quantity arises frequently in rate distortion theory, particularly when looking at
the asymptotics of waiting times until a match (allowing distortion) between two
stationary processes.

1 Introduction

Given two independent processes (Xn)n≥1 and (Yn)n≥1 with distributions P andQ, respec-
tively, we are interested in the behavior of the waiting time until Y k+n

k+1 := (Yk+1, . . . , Yk+n)
matches Xn

1 to within an allowable distortion D. In particular, we are interested in

W (Xn
1 , Y

∞
1 , D) := inf

{
k ≥ 1 : Y k+n−1

k ∈ B(Xn
1 , D)

}
,

where B(xn1 , D) is the set of yn1 that match xn1 to within distortion D. Typically, we have
a nonnegative function ρ that measures the distortion between a single x and y and we
define the distortion ball B(xn1 , D) in terms of the average distortion

B(xn1 , D) :=

{
yn1 :

1

n

n∑
k=1

ρ(xk, yk) ≤ D

}
.

The asymptotic properties of these waiting times as n gets large have applications in rate
distortion theory, analysis of DNA sequences and other areas. They have been studied
in several recent papers [3, 4, 12, 14].
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In each of these papers, the authors investigated these waiting times by showing that
asymptotically

logW (Xn
1 , Y

∞
1 , D)

a.s.≈ − logQ(B(Xn
1 , D))

and then studying the quantity on the right. We adopt the same approach. All that is
needed is

Proposition 1.1. Suppose (Yn)n≥1 is a random process on TN with distribution Q that
is stationary and ψ−-mixing.1. Define Wn := inf{k ≥ 1 : Y k+n−1

k ∈ An} for a sequence of
measurable sets (An)n≥1, An ∈ T n. If (cn)n≥1 is a nonnegative sequence with

∑
n e

−cn <
∞, then

Prob {− logeQ(An) − cn ≤ logeWn ≤ − logeQ(An) + cn + loge n eventually} = 1.

With An := B(xn1 , D) we can relate waiting times to the probabilities of distortion balls.
Once we note that Prob {logWn = logQ(An)} = 1 whenever Q(An) ∈ {0, 1}, then the
proof of Proposition 1.1 follows almost exactly from a similar result in Kontoyiannis
(1998) [11]. We give a proof in the Appendix for completeness.

A common assumption is that the distortion function ρ is bounded or that it satisfies
certain moment conditions. Unfortunately, the bounded assumption rules out squared
error distortion ρ(x, y) = ‖x − y‖2 on R

d, which is common in practice, and the mo-
ment conditions depend on the source distribution, which may not be known. This last
shortcoming can be critical when studying universal lossy data compression or statistical
methods in lossy data compression and is our main motivation for trying to relax these
assumptions.

Here we investigate the limiting behavior of

−1

n
logQ(B(Xn

1 , D))

without restrictions on ρ. We obtain necessary and sufficient conditions for the a.s. con-
vergence of this quantity and we precisely characterize its behavior when convergence
fails. We also relax several other assumptions that often appear in the literature. The
source (Xn)n≥1 is assumed to be stationary and ergodic, as opposed to independent and
identically distributed (i.i.d.), the reproduction (Yn)n≥1 is allowed to have some mem-
ory, as opposed to i.i.d., both the source and the reproduction take values in arbitrary
alphabets, as opposed to finite alphabets, and the range of distortion values D is not
constrained in the usual manner.

2 Main Results

We begin with the setup used throughout the remainder of the paper. (S,S) and (T, T )
are standard measurable spaces.2 (Xn)n≥1 and (Yn)n≥1 are independent stationary ran-
dom processes on the sequence spaces (SN,SN) and (TN, T N) with distributions P and
Q, respectively. We assume that P is ergodic and that Q satisfies the following strong
mixing condition:

C−1Q(A)Q(B) ≤ Q(A ∩B) ≤ CQ(A)Q(B)

1Q is ψ−-mixing if there exists finite C, d ≥ 1 such that Q(A)Q(B) ≤ CQ(A ∩B) for all A ∈ σ(Y n
1 )

and B ∈ σ(Y∞
n+d) and any n. (See Chi (2001) [3] and the references therein.)

2Standard measurable spaces include Polish spaces and let us avoid uninteresting pathologies while
working with random sequences [8].
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for some fixed 1 ≤ C <∞ and any A ∈ σ(Y n
1 ) and B ∈ σ(Y ∞

n+1) and any n.3 Notice that
this includes the cases where Q is i.i.d. (C = 1) and where Q is a finite state Markov
chain with all positive transition probabilities.

Let ρ : S×T → [0,∞) be an S ×T -measurable function (S ×T denotes the smallest
product σ-algebra). We define the following standard quantities:

B(xn1 , D) :=

{
yn1 ∈ T n :

1

n

n∑
k=1

ρ(xk, yk) ≤ D

}
,

Λn(λ) :=
1

n
EP logEQe

λ
∑n

k=1 ρ(Xk,Yk), Λ∞(λ) := lim sup
n→∞

Λn(λ),

Λ∗
n(D) := sup

λ≤0
[λD − Λn(λ)] , n = 1, . . . ,∞,

ρQ(x) := ess inf
Q

ρ(x, Y1), Dmin := EρQ(X1), Dave := Eρ(X1, Y1).

We always assume that D ∈ R and log denotes the natural logarithm loge. Notice that
0 ≤ Dmin ≤ Dave ≤ ∞. B(xn1 , D) is called the distortion ball of radius D at xn1 and ρ is
called the single letter distortion function.

In the special case where Q is i.i.d. it is easy to see that Λn = Λ1 for all n = 1, . . . ,∞,
and similarly that Λ∗

n = Λ∗
1 for all n. In the general case we have

Λ∞(λ) = lim
n→∞

Λn(λ), λ ≤ 0,

Λ∗
∞(D) = lim

n→∞
Λ∗
n(D),

(2.1)

which we prove in Section 3. We also show that

Λ∗
n(D) = Rn(Pn, Qn, D) :=

1

n
inf
Wn

H(Wn‖Pn ×Qn), (2.2)

where the infimum is over all probability measures Wn on Sn × T n that have marginal
distribution Pn on Sn and with EWnn

−1
∑n

k=1 ρ(Xk, Yk) ≤ D. Pn and Qn denote the nth
marginals of P and Q, respectively. H(µ‖ν) denotes the relative entropy in nats

H(µ‖ν) :=

{
Eµ log dµ

dν
if µ 	 ν,

∞ otherwise.

This alternative characterization of Λ∗ is well known [4], although we prove it here without
any restrictions on D. Notice that (2.1) and (2.2) give

R∞(P,Q,D) := lim
n→∞

Rn(Pn, Qn, D) = Λ∗
∞(D).

We are interested in the asymptotic behavior of − logQ(B(Xn
1 , D)). An easy result

is
Prob {− logQ(B(Xn

1 , D)) = ∞ eventually} = 1 if D < Dmin ,

Prob {− logQ(B(Xn
1 , D)) <∞ eventually} = 1 if D > Dmin .

(2.3)

The main result of the paper is the following:

3In the notation of Chi (2001) [3] this implies that Q is ψ±-mixing, but is stronger because we require
that d = 1.
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Theorem 2.1. If D 
= Dmin or Λ∗
∞(D) = ∞ or ρQ(X1) is a.s. constant then

lim
n→∞

−1

n
logQ(B(Xn

1 , D))
a.s.
= Λ∗

∞(D). (2.4)

Otherwise, 0 < D = Dmin <∞, and

Prob {− logQ(B(Xn
1 , D)) = ∞ infinitely often} > 0, (2.5a)

Prob {− logQ(B(Xn
1 , D)) <∞ infinitely often} = 1, (2.5b)

lim
m→∞

− 1

nm
logQ(B(Xnm

1 , D))
a.s.
= Λ∗

∞(D) <∞, (2.5c)

where (nm)m≥1 is the (a.s.) infinite subsequence of (n)n≥1 for which − logQ(B(Xn
1 , D))

is finite, or (a.s.) equivalently, the subsequence where
∑n

k=1 ρQ(Xk) ≤ nD.

