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Traditional views of visual processing suggest that early visual neurons in V1
and V2 are static spatiotemporal filters that extract local features from a visual
scene. The extracted information is then channelled through a feedforward chain
of modules in successively higher visual areas for further analysis. Recent elec-
trophysiological recordings from early visual neurons in awake behaving monkeys
reveal that there are many levels of complexity in the information processing of
the early visual cortex, as seen in the long-latency responses of its neurons. These
new findings suggest that activity in the early visual cortex is tightly coupled and
highly interactive with the rest of the visual system. They lead us to propose
a new theoretical setting based on the mathematical framework of hierarchical
Bayesian inference for reasoning about the visual system. In this framework,
the recurrent feedforward/feedback connections in the cortex serves to integrate
top-down contextual priors and bottom-up observations to structure the concurrent
probabilistic inference along the visual hierarchy. We suggest that the algorithms
of particle filtering and Bayesian belief propagation are relevant for understanding
these interactive cortical computations. We review some recent neurophysiological
evidences that support the plausibility of these ideas. (©) 2002 Optical Society of

America
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1. The traditional model of early visual cortex

Neurons in the primary visual cortex are known to be tuned to specific elementary local
features in the visual scenes. These features include location, line orientation, stereo dispar-
ity, movement direction, color and spatial frequency.!>? In traditional models,* each of the
higher visual areas is similarly tuned to specific features of a progressively more complex
sort (such as shape) and the analysis of the current visual stimulus proceeds in a feedforward
architecture, with each visual area using input from lower areas to compute its features.

It is also known that V1 neurons are influenced by the surrounding context of the stim-
uli.> "> The contextual modulations in these studies have been modeled both biologically by
the facilitation and inhibition carried by axon collaterals within V1 and psychophysically as
being the neural correlate of pop-out or figure-ground saliency.®8:10:11 Functionally, these
modulations are hypothesized to compute extended contours and region saliency.'? '3 The
effect on the model is that V1’s role in visual computation is extended in time, allowing the
computed features to integrate information from larger parts of the image.

Some of the observed contextual modulations are thought to result from feedback medi-
ated by the massive recurrent connections from the extrastriate areas to V1. The traditional
model incorporates these by assigning to feedback the role of attentional selection based
on the mechanisms of biased competition.' ¢ The idea of biased competition is that when
multiple stimuli are presented in a visual field, the different neuronal populations activated
by these stimuli will engage in competitive interaction. Attending to a stimulus at a partic-
ular spatial location or to a particular object feature, however, could bias the competition
in favor of the neurons representing the attended features or locations, enhancing their re-
sponses and suppressing the responses of the other neurons. However, all biased competition
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While these models give an apparently complete explanation of almost all experimental
data, they use the sophisticated machinery of feedback pathways in a rather impoverished
way and they persist in viewing the computations in each visual area as predominantly
independent processes. In this paper, we propose a Bayesian theory of hierarchical cortical

17,18 and on recent

computation based both on the mathematical ideas of pattern theory
experimental evidences. We believe this theory provides a much more tightly coupled model
of the processing in visual areas and especially V1/V2. We will first sketch the general

theoretical framework and then in subsequent sections discuss some experimental evidence

to illuminate the plausibility of these ideas.

2. A Bayesian perspective

A.  Hierarchical Bayesian inference

Bayesian inference and related theories have been proposed as a more appropriate theoretical
framework for reasoning about top-down visual processing in the brain.'®?* This idea can
be traced back to the unconscious inference theory of perception by Helmholtz.?®

Recall that Bayes’s rule proposes that with observations zy, hidden variables z; to be
inferred and contextual variables x, then a probabilistic description of their effect on each

other is given in the form:

P(fEOa‘Tl"Th) :P($0|$1,$h)P(ZE1|IL‘h),

where P(a|b) stands for the conditional probability of a, given b. The first term on the
right, P(zg|z1,z) is called the imaging model, and it describes the probability of the
observations, given all the other variables. One often assumes that it does not depend on z},
i.e. 1 contains all the facts needed to predict the observations. The second term P(z1|zp,) is

called the prior probability on z1, i.e. its probability before the current observations. Then
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the second identity:

P(z1|zo, zn) P(zo|zn) = P(x0, z1|Th)

may be used to arrive at

P(zo|z1,zn)P(21|Th)

P(z1|z0,7h) = P(zo|zp)

The denominator P(zg|zy) is the probability of the observations given zj and is independent
of z1. Hence it can simply be viewed as the normalizing factor Z; needed so that the posterior
probability P(z1|zg,zp) is a probability distribution, i.e. equals one when summed over all
values of x.