Proposition 1.1 shows that we can replace − logQ(B(Xn
1 , D)) with logW (Xn

1 , Y
∞
1 , D)

in Theorem 2.1 and in (2.3). In this case Prob and a.s. will refer to the joint probability of
(Xn)n≥1 and (Yn)n≥1. Also, notice that (2.5) implies that the limit in (2.4) does not exist
with positive probability, so the conditions for (2.4) are necessary and sufficient (and
similarly with (2.5)). Finally, we point out that (2.4) always holds when D = 0, because
either D < Dmin or Dmin = 0, which means ρQ(X1)

a.s.
= 0. This clears up part of the

difficulty mentioned in Dembo and Kontoyiannis (2002) [4][pp. 1593–1594] when trying
to think of (2.4) as a lossy generalization of the lossless AEP (Asymptotic Equipartition
Property).

The generalized AEP (2.4) can be used to show that (a sequence of) random lossy
codebooks generated by Q can have asymptotic (pointwise) rates of R∞(P,Q,D). See
Kontoyiannis and Zhang (2002) [12] for the details and for the assumptions that make
all of this precise. Briefly, these codebooks send the index of the first time that a random
Y n

1 is in B(Xn
1 , D). This random match is used as the distorted version of Xn

1 . These
codebooks enforce the condition that Xn

1 is distorted by no more than D. (2.5) shows
that this will not be possible in certain cases when even when R∞(P,Q,D) is finite.
What does this mean for the intuition that we can always use random lossy codebooks
based on Q to achieve asymptotic rates of R∞(P,Q,D)?

Consider the situation where D = Dmin and R∞(P,Q,D) is finite. Notice that this
includes all situations where (2.4) does not hold. Define the set

A(xn1 ) :=

{
yn1 ∈ T n :

1

n

n∑
k=1

ρ(xk, yk) = ess inf
Q

1

n

n∑
k=1

ρ(xk, Yk)

}
. (2.6)

Suppose that we modify the random coding scheme mentioned above so that the distorted
Xn

1 must match A(Xn
1 ) instead of B(Xn

1 , D). In Section 3.5 we show that

ess inf
Q

1

n

n∑
k=1

ρ(Xk, Yk) → Dmin and − 1

n
logQ(A(Xn

1 )) → R∞(P,Q,Dmin),

where in both cases the convergence holds a.s. and in expectation. We also show that

EP

[
ess inf

Q

1

n

n∑
k=1

ρ(Xk, Yk)

]
= Dmin.
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This random coding scheme ensures that the distortion converges to D = Dmin, al-
though a particular Xn

1 might be distorted by more than D, and the asymptotic rate is
R∞(P,Q,D). It also ensures that the expected distortion is always D. Thus, it is still
possible to generate codebooks based on Q with distortion D and rate R∞(P,Q,D), but
we must use a weaker notion of distortion.4

The proof of Theorem 2.1 proceeds in several stages. The lower bound in (2.4) is a
consequence of Chebyshev’s inequality. The upper bound for the case Dmin < D ≤ Dave

when Q is i.i.d. follows from a large deviations argument. The outline for this argument
comes from Dembo and Kontoyiannis (2002) [4][Theorem 1], but there they assumed
that Dave <∞. The upper bound for the general case when Dmin < D ≤ Dave is derived
from the i.i.d. case with a blocking argument and a result from ergodic theory. The
case where D > Dave is a simple application of Chebyshev’s inequality. The behavior
when D = Dmin comes from the subadditive ergodic theorem (ρQ(X1) a.s. constant) and
from the recurrence properties of random walks with stationary increments (ρQ(X1) not
a.s. constant).

3 Proof of Theorem 2.1

Throughout the proofs we use the stationarity and mixing properties of Q to apply the
bounds

C−1EQf(Y n
1 )EQg(Y

m
1 ) ≤ EQf(Y n

1 )g(Y n+m
n+1 ) ≤ CEQf(Y n

1 )EQg(Y
m
1 )

for nonnegative functions f and g. We also make use of the fact that

B(xn+m
1 , D) ⊃ B(xn1 , D) ∩ B(xn+m

n+1 , D),

where here we abuse notation and think of B(xn+m
n+1 , D) as being an element of σ(Y n+m

n+1 ).
Lastly, we make frequent use of the regularity properties of Λn and Λ∗

n found in the
Appendices. We do not necessarily point out each place where these ideas are put to use.

Let us first establish (2.1). Define

Λn(x
n
1 , λ) :=

1

n
logEQe

λ
∑n

k=1 ρ(xk,Yk).

We have

(n+m)Λn+m(xn+m
1 , λ) + logC = logEQe

λ
∑n+m

k=1 ρ(xk,Yk) + logC

= logEQe
λ
∑n

k=1 ρ(xk,Yk)eλ
∑n+m

k=n+1 ρ(xk,Yk) + logC

≤ logEQe
λ
∑n

k=1 ρ(xk ,Yk) + logC + logEQe
λ
∑m

k=1 ρ(xn+k,Yk) + logC

= [nΛn(x
n
1 , λ) + logC] +

[
mΛm(xn+m

n+1 , λ) + logC
]
.

If λ ≤ 0, then all of these terms are bounded above by logC and the subadditive ergodic
theorem gives

lim
n→∞

Λn(X
n
1 , λ)

a.s.
= lim

n→∞
Λn(λ) = inf

m≥M

[
Λm(λ) +

logC

m

]
(3.1)

4Notice that A(Xn
1 ) and B(Xn

1 , Dmin) differ by a Q-null set a.s. when ρQ(X1) is a.s. constant. In this
special case, the modified coding scheme does not change and is why (2.4) remains true.
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for any M ≥ 1. This shows that Λ∞ = limn Λn.
We have

Λ∗
∞(D) = sup

λ≤0

[
λD − lim

n→∞
Λn(λ)

]
= sup

λ≤0

[
λD − inf

m≥M

(
Λm(λ) +

logC

m

)]

= sup
m≥M

sup
λ≤0

[
[λD − Λm(λ)] − logC

m

]
= lim

n→∞

[
Λ∗
n(D) − logC

n

]
,

since M is arbitrary. This shows that Λ∗
∞ = limn Λ∗

n.
The proof of (2.2) essentially comes from Dembo and Kontoyiannis (2002) [4]. We

first show that
Rn(Pn, Qn, D) ≥ Λ∗

n(D). (3.2)

Fix any probability measure Wn on Sn × T n with

Sn-marginal equal to Pn, EWn

1

n

n∑
k=1

ρ(Xk, Yk) ≤ D, (3.3)

and with H(Wn‖Pn × Qn) < ∞. Since all our spaces are standard, regular conditional
probability distributions exist and we have H(Wn‖Pn × Qn) = EPnH(Wn(·|Xn

1 )‖Qn),
where Wn(·|xn1 ) is the conditional probability of Wn on T n given xn1 ∈ Sn.

Let ψ : T n → (−∞, 0] be measurable. Then [4][pp.1595]

H(Q′
n‖Qn) ≥ EQ′

n
(ψ(Y n

1 )) − logEQne
ψ(Y n

1 )

for any probability measure Q′
n on T n. Applying this with ψ(yn1 ) := λ

∑n
k=1 ρ(xk, yk) for

λ ≤ 0 gives

H(Wn(·|xn1)‖Qn) ≥ λEWn(·|xn
1 )

n∑
k=1

ρ(xk, Yk) − logEQne
λ
∑n

k=1 ρ(xk ,Yk).

Taking expected values and using (3.3) gives

n−1H(Wn‖Pn ×Qn) ≥ λD − Λn(λ).

Taking the supremum over λ ≤ 0 and then the infimum over Wn satisfying (3.3) gives
(3.2).

(3.2) immediately gives (2.2) whenever Λ∗
n(D) = ∞. This includes the case D < Dmin.

When Λ∗
n(D) <∞, we will construct Wn satisfying (3.3) that have n−1H(Wn‖Pn×Qn) ≤

Λ∗
n(D) to complete the proof of (2.2).