In the example of early vision, we let zy stand for the current visual input, i.e. the output
of the LGN; z1 stands for the values of the features being computed by V1; and zj, stands for
all higher level information — contextual information about the situation and more abstract
scene reconstructions. Thus V1 arrives at the most probable values z; of its features by
finding the a posteriori estimate z; that maximizes P(z1|xg, zp). If we make the simplifying
Markov assumption that P(zg|z1,zp) does not depend on zj, we can then interpret the
formula above as saying that V1 computes its features by multiplying the probability of the
sensory evidence P(zy|z1) with the feedback biasing probabilities P(z1|zp) and maximizing
this by competition. Note that P(z;|zp) is similar to the attentional bias factor used in the
traditional model, but here it has a richer interpretation and carries much more information.
This factor now includes all possible ways in which higher level information about the
scene may affect the V1 features ;. Two examples are high level illumination data making
probable the low level fact that certain areas of the image are in shadow; or the high
level knowledge of the identity of an individual suggesting that a face should have certain

proportions, as measured from the low level data in V1.



This basic formulation can also capture the interaction between multiple cortical areas,
such as V1, V2, V4 and IT. In this case, each area computes a set of features, called
Tyl, Ty2, Tod, Tie. We again make the simplifying assumption that if, in the sequence of
variables (xg, Zy1, Ty2, Tod,Zit), any variable is fixed, then the variables before and after it
are conditionally independent. This means we can factor the probability model for these

variables and the evidence x( as

P(z0, ZTy1, To2, Toa, Tit) = P(x0|Ty1) P(To1|Tv2) P(Tv2|Tya) P(Tya|zit) P(zit)

and make our model a graphical model or Markov random field based on the chain of vari-

ables:

From this, it follows that:

P(zy1|T0, Ty2, Ty, Tit) =P (xo|201) P(@01|T02) /21,
P(zy2|T0, Ty1, Tos, Tit) =P (Ty1|2v2) P(Ty2|20a)/ 22,
P(2ys|To, Ty1, Ty2, Tit) =P (Ty2|Tys) P(Tpa|Tit) [ Zs-

More generally, in a graphical model, one only needs potentials ¢(x;,z;) indicating the

preferred pairs of values of directly linked variables z; and z;, and we have:

P(zy1]T0, Toz, Tos, Tit) =¢(0, Tv1)$(To1, Tu2) /[ Z (20, To2),
P(zy2|T0, To1, Tut, Tit) =G(To1, To2) p(Tv2s Tva) [ Z (Tv1, Tua),
P(zya|T0, To1, o2, Tit) =H(Tv2, Toa) 9(Tvs, Tit) [ Z (Tv2, Tit)-

where Z(z;, ;) is a constant needed to normalize the function to a probability distribution.

In this framework, each cortical area is an expert for inferring certain aspects of the

visual scene, but its inference is constrained by both the bottom-up data coming in on the



feedforward pathway (the first factor in the LHS of each equation) and the top-down data
feeding back (the second factor) (see Figure 1a). Each cortical area seeks to maximize the
probability of its computed features z; by combining the top-down and bottom-up data
using the above formulae (the Z’s can be ignored). The system as a whole moves, game-
theoretically, toward an equilibrium in which each x; has an optimum value given all the
other z’s. In particular, feedback from all higher areas can ripple back to V1 and cause
a shift in the preferred features computed by V1. Thus long latency responses in V1 will
tend to reflect increasingly more global feedback from abstract higher-level features, such as
illumination and the segmentation of the image into major objects. For instance, a faint edge
could turn out to be an important object boundary after the whole image is interpreted,
although the edge was suppressed as a bit of texture during the first bottom-up pass.

The feedforward input drives the generation of the hypotheses, and the feedback from
higher inference areas provides the priors to shape the inference at the earlier levels. Hierar-
chical Bayesian inference is concurrent across multiple areas, so that each piece of informa-
tion does not need to flow forward to IT, return V1 and then back to IT, etc. Such a large
loop would take too much time per iteration and is infeasible for real time inference. Rather,
successive cortical areas in the visual hierarchy can constrain each other’s inference in small
loops instantaneously and continuously. It is plausible that such a system, as a whole, might
converge rapidly to a consistent interpretation of the visual scene incorporating low level

and high level sources of information.