SupposeD ≥ Dave. ThenWn := Pn×Qn satisfies (3.3). Notice thatH(Wn‖Pn×Qn) =
0 ≤ Λ∗

n(D). Combining this with (3.2) gives (2.2).
Now suppose that Dmin < D < Dave and Λ∗

n(D) < ∞. The Appendix shows that we
can choose finite λD < 0 so that Λ′

n(λD) = D. Define Wn by[
dWn

d(Pn ×Qn)

]
(xn1 , y

n
1 ) :=

eλD
∑n

k=1 ρ(xk ,yk)

EQne
λD
∑n

k=1 ρ(xk,Yk)
.

Wn has Sn-marginal Pn and the Appendix shows that

EWn

1

n

n∑
k=1

ρ(Xk, Yk) = Λ′
n(λD) = D.
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Evaluating H(Wn‖Pn ×Qn) gives

n−1H(Wn‖Pn ×Qn) = λDD − Λn(λD) ≤ Λ∗
n(D).

Combining this with (3.2) gives (2.2).
Finally, suppose that D = Dmin and Λ∗

n(D) <∞. The Appendix shows that Λ∗
n(D) =

n−1E[− logQn(A(Xn
1 ))], where A(xn1 ) is defined in (2.6). Define Wn by[

dWn

d(Pn ×Qn)

]
(xn1 , y

n
1 ) :=

IA(xn
1 )(y

n
1 )

Q(A(xn1 ))
.

IA(z) denotes the indicator function that z ∈ A. Since E[− logQ(A(Xn
1 ))] is finite, the

denominator is positive P -a.s. and Wn is well defined. The Sn-marginal of Wn is Pn.
From the definition of A(xn1 ) and the mixing properties of Q we see that

EWn

1

n

n∑
k=1

ρ(Xk, Yk) = EWn

[
ess inf
Qn

1

n

∑
k=1

ρ(Xk, Yk)

]
= EWn

1

n

n∑
k=1

ρQ(Xk) = Dmin = D,

so (3.3) holds. Evaluating H(Wn‖Pn ×Qn) gives

n−1H(Wn‖Pn ×Qn) = n−1E [− logQn(A(Xn
1 ))] = Λ∗

n(D).

Combining this with (3.2) gives (2.2). This completes the proof of (2.2).
Now we will establish (2.3). We have the following implications:

ess inf
Q

1

n

n∑
k=1

ρ(xk, Yk) > D =⇒ Q(B(xn1 , D)) = 0,

ess inf
Q

1

n

n∑
k=1

ρ(xk, Yk) < D =⇒ Q(B(xn1 , D)) > 0.

(3.4)

The properties of Q show that

ess inf
Q

1

n

n∑
k=1

ρ(Xk, Yk) =
1

n

n∑
k=1

ρQ(Xk)
a.s.→ Dmin

by the ergodic theorem, so

Prob

{
ess inf

Q

1

n

n∑
k=1

ρ(Xk, Yk) > D eventually

}
= 1 if D < Dmin,

Prob

{
ess inf

Q

1

n

n∑
k=1

ρ(Xk, Yk) < D eventually

}
= 1 if D > Dmin.

Combining these with (3.4) gives (2.3).

3.1 Proof: Lower bound

For any λ ≤ 0 we have

−1

n
logQ(B(xn1 , D)) ≥ −1

n
logEQe

λ
∑n

k=1 ρ(xk,Yk)−λnD = λD − Λn(x
n
1 , λ).
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Taking limits, applying (3.1) and (2.1), and optimizing over λ ≤ 0 (λ rational) gives

lim inf
n→∞

−1

n
logQ(B(Xn

1 , D))
a.s.

≥ Λ∗
∞(D). (3.5)

The reason we can restrict the supremum to rational λ ≤ 0, is that λD−Λ∞(λ) is concave
in λ. This proves half of (2.4) and completes the proof when Λ∗

∞(D) = ∞. Note that
this includes the cases where D < Dmin.

Henceforth we will assume that Λ∗
∞(D) <∞. This assumption implies several things

that are worth pointing out. First, we have

Λn(λ) =
1

n
EP logEQ

n∏
k=1

eλρ(Xk ,Yk) ≤ 1

n

n∑
k=1

[
EP logEQe

λρ(Xk ,Yk) + logC
]

= Λ1(λ) + logC.

Similarly, we have
Λn(λ) ≥ Λ1(λ) − logC,

so
Λ1(λ) − logC ≤ Λn(λ) ≤ Λ1(λ) + logC, 1 ≤ n ≤ ∞.

These inequalities immediately imply

Λ∗
1(D) − logC ≤ Λ∗

n(D) ≤ Λ∗
1(D) + logC, 1 ≤ n ≤ ∞. (3.6)

So Λ∗
∞(D) < ∞ implies that Λ∗

n(D) < ∞ for all n and this implies that Λn(λ) is finite
for all λ ≤ 0 and all n.

3.2 Proof: Upper bound, i.i.d. Q, Dmin < D ≤ Dave

In this section, we assume that Q is i.i.d., that is, it is a product measure. We also assume
that Dmin < D ≤ Dave. We allow for the case Dave = ∞ (in which case D < Dave). We
want to prove that

lim sup
n→∞

−1

n
logQ(B(Xn

1 , D))
a.s.

≤ Λ∗
1(D), (3.7)

A proof is outlined in Dembo and Kontoyiannis (2002) [4][Theorem 1] under the added
assumption that D < Dave < ∞. The proof is essentially an application of the lower
bound of the Gärtner-Ellis Theorem [6][Theorem V.6(b)] for large deviations.

Let Λ∗(d) := supλ∈R[λd− Λ1(λ)]. We have Λ∗
1 = Λ∗ on (−∞, Dave]. Notice that

1

n
logEQe

λ
∑n

k=1 ρ(Xk ,Yk) =
1

n

n∑
k=1

logEQe
λρ(Xk ,Y1) a.s.→ Λ1(λ) (3.8)

by the assumption that Q is a product measure and by the ergodic theorem.
Fix a realization (xn)n≥1 of (Xn)n≥1 such that (3.8) holds for all λ ∈ R. (We can

choose the exceptional sets independent of λ since Λ1 is increasing.) Define the sequence
of random variables (Wn)n≥1 by

Wn :=
1

n

n∑
k=1

ρ(xk, Yk)

and let Rn denote the distribution of Wn. Note that logQ(B(xn1 , D)) = logRn((−∞, D]),
so we are interested in lim infn n

−1Rn((−∞, D])).
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At this point we would like to invoke the Gärtner-Ellis Theorem. Unfortunately, not
all of the assumptions are satisfied. We need to verify that the proof of the lower bound of
the Gärtner-Ellis Theorem can still be carried through in our case. Here are the details.
They closely follow the proof of the Gärtner-Ellis Theorem found in den Hollander (2000)
[6].

For each λ ≤ 0 define the new sequence of probability distributions (Rλ
n)n≥1 by[

dRλ
n

dRn

]
(w) :=

eλnw

EeλnWn
.

Fix ε > 0 such that Dmin < D − ε < Dave. We have

logQ(B(xn1 , D)) = logRn((−∞, D]) ≥ logRn((D − ε,D))

= log

∫
I(D−ε,D)(w)

EeλnWn

eλnw
Rλ
n(dw)

≥ logEeλnWn + log e−λn(D−ε) + logRλ
n((D − ε,D)),

where IA(w) is the indicator function of w ∈ A. Dividing by n, taking limits and applying
(3.8) gives

lim inf
n→∞

1

n
logQ(B(xn1 , D)) ≥ Λ1(λ) − λ(D − ε) + lim inf

n→∞
1

n
logRλ

n((D − ε,D))

≥ −Λ∗
1(D − ε) + lim inf

n→∞
1

n
logRλ

n((D − ε,D)). (3.9)

If we can choose λ̃ ≤ 0 such that

lim inf
n→∞

1

n
logRλ̃

n((D − ε,D)) ≥ 0, (3.10)

then we will be finished. To see this, notice that (3.9) and (3.10) give

lim inf
n→∞

1

n
logQ(B(xn1 , D)) ≥ −Λ∗

1(D − ε).