B. Particle filtering

A major complication in this approach is that, unless the image is simple and clear, each

area cannot be completely sure of its inference until the whole image is understood. More



precisely, if the computation proceeds in a ‘greedy’ fashion with each cortical area settling
on one seemingly best value for its features x; in terms of the other areas signals, it may
settle into an incorrect local maximum of the joint probability. Even allowing an iteration in
which each x; is updated when one of its neighbors updates its features, one may well find a
situation in which changing one z; decreases the joint probability but still a radical change
of all ; might find a still more probable interpretation. In computer vision experiments,
this occurs frequently.

The remedy is not to ‘jump to conclusions’, but to allow multiple high probability
values for the features or hypotheses to stay alive until longer feedback loops have had a
chance to exert an influence. This approach is called particle filtering, and its use has been
developing explosively in the computer vision and artificial intelligence communities.?® The
essential idea is to compute not with one guess for the true value of each set of features
x;, but with a moderate number of guesses (e.g. n in visual area 1) {a:z(l),wz(?), .. ,:IIZ(TL)}
which are assigned weights w; 1, w; 2, -+, w; , so that the weighted sum of these guesses is a
discrete approximation to the full posterior probability distribution on z;. In the broadest
terms, particle filtering is simply replacing a full probability table by a weighted set of
samples. When the number of values of a random variable becomes astronomical (as in
perception), this is quite possibly the best way to deal with distributions on it, known to
probabilists as using a ‘weak approximation’.

This technique has produced the most successful computer vision programs to date for
tracking moving objects in the presence of clutter and irregular motion (situations where
all other techniques have failed).?”-2® Tt has also found wide spread application in solving

mapping and localization in mobile robots.?? Let us illustrate how particle filtering works

with an example on robot localization. Suppose a robot has a map of the environment and



has a knowledge of the data measurements that are associated with a particular location.
Initially, it has no clue where it is, so it scatters an even distribution of the particles
over the map, with each particle indicating a hypothesis of the robot’s location. When the
robot makes an observation of its surrounding, it can narrow down the space of hypotheses
but nevertheless is not certain of its exact location, because such an observation is often
corrupted by noises and is usually ambiguous as similar observations could be made in
multiple locations. To account for this gain in knowledge and the narrowing down of the
hypothesis, it updates the probability weight of particle (hypothesis) i by w; = P(obs|z;),
i.e. the likelihood of making this observation obs assuming the robot is at location z;. The
probability of all the particles are then renormalized so that they sum to one. A new set of
samples are then drawn from the pool of existing particles. The probability of a particular
particle being drawn is equal to its weight or P(obs|z;). The drawn particle is then thrown
back to the map with some small random jitters from the original location. The variance
of the jitter is proportional to the level of confidence, which can progressively be reduced
as time goes on. A more probable (or heavier) particle could be drawn a number of times,
giving a denser set of particles in a neighborhood around its original location. This is called
the condensation process. Very light particles could vanish altogether, corresponding the
extinction of those hypotheses. When the robot moves, the particles will move on the map as
predicted by the motion equation of robot. When a new observation is made, because of the
condensation due to resampling, the distribution of hypotheses are sampled according to the
priors on how well they could predict the observation. The density of the resampled particles
thus summarizes all the prior knowledge the robot has based on the earlier observations. As
time progresses, the condensation process produces a convergence of the particles toward

the most probable location(s). The great virtue of particle filtering is that it does not need



to assume the underlying distribution is Gaussian, as required for the Kalman filtering
machinery, hence it can approximate an arbitrary probability distribution, and has been
considered as a generalized version of Kalman filtering.

In the low level/high level vision context, the algorithm is similar but not identical. In
tracking or robot localization, the algorithm proceeds forward in time and information from
many observations is integrated. One can also go ‘backwards’ in time and reconstruct from
later data the most likely place where the robot was located at some point in the past, using
future data to clear up ambiguities. This is exactly the way the forward /backward algorithm
works in speech recognition. But in the vision situation, the time axis is replaced by the axis
from low to high level, starting with local elementary image features and progressing to more
global and abstract features. The algorithm should then work at all levels simultaneously,
communicating by what is called message passing or belief propagation in each cycle of
computation.’? More formally, one has a set of particles {:vgl), e ,:cgn)} at each level 1,
bottom-up messages By (:vsf)) and top-down messages Bg(a:g)) and one alternates between

propagating the messages up and down via:

Bi(z Z')) =max (Bl (x(j) )¢(:(;(j) J;(i)))

n—17"n
By(#)) = max (Bg(:vsfll)gb(xg),xffil))
and updating the particles by resampling and perturbing using the weights:

Wy = B () By (29 / (normalizing factor Z,,).

n

A schematic of this forward/backward algorithm is shown in Figure 1b. Note that B; and
By are beliefs. They are not particles, but are sets of numbers that represent the conditional
probabilities of the particles conditional on whatever part of the data/context which has

been incorporated by the belief propagation so far. Algorithm of this type, although with
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separate sets of particles for bottom-up and top-down messages, are under active investiga-
tion in the computer vision community.3!32

Is such an algorithm neurally plausible? For the belief propagation algorithm to work,
the bottom-up and top-down terms need to be represented separately, allowing their strengths
to be conveyed to further areas. We can imagine that the bottom-up and top-down messages
are represented by the activity of superficial (layers 2 and 3) and deep (layer 5) pyramidal
cells respectively, as they project to higher and lower areas. More specifically, the variables
B (z,) would correspond to the activity of superficial pyramidal cells and Bs(z,) to the
activity of deep pyramidal cells. If the factors ¢ were equal to the weights of synapses of
these pyramidal cells on their targets in remote areas, then the displayed updating rule for
B; and Bs (or a soft version of it) could be given by integration of inputs in the remote neu-
rons. The particle itself needs to be represented by the activity of an ensemble of neurons,
which could be bound by timing (e.g. synchrony)3? or by synaptic weights after short-term
facilitation.?* Note that the top-down messages can utilize the same recurrent excitatory
mechanism that has been proposed for implementing biased competition for attentional
selection.'* 16 In fact, visual attention itself could be considered as a special case in this
framework. The recurrent excitatory connections across the multiple modules in the visual
hierarchy allow the neurons in different areas to link together to form a larger hypothesis
particle by firing concurrently, and/or synchronously. Because its implementation requires
that groupings of mutually reinforcing alternative values of features in different areas be

formed, this algorithm might be linked to the solution of the ‘binding problem’.

INSERT Figure 1: Illustration of Hierarchical Bayes/Particle filtering
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C. V1 as the high-resolution buffer

What is the distinctive role of V1 in such a hierarchical model? In terms of the probability
model on which the theory rests, x,; are the only variables directly connected to the obser-
vations xg. Neurally, this is reflected in the fact that V1 is the recipient of the vast majority
of the projections of the retina (via the LGN). Thus V1’s activity should reflect firstly the
greedy computation of the best values z,; depending only on the visual stimulus and sec-
ondly, the progressive modification of these values as higher level aspects of the stimulus
are recognized or guessed at, and updated posteriors on z,; are computed using feedback.
If any visual computation affects the local interpretation of the image, it will change the
posterior on z,1; and hence be reflected in the firing of V1 neurons. This led us to propose
that, instead of being the first stage in a feedforward pipeline, V1 is better described as the
unique ‘high-resolution buffer’ in the visual system.!0>3

In computer vision, algorithms for perceptual organization often operate on an image
array of numbers, and the results are represented in arrays with resolution as high and
sometimes higher than that of the input arrays. While the representations in the early visual
areas (LGN, V1 and V2) are precise in both space and feature domains because of their
small receptive fields arranged in retinotopic coordinates,' the size of the receptive fields of
neurons increases dramatically as one traverses successive visual areas along the two visual
streams (dorsal “where” and ventral “what” streams). For example, the receptive fields in
V4 or MT are at least four times larger in diameter than those in V1 at the corresponding
eccentricities,?® and the receptive fields in the inferotemporal cortex (IT) tend to cover a
large portion of the visual field.3” This dramatic increase in receptive field size corresponds
to a successive convergence of visual information that is necessary for extracting invariance

and abstraction (e.g. translation, size) but it also results in the loss of spatial resolution
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and fine details in the higher visual areas.