Letting ε ↓ 0, using the fact that Λ∗
1 is continuous at D and noticing that (xn)n≥1 was

a.s. arbitrary completes the proof of (3.7).
Now we will prove (3.10). Choose λ̃ < 0 such that

Λ∗(D − ε/2) = Λ∗
1(D − ε/2) = λ̃(D − ε/2) − Λ1(λ̃).

Define

Λ̃(λ) := lim
n→∞

1

n
logERλ̃

n
eλnWn = lim

n→∞
1

n
log

ERne
λnWneλ̃nWn

ERne
λ̃nWn

= Λ1(λ+ λ̃) − Λ1(λ̃)

by (3.8). Notice that Λ̃ is finite on (−∞,−λ̃] which includes a neighborhood of 0. Define

Λ̃∗(d) := sup
λ∈R

[
λd− Λ̃(λ)

]
= sup

λ∈R

[
(λ+ λ̃)d− Λ1(λ+ λ̃)

]
− λ̃d+ Λ1(λ̃)

= Λ∗(d) −
[
λ̃d− Λ1(λ̃)

]
.

9



Notice that Λ̃∗(D − ε/2) = 0.
Λ∗ = Λ∗

1 is strictly convex on (Dmin, Dave), so Λ̃∗ is also. Furthermore, since Λ∗ = Λ∗
1

is strictly decreasing on (Dmin, Dave) it must have supporting planes with strictly negative
slopes. This implies that Λ̃∗ has supporting planes with slopes strictly less than −λ̃ on
(Dmin, Dave). Recalling that Λ̃ is finite on (−∞,−λ̃), we can apply the Gärtner-Ellis
Theorem [6][Theorem V.6(b)] to get

lim inf
n→∞

1

n
logRλ̃

n((D − ε,D)) ≥ − inf
d∈(D−ε,D)

Λ̃∗(d) ≥ −Λ̃∗(D − ε/2) = 0,

which completes the proof.
Before continuing, we need to modify (3.7) slightly. Let M ≥ 0 be any integer valued

random variable. Then we also have

lim sup
n→∞

−1

n
logQ(B(XM+n

M+1 , D))
a.s.

≤ Λ∗
1(D). (3.11)

The stationarity of P and (3.7) show that (3.11) holds for any fixed, constant M . So
(3.11) holds for all (fixed, constant) M simultaneously, and therefore it also holds for any
random M independent of n.

3.3 Proof: Upper bound, Dmin < D ≤ Dave

We no longer assume that Q is a product measure, however we still assume that Dmin <
D ≤ Dave and we want to use (3.7) to derive the general upper bound

lim sup
n→∞

−1

n
logQ(B(Xn

1 , D))
a.s.

≤ Λ∗
∞(D). (3.12)

We first derive some bounds that let us establish (3.13), which essentially says that we
can shift the sequence (Xn)n≥1 in certain ways without decreasing the above lim sup (or
even the lim sup along a subsequence).

Let Q′ be the distribution of an i.i.d. process with the same first marginal as Q. The
mixing properties of Q show that for any set A ∈ σ(Y n

1 ), we have C−nQ′(A) ≤ Q(A) ≤
CnQ′(A). This lets us use (3.7) to immediately see that

lim sup
n→∞

−1

n
logQ(B(Xn

1 , D)) ≤ lim sup
n→∞

−1

n
logQ′(B(Xn

1 , D)) + logC

a.s.
= Λ∗

1(D) + logC <∞,

since Q and Q′ have the same Λ1 and since Λ∗
∞(D) < ∞ implies that Λ∗

1(D) < ∞. We
can thus find an integer valued random variable N such that

sup
n≥N

−1

n
logQ(B(Xn

1 , D))
a.s.

≤ Λ∗
1(D) + logC + 1 <∞.

Let (an)n≥1 be a strictly increasing, positive integer sequence and let M
a.s.

≥ N be an

10



integer valued random variable. We have

lim sup
n→∞

− 1

an
logQ(B(Xan

1 , D))

a.s.

≤ lim sup
n→∞

− 1

an

[
logQ(B(XM

1 , D)) − logC + logQ(B(Xan
M+1, D))

]
a.s.

≤ lim sup
n→∞

− 1

an

[
−M(Λ∗

1(D) + logC + 1) − logC + logQ(B(Xan
M+1, D))

]
= lim sup

n→∞
− 1

an −M
logQ(B(Xan

M+1, D)). (3.13)

Now we will use a blocking argument so that we can apply (3.7), actually (3.11). Fix
m ≥ 1 and 0 ≤ r < m. Define Ŝ := Sm, T̂ := Tm, ρ̂ : Ŝ × T̂ → [0,∞) by

ρ̂(x̂, ŷ) :=
1

m

m∑
k=1

ρ(xk, yk), x̂ := (x1, . . . , xm), ŷ := (y1, . . . , ym),

B̂(x̂n1 , D) :=

{
ŷn1 ∈ T̂ n :

1

n

n∑
k=1

ρ̂(x̂k, ŷk) ≤ D

}
,

Λ̂1(λ) := EP̂ logEQ̂e
λρ̂(X̂1,Ŷ1), Λ̂∗

1(D) := sup
λ≤0

[
λD − Λ̂1(λ)

]
,

ρ̂Q̂(x̂) := ess inf
Q̂

ρ̂(x̂, Ŷ1), D̂min := Eρ̂Q̂(X̂1), D̂ave := Eρ̂(X̂1, Ŷ1),

where P̂ is the distribution of (X̂k)k≥1, X̂k := (Xr+1+(k−1)m, . . . , Xr+km), and Q̂ is the

distribution of (Ŷk)k≥1, Ŷk := (Yr+1+(k−1)m, . . . , Yr+km). Notice that P̂ , Q̂ and all of the
above quantities do not depend on r (except of course for the specific realizations of
(X̂k)k≥1 and (Ŷk)k≥1). Let (Ỹk)k≥1 be i.i.d. random variables with joint distribution Q̃

on (T̂N, T̂ N) such that Ỹ1 has the same distribution as Ŷ1. Notice that we can replace
Q̂ with Q̃ in the definitions of Λ̂1, Λ̂∗

1, D̂min and D̂ave without changing anything since
they only depend on the distribution of Ŷ1. Notice also that D̂min = Dmin (because of
the mixing properties of Q) and D̂ave = Dave.

Choose an integer valued random variable M so that r + Mm
a.s.

≥ N . Using (3.13)
gives

lim sup
s→∞

− 1

r + sm
logQ(B(Xr+sm

1 , D))
a.s.

≤ lim sup
s→∞

− 1

(s−M)m
logQ(B(Xr+sm

r+Mm+1, D))

= lim sup
s→∞

− 1

(s−M)m
log Q̂(B̂(X̂s

M+1, D)) = lim sup
s→∞

− 1

sm
log Q̂(B̂(X̂M+s

M+1 , D))

≤ lim sup
s→∞

− 1

sm
log Q̃(B̂(X̂M+s

M+1 , D)) +
s logC

sm
, (3.14)

where we switched from Q̂ to Q̃ in the last step.
We would like to be able to immediately apply (3.11) to the final expression in (3.14)

to get

lim sup
s→∞

− 1

r + sm
logQ(B(Xr+sm

1 , D))
a.s.

≤ 1

m
Λ̂∗

1(D) +
logC

m
.

Unfortunately, unless P is totally ergodic, P̂ need not be ergodic, although it is stationary,
and we cannot immediately apply (3.7). However, Berger (1971) [2][pp. 278–9] and
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Gallager (1968) [7][pp. 495–497] show that P̂ can be decomposed into m (not necessarily
unique) equally likely, stationary and ergodic components5

P̂ =
1

m

m∑
j=1

P̂ (j).

Letting Jr ∈ {1, . . . , m} be the random variable that (a.s.) indicates which ergodic com-
ponent generated (X̂k)k≥1, we can apply (3.11) to (3.14) separately for each ergodic
component to get

lim sup
s→∞

− 1

r + sm
logQ(B(Xr+sm

1 , D))
a.s.

≤ 1

m
Λ̂∗

1,Jr
(D) +

logC

m
, (3.15)

where

Λ̂1,j(λ) := EP̂ (j) logEQ̂e
λρ̂(X̂1,Ŷ1) = EP̂ (j) logEQ̃e

λρ̂(X̂1,Ỹ1),

Λ̂∗
1,j(D) := sup

λ≤0

[
λD − Λ̂1,j(λ)

]
.

Recall that 0 ≤ r < m was arbitrary, so (3.15) gives

lim sup
n→∞

−1

n
logQ(B(Xn

1 , D)) = max
0≤r<m

lim sup
s→∞

− 1

r + sm
logQ(B(Xr+sm

1 , D))

a.s.

≤ max
0≤r<m

1

m
Λ̂∗

1,Jr
(D) +

logC

m
≤ max

1≤j≤m
1

m
Λ̂∗

1,j(D) +
logC

m
. (3.16)

We will now use the same notation and blocking technique to show that

max
1≤j≤m

1

m
Λ̂∗

1,j(D) ≤ Λ∗
∞(D) +

logC

m
. (3.17)

Indeed, combining (3.16) and (3.17) and letting m→ ∞ gives (3.12) as desired.
Beginning with (3.1) and using the same arguments as before gives (λ ≤ 0)

Λ∞(λ)
a.s.
= lim

n→∞
1

n
logEQe

λ
∑n

k=1 ρ(Xk,Yk)

= lim
s→∞

1

r + sm
logEQe

λ
∑r

k=1 ρ(Xk ,Yk)eλ
∑r+sm

k=r+1 ρ(Xk ,Yk)

≤ lim inf
s→∞

1

r + sm

[
logEQe

λ
∑r

k=1 ρ(Xk ,Yk) + logC + logEQe
λ
∑r+sm

k=r+1 ρ(Xk,Yk)
]

(3.18)

a.s.
= lim inf

s→∞
1

sm
logEQe

λ
∑r+sm

k=r+1 ρ(Xk ,Yk) = lim inf
s→∞

1

sm
logEQ̂e

λm
∑s

k=1 ρ̂(X̂k,Ŷk)

≤ lim inf
s→∞

1

sm
logEQ̃e

λm
∑s

k=1 ρ̂(X̂k,Ỹk) +
s logC

sm

= lim inf
s→∞

1

sm

s∑
k=1

logEQ̃e
λmρ̂(X̂k ,Ỹ1) +

logC

m
a.s.
=

1

m
Λ̂1,Jr(mλ) +

logC

m
, (3.19)

5Here is an illustrative example: (X1, X2, . . .) is equally likely either (0, 1, 0, 1, . . .) or (1, 0, 1, 0, . . .),
which is stationary and ergodic (an irreducible, periodic Markov chain). For m = 2, (X̂1, X̂2, . . .) is
equally likely either ((0, 1), (0, 1), . . .) or ((1, 0), (1, 0), . . .) for any r, which is stationary but not ergodic
(a mixture of two different constant, and thus stationary and ergodic, sequences).
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where we are able to ignore the first term in (3.18) because it has finite expectation
(namely rΛr(λ)) and is thus a.s. finite. The last equality comes from the ergodic theorem
applied to each ergodic component of P̂ . As we vary r, the random variables (Jr)0≤r<m
indicate (a.s.) each of the distinct ergodic components at least once [2, 7]. Thus (3.19)
implies that

Λ∞(λ) ≤ min
1≤j≤m

1

m
Λ̂1,j(mλ) +

logC

m
. (3.20)

We can apply this bound to get

max
1≤j≤m

1

m
Λ̂∗

1,j(D) = max
1≤j≤m

sup
λ≤0

[
λ

m
D − 1

m
Λ̂1,j(λ)

]

= max
1≤j≤m

sup
λ≤0

[
λD − 1

m
Λ̂1,j(mλ)

]
= sup

λ≤0

[
λD − min

1≤j≤m
1

m
Λ̂1,j(mλ)

]

≤ sup
λ≤0

[λD − Λ∞(λ)] +
logC

m
= Λ∗

∞(D) +
logC

m
.

This gives (3.17) and completes the proof of the upper bound when Dmin < D ≤ Dave.

3.4 Proof: Upper bound, D > Dave

In this section we assume that D > Dave, which means that we must have Dave < ∞.
Chebyshev’s inequality gives

Q

{
yn1 :

1

n

n∑
k=1

ρ(Xk, yk) > D

}
≤ 1

nD

n∑
k=1

EQρ(Xk, Y1)
a.s.→ Dave

D
< 1

as n→ ∞ by the ergodic theorem. So

− 1

n
logQ(B(Xn

1 , D)) = −1

n
log

[
1 −Q

{
yn1 :

1

n

n∑
k=1

ρ(Xk, yk) > D

}]

≤ −1

n
log

[
1 − 1

nD

n∑
k=1

EQρ(Xk, Y1)

]
a.s.→ 0.

Thus, for D > Dave we have

lim sup
n→∞

−1

n
logQ (B(Xn

1 , D))
a.s.

≤ 0 ≤ Λ∗
∞(D)

and this completes the proof of the upper bound when D > Dave.

3.5 Proof: D = Dmin

So far we have established the lower bound in all cases and the upper bound in all cases
except for the situation where D = Dmin and Λ∗

∞(Dmin) is finite. In this section and the
next two subsections we assume that D = Dmin <∞ and Λ∗

∞(Dmin) <∞. Define A(xn1 )
as in (2.6). The mixing properties of Q show that

ess inf
Q

1

n

n∑
k=1

ρ(xk, Yk) =
1

n

n∑
k=1

ρQ(xk), (3.21)

13



so the ergodic theorem gives

lim
n→∞

ess inf
Q

1

n

n∑
k=1

ρ(Xk, Yk)
a.s.
= Dmin.

The convergence also holds in expectation. (3.21) allows us to compute

− logQ(A(xn+m
1 )) + logC

= − logQ
{
yn+m

1 : ρ(xk, yk) = ρQ(xk), 1 ≤ k ≤ n+m
}

+ logC

≤ − logQ(A(xn1 )) + logC − logQ(A(xn+m
n+1 )) + logC.

The appendix shows that E[− logQ(A(Xn
1 ))] = nΛ∗

n(Dmin) which is finite since Λ∗
∞(Dmin)

is finite. The subadditive ergodic theorem and (2.1) give

lim
n→∞

−1

n
logQ(A(xn1 ))

a.s.
= Λ∗

∞(Dmin). (3.22)

The convergence also holds in expectation.

3.5.1 Proof: D = Dmin, constant ρQ

If ρQ(X1) is a.s. constant, then Q(A(Xn
1 ))

a.s.
= Q(B(Xn

1 , Dmin)) and (3.22) gives (2.4).
Notice that we have now completed the proof of (2.4) in each of the cases D 
= Dmin,
Λ∗

∞(D) = ∞ and ρQ(X1) a.s. constant. As we will see in the next section, if all of these
conditions fail simultaneously, then (2.4) fails as well.

3.5.2 Proof: D = Dmin, non-constant ρQ

Here we investigate the behavior of logQ(B(Xn
1 , D)) when D = Dmin <∞, Λ∗

∞(Dmin) <
∞ and ρQ(X1) is not a.s. constant. This makes use of recurrence properties for random
walks with stationary and ergodic increments.6 What we need is summarized in the
following:

Lemma 3.1. Let (Xn)n≥1 be a real-valued stationary and ergodic process and define
Zn :=

∑n
k=1Xk, n ≥ 1. If EX1 = 0 and Prob{X1 
= 0} > 0, then Prob {Zn > 0 i.o.} > 0

and Prob {Zn ≥ 0 i.o.} = 1.