In the hierarchical inference framework, the recurrent feedback connections between the
areas would allow the areas to constrain each other’s computation. This perspective dictates
that the early visual areas do not merely perform simple filtering? or feature extraction
operations.! Rather, they continue to participate in all levels of perceptual computations,
if such computations require the support of their intrinsic machinery. In this framework,
image segmentation, surface inference, figure-ground segregation and object recognition do
not progress in a bottom-up serial fashion, but most occur concurrently and interactively
in constant feedforward and feedback loops that involve the entire hierarchical circuit in
the visual system at the same time. The idea that various levels in cognitive and sensory
systems have to work together interactively and concurrently has been proposed in the
neural modeling community'? 23:38-41 baged primarily on psychological literature. But it is
not until recently that solid neurophysiological evidence started to emerge to champion for
this idea.

INSERT Figure 2: Illustration of High-resolution buffer hypothesis

3. Experimental Evidence

10,35 it was primarily con-

When the high-resolution buffer hypothesis was first proposed,
jectural and based on data that are open to multiple interpretations. There is, however, in-

creasing evidence from various laboratories'!»42-47 that seems to support the high-resolution

buffer hypothesis and, more generally, the hierarchical inference framework.

A. Timing

First of all, the timing studies of Thorpe’s lab*® show clearly that high level visual judge-

ments (e.g. whether an image contains an animal or not) could be computed within 150 ms.
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His work involves EEG recordings on humans, and he finds significant changes in frontal
lobe activity between two conditions, in which the subject responds by pressing a button or
not, starting at 150 ms post-stimulus. Thus a rather complete analysis including very high
level abstract judgements seems to be formed in 150 ms. On the other hand, trans-cranial
magnetic stimulation (TMS) studies from Shimojo’s lab*? show that TMS over VI alone
can produce visual scotomas in the subjective experience of human subjects at up to 170
ms latency. Thus V1 activity, over a period overlapping with activity expressing high level
knowledge of scene properties, is essential for conscious visual perception. Taken together,
these two pieces of evidence suggest that concurrent activation of V1 and the prefrontal
cortex might be necessary for computing and representing a global coherent percept. Intact
activities in V1 might be critical for the integrity of perception.

While data from Thorpe’s lab*® and Schall’s lab*® clearly showed that perceptual deci-
sion signals appear in the prefrontal cortex at about 150 ms post-stimulus onset, this does
not necessarily mean object recognition can be done on a feedforward one-pass basis. In
hierarchical Bayesian inference, the coupling is continuous between adjacent cortical areas.
There is therefore plenty of time within the 150 ms period for the different cortical areas
to interact concurrently. Several recent neurophysiological experiments suggest that rele-
vant perceptual and decision signals emerge in the early visual cortex and the prefrontal
cortex almost simultaneously. Schall and colleagues*® showed that when a monkey has to
choose a target among multiple distractors in a conjunctive search task, the neural signal
at target location starts to differentiate from the signals at distractor locations at about
120 ms to 150 ms post stimulus onset. In a similar experiment in which we'! monitored the
responses of V1 and V2 neurons to target and distractors, the target response was found

to become distinguished from the distractor response at about 100-120 ms post stimulus
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onset — 60 ms after the initial response onset of the V1 neurons, and only 10-20 ms before
the similar activity emerges in the prefrontal area. This suggests computation in the cor-
tex is rather concurrent — the distribution of the hypotheses converges rapidly through the
continuous dynamics of the cortical interaction. It is conceivable that the whole hierarchy

could converge to a single hypothesis within 60-80 ms of cortical interaction.

B. Scale of Analysis

Lamme’ found that a V1 neuron (RF size < 0.8 degree) fires more strongly when its
receptive field is inside a 4 degree diameter figure than when it is in the background, as if
the neuron is sensitive to abstract construct of figure-ground. Wel® also found the initial
response of the neuron is sensitive only to local features, and that it takes another 40 ms
post-response onset for the signals start to become sensitive to the figure-ground context.
Thus the early visual neurons’s computation seems to progress in a local-to-global (fine-
to-coarse) manner. On the other hand, recordings in IT have showed that higher level
neurons behave in the opposite way.® In response to images of human faces, the initial
responses of the neurons contain more information at coarse scale (such as gender of the
face), and the later responses contain information of finer details, such as the individual
specific information, suggesting I'T’s computations progress in a coarse to fine manner.
These observations are consistent with the picture that the higher level area and the lower
level area interact continuously to constrain each other’s computation: the early areas first
process local information, while the higher level areas first become sensitive to the global
context. As the computation evolves under recurrent interaction, the early areas become
sensitive to global context, while the higher areas become sensitive to the relevant precise

and detailed information over time. Figure 2 illustrates why a high-resolution buffer is
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essential for visual reasoning. One may imagine that the higher areas in this case can
instantly ‘recognize’ the face image based on the bottom-up cues (B; path) present in the
illuminated subparts of the face, but feedback (B2 path) from the face recognition area is
critical for us to detect the faint edge and conclude that this is indeed the boundary of the
face. This conclusion is mandatory, for if that boundary of the face cannot be detected under
the same illumination condition, we will be alarmed and may form a different interpretation
about what we actually saw.