Proof. Define Z0 := 0. (Zn)n≥0 is a random walk with stationary and ergodic increments.
Kesten (1975) [10] shows that {lim infn n

−1Zn > 0} and {Zn → ∞} differ by a null set.
The ergodic theorem gives Prob{n−1Zn → 0} = 1, so Prob{Zn → ∞} = 0. Similarly, by
considering the process −Zn, we see that Prob{Zn → −∞} = 0.

Now {|Zn| → ∞} is invariant and must have probability 0 or 1. If it has probability
1, then since we cannot have Zn → ∞ or Zn → −∞ we must have Zn oscillating between
increasingly larger positive and negative values, which means Prob{Zn > 0 i.o.} = 1 and
completes the proof.

Suppose Prob{|Zn| → ∞} = 0. Define

N(A) :=
∑
n≥0

IA(Zn), A ⊂ R,

6(Zn)n≥0 is a random walk with stationary and ergodic increments [1] if Z0 := 0 and Zn :=
∑n

k=1Xk,
n ≥ 1, for some stationary and ergodic sequence (Xn)n≥1.
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to be the number of times the random walk visits the set A. Berbee (1979) [1][Corollary
2.3.4] shows that either N(J) < ∞ a.s. for all bounded intervals J or {N(J) = 0} ∪
{N(J) = ∞} has probability 1 for all intervals J (open or closed, bounded or unbounded,
but not a single point). By assumption |Zn| 
→ ∞, so we can rule out the first possibility.
Since Prob{Z0 = 0} = 1, we see that for any interval J containing {0} we must have
Prob{N(J) = ∞} = 1. In particular, taking J := [0,∞) shows that Prob{Zn ≥ 0 i.o.} =
1. Similarly, taking J := (0,∞) shows that Prob{Zn > 0 i.o.} = Prob{N(J) = ∞} =
Prob{N(J) > 0} ≥ Prob{X1 > 0} > 0.

Returning to the main argument,

− logQ(B(Xn
1 , Dmin)) ≥ − logQ

{
yn1 :

n∑
k=1

ρQ(Xk) ≤ nDmin

}

=

{
0 if

∑n
k=1 ρQ(Xk) ≤ nDmin

∞ if
∑n

k=1 ρQ(Xk) > nDmin

=

{
0 if Zn ≤ 0

∞ if Zn > 0
, (3.23)

where Zn :=
∑n

k=1(ρQ(Xk)−Dmin). Lemma 3.1 shows that Prob{Zn > 0 i.o.} > 0. This
and (3.23) prove (2.5a).

Lemma 3.1 also shows that Prob{Zn ≤ 0 i.o.} = 1. Let (nm)m≥1 be the (a.s.) infinite,
random subsequence of (n)n≥1 such that Zn ≤ 0. Note that

nm∑
k=1

ρQ(Xk) ≤ nmDmin

so

− logQ(B(Xnm
1 , Dmin)) ≤ − logQ

{
ynm

1 :
nm∑
k=1

ρ(Xk, yk) ≤
nm∑
k=1

ρQ(Xk)

}

= − logQ(A(Xnm
1 )). (3.24)

Now, the final expression in (3.24) is a.s. finite because E[− logQ(A(Xn
1 ))] = nΛ∗

n(Dmin)
< ∞. This proves (2.5b) and shows that (nm)m≥1 satisfies the claims of the theorem.
(3.22) and (3.24) also show that

lim sup
m→∞

− 1

nm
logQ(B(Xnm

1 , Dmin)) ≤ lim sup
m→∞

− 1

nm
logQ(A(Xnm

1 ))

≤ lim sup
n→∞

−1

n
logQ(A(Xn

1 ))
a.s.
= Λ∗

∞(Dmin).

Combining this with the lower bound (3.5) proves (2.5c) and completes the proof of all
parts of (2.5) and Theorem 2.1.

A Appendix

A common assumption in the literature is that ρ is either bounded or satisfies some
moment conditions. Since we do not assume these things here, we need to reverify many
properties of Λ and Λ∗ that can be found elsewhere under these stronger conditions. We
also neglected any measurability issues in the main text, but we deal with them here.
Let us begin with the following Lemma which comes mostly from Dembo and Zeitouni
(1998) [5].
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Lemma A.1. [5] Let Z be a real-valued, nonnegative random variable. Define

Λ(λ) := logEeλZ .

Λ is nondecreasing and convex. Λ is finite, nonpositive and C∞ on (−∞, 0) with

lim
λ↑0

Λ(λ) = Λ(0) = 0 and Λ′(λ) =
EZeλZ

EeλZ
, λ < 0.

Λ′ is finite, nonnegative, nondecreasing and C∞ on (−∞, 0) with

lim
λ↓−∞

Λ′(λ) = ess inf Z and lim
λ↑0

Λ′(λ) = EZ.

If ess inf Z < EZ, then Λ is strictly convex on (−∞, 0).

Proof. Since Z is nonnegative and real-valued, Λ is nondecreasing everywhere and Λ is
finite and nonpositive on (−∞, 0] with Λ(0) = 0. Dembo and Zeitouni (1998) [5][Lemma
2.2.5, Example 2.2.24] show that Λ is convex everywhere and C∞ on (−∞, 0) with Λ′(λ)
as stated. This implies that Λ′ is nondecreasing and C∞ (and thus finite) on (−∞, 0).
The dominated convergence theorem shows that Λ(λ) ↑ 0 as λ ↑ 0.

Clearly Λ′ is nonnegative. The monotone convergence theorem applied to the numer-
ator and denominator separately in the expression for Λ′ establishes that limλ↑0 Λ′(λ) =
EZ.

We have

Λ′(λ) =
EZeλZ

EeλZ
≥ E(ess inf Z)eλZ

EeλZ
= (ess inf Z)

EeλZ

EeλZ
= ess inf Z. (A.1)

Since Λ is convex, differentiable and nondecreasing, we also have (for λ < 0)

Λ′(λ) ≤ Λ(0) − Λ(λ)

0 − λ
=

Λ(λ)

λ
= log

[
EeλZ

]1/λ
= − log

[
E(e−Z)|λ|

]1/|λ|
= − log

∥∥e−Z∥∥
|λ| ,

where ‖ · ‖p denotes the Lp norm. Taking limits gives

lim
λ→−∞

Λ′(λ) ≤ − log

[
lim

λ→−∞

∥∥e−Z∥∥
|λ|

]
= − log

∥∥e−Z∥∥
∞ = − log ess sup e−Z

= − log e− ess inf Z = ess inf Z.

Combining this with (A.1) establishes that limλ→−∞ Λ′(λ) = ess inf Z.
An easy application of the dominated convergence theorem shows that d

dλ
EZneλZ =

EZn+1eλZ for λ < 0 and n ≥ 0. So for λ < 0

Λ′′(λ) =
EeλZEZ2eλZ − EZeλZEZeλZ

[EeλZ ]2
=
EZ2eλZ

EeλZ
−

(
EZeλZ

EeλZ

)2

.

The Cauchy-Schwarz inequality shows that Λ′′ ≥ 0 with equality if and only if Z is (a.s.)
constant. So Λ′′ > 0 on (−∞, 0) whenever ess inf Z < EZ.
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A.1 Measurability issues

Halmos (1966) [9] shows that we can integrate out one variable in a product measurable
function and still obtain a measurable function. It is important that this is the small-
est product σ-algebra and not the completion of it w.r.t. some product measure. This
immediately establishes the measurability (in x) of

Q(B(x,D)), EQe
λρ(x,Y ), EQρ(x, Y )eλρ(x,Y )

and any nice functions of them, where we denote Y := Y1 to clean up the notation.
In particular,

ρλQ(x) :=
EQρ(x, Y )eλρ(x,Y )

EQeλρ(x,Y )

is measurable (for λ ≤ 0). Lemma A.1 (with Z := ρ(x, Y ) for fixed x so that ρλQ(x) =
Λ′(λ)) shows that ρλQ(x) ↓ ρQ(x) as λ ↓ −∞ for each x. This implies that ρQ is measur-
able.

Noting that
∑n

k=1 ρ(x
n
1 , y

n
1 ) is product measurable on Sn×T n lets us repeat the above

steps for any n. This clears up the measurability issues that we avoided in the main text.

A.2 Properties of Λn

Here we list some properties of Λn that hold for any 1 ≤ n < ∞. Clearly Λn is nonde-
creasing with Λn(0) = 0. Λn is also convex. From this we see that Λn is either everywhere
−∞ on (−∞, 0) or it is finite on (−∞, 0]. In the rest of this section we will only be con-
sidering the latter case. Note that if Λ∗

n(D) < ∞ for any D, then Λn must be finite on
(−∞, 0].

Λn is a proper (> −∞) closed (l.sc.) convex function [13] and continuous from the
left. It is finite and C1 on (−∞, 0). Λ′

n, the derivative with w.r.t. λ, is nondecreasing
and

Λ′
n(λ) =

1

n
EP

[
EQ

∑n
j=1 ρ(Xj, Yj)e

λ
∑n

k=1 ρ(Xk,Yk)

EQeλ
∑n

k=1 ρ(Xk ,Yk)

]
, λ < 0,

sup
λ<0

Λ′
n(λ) = lim

λ↑0
Λ′
n(λ) = sup

λ<0

Λn(λ)

λ
= lim

λ↑0
Λn(λ)

λ
= Dave,

inf
λ<0

Λ′
n(λ) = lim

λ→−∞
Λ′
n(λ) = inf

λ<0

Λn(λ)

λ
= lim

λ→−∞
Λn(λ)

λ
= Dmin.

Furthermore, if Dmin < Dave, then Λn(·) is strictly convex on (−∞, 0).
From the definition it is easy to see that Λ∞ will also be nondecreasing and convex

with Λ∞(0) = 0. Whenever Λ∗
∞(D) <∞ for some D, we must have Λ∞ finite on (−∞, 0],

which means Λ∞ is continuous on (−∞, 0).

A.2.1 Proofs

We will now prove these claims using Lemma A.1. For a fixed xn1 ∈ Sn, define the random
variable Z(xn1 ) :=

∑n
k=1 ρ(xk, Yk). Let

Λ(xn1 , λ) := logEeλZ(xn
1 )

so that Λn(λ) = 1
n
EPΛ(Xn

1 , λ). Lemma A.1 shows that Λ(xn1 , ·) has all of the properties
that we want Λ to have. For example, Λ(xn1 , ·) is convex for each xn1 , so Λn is convex also.
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The rest of this proof is justification that these properties continue to hold after taking
expectations (as long Λn is never −∞).

Suppose that Λn(λ) is finite for some λ < 0. Choose λ′ < λ. The convexity of Λ(xn1 , ·)
gives

Λ(xn1 , λ) ≤ λ

λ′
Λ(xn1 , λ

′) +

(
1 − λ

λ′

)
Λ(xn1 , 0) =

λ

λ′
Λ(xn1 , λ

′) ≤ 0.

Taking expectations shows that Λn(λ
′) > −∞. Since λ′ < λ was arbitrary and since

Λn is increasing, we see that Λn > −∞ everywhere and finite on (−∞, 0]. Thus Λn is a
proper convex function and Λn is continuous on (−∞, 0).

Since 0 ≥ Λ(xn1 , λ) ≥ Λ(xn1 , δ) > −∞ for δ ≤ λ ≤ 0, since 0 ≥ EPΛ(Xn
1 , δ) =

nΛn(δ) > −∞ and since Λ(xn1 , λ) ↑ 0 as λ ↑ 0, the dominated convergence theorem gives
Λn(λ) ↑ Λn(0) = 0 as λ ↑ 0. Since Λ(xn1 , ·) is nonnegative and increasing on (0,∞) for
each xn1 , the monotone convergence theorem shows that Λn is continuous from the left
on (0,∞). So it is continuous from the left everywhere. Since it is nondecreasing, it is
l.sc. and thus closed.

Since Λn is finite and convex on (−∞, 0), it has finite and nondecreasing right hand

and left hand derivatives, Λ
′
n and Λ′

n, respectively, with the property that Λ
′
n ≥ Λ′

n and

Λ′
n(λ+ ε) ≥ Λ

′
n(λ) for λ < λ+ ε < 0. When λ− ε < λ < 0 we have

0 ≤ Λ(xn1 , λ) − Λ(xn1 , λ− ε)

ε
↑ Λ′(xn1 , λ), as ε ↓ 0,

so the monotone convergence theorem gives

Λ′
n(λ) =

1

n
EPΛ′(Xn

1 , λ), λ < 0,

which is finite. When λ < λ+ ε < 0 we have

0 ≤ Λ(xn1 , λ+ ε) − Λ(xn1 , λ)

ε
≤ Λ′(xn1 , λ+ ε).

Since the right hand side has finite expectation, the dominated convergence theorem
gives

Λ
′
n(λ) =

1

n
EPΛ′(Xn

1 , λ) = Λ′
n(λ), λ < 0.

This shows that Λn is differentiable on (−∞, 0) and confirms the stated expression for
Λ′
n. Since Λn is convex, the derivative Λ′

n is nondecreasing and continuous.
The monotone convergence theorem gives Λ′

n(λ) ↑ 1
n
EPZ(Xn

1 ) = Dave as λ ↑ 0. The
dominated convergence theorem gives Λ′

n(λ) ↓ 1
n
EP ess inf Z(Xn

1 ) = Dmin (because of the
mixing properties of Q) as λ ↓ 0. Suppose Dmin < Dave. Then with positive probability
Z(Xn

1 ) is not a.s. constant and Λ′(Xn
1 , ·) > 0 on (−∞, 0). Taking expectations shows

that Λ′
n > 0 there also, so Λn is strictly convex on (−∞, 0).

Since Λ′
n is nondecreasing, supλ<0 Λ′

n(λ) = limλ↑0 Λ′
n(λ) and similarly for the infimum.

Noting that
Λn(λ) − Λn(0)

λ− 0
=

Λn(λ)

λ

is the slope of the cord above Λn from 0 to λ, we see that this slope is also nondecreasing in
λ so we can interchange supremums and infimums with the appropriate limits as before.
As λ ↑ 0, this slope converges to the derivative at 0 (which we know is Dave). As λ ↓ −∞
this slope converges to the limiting derivative (which we know is Dmin).
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A.3 Properties of Λ∗
n

Suppose 1 ≤ n ≤ ∞. Λ∗
n is convex, l.sc., nonnegative, nonincreasing and continuous

from the right. Λ∗
n(D) = ∞ whenever D < Dmin and Λ∗

n(D) = 0 whenever D ≥ Dave. If
D ≤ Dave, then Λ∗

n(D) = supλ∈R [λD − Λn(λ)]. If Λ∗
n(D) < ∞ for some D, then Λ∗

n is
finite and continuous on (Dmin,∞).

Suppose 1 ≤ n < ∞. If Dmin < ∞, then Λ∗
n(Dmin) = n−1E[− logQ(A(Xn

1 ))], where
A(xn1 ) is defined in (2.6). If Λ∗

n(D) < ∞ for some D, then Λ∗
n is C1 on (Dmin,∞).

Furthermore, if Dmin < Dave, then Λ∗
n is strictly convex (and thus strictly decreasing)

on (Dmin, Dave) and for each D ∈ (Dmin, Dave) there exists a unique λD < 0 such that
Λ∗
n(D) = λDD − Λn(λD).

A.3.1 Proofs

Now we will prove these claims. If D < 0, Λ∗
n(D) = ∞. Otherwise, for D ≥ 0 and

for λ ≤ 0, D �→ λD − Λn(λ) is a nonincreasing linear (and thus convex and l.sc.)
function, so Λ∗

n is a supremum of nonincreasing, convex and l.sc. functions which is
always nonincreasing, convex and l.sc. Λ∗

n(D) ≥ 0D − Λn(0) = 0D − 0 = 0, so it is
nonnegative. Since it is l.sc. and nonincreasing, it must be continuous from the right.