Not every computation has to work all its way back to V1. Kosslyn®' showed that in
fMRI studies that a subject’s V1 will light up differentially only when he is asked to imagine
things or perform tasks that involved information of fine details. Scale of analysis is therefore
a key factor. Given that feedback does consume energy, V1 would be consulted only when
a scene is ambiguous without some high-resolution details. For computations that involve
only detecting large objects, discriminating coarse features, or recognizing the gist of the
scene, V2 and V4’s involvement might be sufficient. All the experiments that managed to
demonstrate a high-level or attentional effect in V1 seem to require the monkeys utilize
information of fine details in their tasks. In Roelfsema and colleagues’s experiment,*® for
example, the monkey was asked to trace one of the two curves displayed on the screen. He
found that a neuron responds more strongly when its receptive field lies on the curve being
traced than when its receptive field lies on the curve not being traced, as if there is a top-
down attentional beam that traces and highlights the curve. This finding is significant in that
many earlier studies from Desimone’s lab'# suggested that V1 activity is not modulated by
attention particularly when the stimuli used are relatively large. In that context, V1 might
not be needed in the computation.

In another study, Motter®? also found that it is very difficult to demonstrate ‘atten-
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tional modulation’ (i.e. top-down effect) when there is only one single object on the screen,
but that attentional modulation could be revealed when multiple objects are present. Ap-
parently when multiple objects are presented on the screen, they engage in competition.
Asking the monkey to pay attention to a particular location often results in the removal of
the inhibition imposed by the surround on that location. Gilbert and colleagues*” demon-
strated an attentional effect in V1 only after the the monkeys were trained to perform a
vernier acuity test — aligning two small vertical lines. These findings suggest that when the
monkeys are performing tasks that require the discrimination of fine features, feedback can
penetrate back to V1. Interestingly, Shimojo*? found that when different spatial frequency
gratings were used as stimulus in their TMS experiment, the optimal range of TMS delay is
systematically increased as the spatial frequency increases, indicating that a finer resolution

analysis might require an earlier visual area.

C. Interactive Hierarchy

While the above experiments demonstrate the emergence of attention effect in early visual
areas during high-resolution analysis, it is unclear to what degree feedback is involved in
normal and complex perceptual processing. In a hierarchical inference framework, feedback
could be more or less automatic. We''»*4 have conducted two experiments to investigate V1
and V2 involvement in more complex perceptual processes that likely involves interaction
among multiple cortical areas: the first is contour completion, and the second is shape from
shading.

It has been hypothesized since the time of Hubel and Wiesel! that V1 is involved in
edge detection. Some findings suggest it is involved in signaling more abstract and cue-

invariant boundary such as texture boundary.'® The findings from Gilbert’s lab® that an
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additional bar along the longitudinal direction outside the receptive field could exert a
facilitatory effect on a V1 neuron suggest a plausible computational mechanism for contour
continuation.'? 13:54-%6 Tn addition, a number of experiments (e.g.53) found that additional
bars on the two sides of the neuron’s longitudinal axis tend to suppress the response of a
neuron, suggesting non-maximum noise suppression.®” Curiously, there is no direct evidence
for contour completion in V1. In fact, neural correlates of illusory contour as in Kanizsa
triangle have only been observed in V2 but not in V1.%8

On the other hand, the high-resolution buffer hypothesis suggests that V1 is the ideal
machinery for computing geometrical curvilinear structures, as illustrated by the curve
tracing experiment of Roelfsema.*® In light of these considerations, we** decided to re-
examine the issue of neural responses to illusory contours in area V1 and V2, using a static
display which allowed tracking the temporal evolution of responses. We found that neurons
in area V1 do indeed respond to illusory contours, e.g. completing the contour induced by
the corner discs shown in Figure 3, although at a latency greater than that in V2.