Define ρ̃(x, y) := (ρ(x, y) − ρQ(x)) ∨ 0. For n <∞, notice that

n∑
k=1

ρ̃(xk, Yk) =

n∑
k=1

ρ(xk, Yk) −
n∑
k=1

ρQ(xk) Q a.s.

We can write

Λn(λ) =
1

n
EP logEQe

λ
∑n

k=1 ρ̃(Xk,Yk)+λ
∑n

k=1 ρQ(Xk)

=
1

n
EP log eλ

∑n
k=1 ρQ(Xk) +

1

n
EP logEQe

λ
∑n

k=1 ρ̃(Xk ,Yk) = λDmin + Λ̃n(λ),

where Λ̃n is defined like Λn except with ρ̃ instead of ρ. This gives

Λ∗
n(D) = sup

λ≤0

[
λ(D −Dmin) − Λ̃n(λ)

]
. (A.2)

Since Λ̃n(λ) ≤ 0 for λ ≤ 0, (A.2) gives the bound

Λ∗
n(D) ≥ sup

λ≤0
λ(D −Dmin).

When D < Dmin, this supremum is infinite. If n = ∞, then we get the same result by
using (2.1). This shows that D < Dmin implies Λ∗

n(D) = ∞.
Jensen’s inequality gives

Λn(λ) =
1

n
EP logEQe

λ
∑n

k=1 ρ(Xk ,Yk) ≥ 1

n
EPEQ log eλ

∑n
k=1 ρ(Xk ,Yk) = λDave (A.3)

for n < ∞ and the same bound holds for n = ∞ by applying (2.1). If D ≥ Dave, then
necessarily Dave <∞ and (A.3) gives

Λ∗
n(D) = sup

λ≤0
[λD − Λn(λ)] ≤ sup

λ≤0
[λD − λDave] = 0.
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Since Λ∗
n ≥ 0, this shows that D ≥ Dave implies Λ∗

n(D) = 0.
If Dave = ∞, then (A.3) shows that Λn(λ) = ∞ for λ > 0, so λD−Λn(λ) = −∞ < 0

for all λ > 0 and all D. If D ≤ Dave <∞ and λ > 0, then (A.3) gives

λD − Λn(λ) ≤ λDave − Λn(λ) ≤ λDave − λDave = 0.

So in both cases, when D ≤ Dave,

sup
λ>0

[λD − Λn(λ)] ≤ 0 ≤ Λ∗
n(D).

This shows that we can take the supremum over all of R in the definition of Λ∗
n whenever

D ≤ Dave. This proof essentially comes from Dembo and Zeitouni (1998) [5][Lemma
2.2.5]. Notice that this means Λ∗

n(D) is the conjugate of Λn at D as long as D ≤ Dave.
Now suppose that Λ∗

n(D) <∞ for some D and that n <∞. If we can show that Λ∗
n

is finite on (Dmin, Dave) then we will know that Λ∗
n is finite and continuous on (Dmin,∞),

because it is convex everywhere and finite on [Dave,∞). We can deal with the case n = ∞
by using (2.1) and the bounds in (3.6). So let us show that Λ∗

n is finite on (Dmin, Dave).
We can assume that Dmin < D < Dave. Notice that the assumption Λ∗

n(D) < ∞ means
that Λn has all of the nice properties detailed in Section A.2.

In particular, the strict convexity of Λn implies that there is a unique λD < 0 with
Λ′
n(λD) = D. We have just seen that Λ∗

n(D) is the conjugate of Λn at D, so Rockafellar
(1970) [13][Theorem 23.5, Corollary 23.5.1, Theorem 25.1] gives

Λ∗
n(D) = λDD − Λn(λD) and

d

dD
Λ∗
n(D) = λD < 0.

This shows that Λ∗
n is finite, strictly convex and C1 on (Dmin, Dave). Since λD ↓ 0 as

D ↑ Dave, Λ∗
n is differentiable at 0 and so it is C1 on (Dmin,∞).

The last thing we have to prove is the claim about Λ∗
n(Dmin) for Dmin < ∞ and

n <∞. (A.2) gives

Λ∗
n(Dmin) = sup

λ≤0
−Λ̃n(λ) = lim

λ↓−∞
−Λ̃n(λ),

because Λ̃n is nondecreasing. Applying the monotone convergence theorem and then the
dominated convergence theorem and using the mixing properties of Q gives

Λ∗
n(Dmin) = lim

λ↓−∞
1

n
EP

[
− logEQe

λ
∑n

k=1 ρ̃(Xk ,Yk)
]

=
1

n
EP

[
− log

(
lim
λ↓−∞

EQe
λ
∑n

k=1 ρ̃(Xk ,Yk)

)]

=
1

n
EP

[
− logEQ

(
lim
λ↓−∞

eλ
∑n

k=1 ρ̃(Xk,Yk)

)]

=
1

n
EP

[
− logEQI{yn

1 :
∑n

k=1 ρ̃(Xk,yk)=0}(Y
n
1 )

]
=

1

n
EP [− logQ(A(Xn

1 ))].

A.4 Proof of Proposition 1.1

Suppose Q(An) = 0. Then by stationarity Prob
{
Y k+n
k+1 ∈ An, any k ≥ 1

}
= 0 and

Prob {logWn = ∞ = − logQ(An)} = 1.
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Similarly, if Q(An) = 1, then

Prob {logWn = 0 = − logQ(An)} = 1.

So whenever An is trivial, we have Prob {logWn = − logQ(An)} = 1.
The rest of this proof comes from Kontoyiannis (1998) [11]. Fix (cn)n≥1, cn ≥ 0,∑
n e

−cn <∞. For any K ≥ 0 and An not trivial, we have

Prob {Wn < K} ≤
∑

1≤k<K
Prob {Wn = k} ≤

∑
1≤k<K

Prob
{
Y n+k−1
k ∈ An

}
≤ KQ(An).

With K := e− logQ(An)−cn this gives

Prob {logWn < − logQ(An) − cn} ≤
{

0 if Q(An) is trivial

e− logQ(An)−cnQ(An) otherwise
≤ e−cn .

Since this is summable, the Borel-Cantelli Lemma shows that

Prob {logWn < − logQ(An) − cn i.o.} = 0

which implies that

Prob {logWn ≥ − logQ(An) − cn eventually} = 1.

Notice that this only uses the stationarity of Q.
Using the ψ−-mixing properties of Q to choose d ≥ 1 and C > 1 large enough that

Q(A)Q(B) ≤ CQ(A ∩ B) whenever A ∈ σ(Y n
1 ) and B ∈ σ(Y ∞

n+d) for some n. Suppose

An is not trivial. Define K̃ := (K − 1)/(n+ d) and Bk :=
{
Y k+n−1
k 
∈ An

}
to get

Prob {Wn > K} = Prob

{ ⋂
1≤k≤K

Bk

}
≤ Prob




⋂
0≤j≤K̃

Bj(n+d)+1




= Prob {B1}
∏

1≤j≤K̃
Prob

{
Bj(n+d)+1

∣∣Bi(n+d)+1, 0 ≤ i < j
}

= [1 − Prob {Bc
1}]

∏
1≤j≤K̃

[
1 − Prob

{
Bc
j(n+d)+1

∣∣Bi(n+d)+1, 0 ≤ i < j
}]

≤ [1 −Q(An)]
∏

1≤j≤K̃

[
1 − C−1Q(An)

]
≤

[
1 − C−1Q(An)

]K̃
.

With K := e− logQ(An)+cn+logn this gives

Prob {logWn > − logQ(An) + cn + logn}

≤
{

0 if Q(An) is trivial

[1 − C−1Q(An)]
(Q(An)−1necn−1)/(n+d) otherwise

≤ α((n−1)ecn )/(C(n+d))

≤ e−cn for all n large enough,

where α := sup0<x≤C−1[1 − x]1/x < 1. The final inequality is easy to see by taking
logarithms and noting that cn → ∞.

Again, this is summable by assumption and we can see that

Prob {logWn ≤ − logQ(An) + cn + logn eventually} = 1.
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