INSERT Figure 3: Illustration of Illusory Contour Experiment

In this experiment, the monkey was asked to fixate at a spot on the screen, while the
Kanizsa square was presented at different locations on the computer monitor in different
trials. Over successive trials, the responses of the neurons to different locations relative to
the illusory contour was studied (Figure 3). At the beginning of the experiment, consistent
with Von der Heydt’s earlier report, we found that V1 neurons in fact do not respond to the
illusory contours. We then realized that because the corner discs (pacmen) were shown in
the periphery, all the monkey might be seeing was just the flashing on and off of corner discs
on the screen without perceiving the illusory square. We took several measures to enhance

the awareness of the monkeys to the illusory square. First, we placed the fixation spot inside
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the illusory square, so that the monkey was looking at or inside the illusory square. Second,
we presented the stimuli in a sequence: four black circular discs were first presented for 400
ms; then they were turned into the corner discs, creating an illusion that a white square
had abruptly appeared in front of the circular disks, occluding them. The sudden onset of
the illusory square also serves to capture the attention of the monkey to the square. Third,
we introduced in our presentation a series of ‘teaching’ stimuli, i.e. real squares that are
defined by line or contrast to help the monkey ‘see’ the illusion. Remarkably, in the third
sessions after this change in paradigm, we started to find V1 neurons responding to the
illusory contour in the stimulus (Figures 4).

INSERT Figure 4: Neural Correlates of Illusory Contour

The neural correlate of the illusory contour signal emerged in a V1 neuron at precisely
the same location where a line or luminance contrast elicited the maximum response from
the cell (Figure 4a). The response to the illusory contour was delayed relative to the response
to the real contours by 55 ms (Figure 4b), emerging about 100 ms after stimulus onset. The
response to the illusory contour was significantly greater than the response to the controls,
including the amodal contour or when the corner discs were rotated. At the population
level, we found that sensitivity to illusory contours emerged at 65 ms in V2 and 100 ms in
the superficial layer of V1 (Figures 4c,d). A possible interpretation of these data is that V2
detects the existence of an illusory contour by integrating information from a more global
spatial context, and then generates a prior P(z,1|z,2) to constrain the contour inference in
V1. The resulting contour is the hypothesis particle that maximizes P(z,, Zy1, Tv2, T4, Tit)
which is the product of a cascade of feedback priors and bottom-up hypotheses. The par-
ticle filtering implementation of the contour completion process in V1 might be similar

to Williams and Jacob’s® stochastic random-walk model for contour continuation, except
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that it contains, in addition, many hierarchical layers of computations involving greater and
greater chunks of information.

A second experiment that provides more conclusive evidence in support of feedback
and hierarchical inference in V1 and V2 is related to the cortical processing of 3D shape
from shading.!’ When viewing the display shown in Figure 5a, we perceive a set of convex
shapes automatically segregating from a set of concave shapes. Perceptually, the convex
shapes can be seen as concave and the concave shapes as convex if somehow we assume the
scene is lit from below. These two interpretations can alternate in perceptual rivalry as in
the Necker cube illusion. These interpretations of 3D shapes emerge purely from the shading
information and hence are called shape from shading (SFS). Ramachandran® points out
that this fast segregation suggests that 3D shape interpretation can influence the parallel
process of perceptual organization. A case in point is that a similar image with contrast
elements, but without a 3D interpretation, does not readily segregate into groups (Figure
5b). These pairs of stimuli are therefore ideal for probing the interaction between high-level
interpretation (3D inference) and low-level parallel processes.

INSERT Figure 5: Shape from Shading versus 2D contrast

In this experiment, we'l studied how V1 and V2 neurons respond to shape from shading
stimulus, particularly in their sensitivity to perceptual pop-out saliency due to 3D inter-
pretation. We tested the responses of V1 and V2 neurons when their receptive fields were
placed at the center of a stimulus element. Typically, the receptive field is less than 0.7
degree while the diameter of the stimulus element is 1 degree visual angle. When comparing
the neuronal responses to the black-and-white (BW) stimulus in comparision to the shape
from shading (SFS) stimulus (Figure 6), we found that V1 neurons are sensitive mostly to

contrast, and invariably respond better to the BW stimulus than the SFS stimulus, which
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has a weaker contrast. A significant number of V2 neurons, however, responded better to the
SFS elements than to the BW elements particularly in their later responses (Figures 7a,b).
This shows the V2 neurons might be more interested in a more abstract representation of
3D surface than the bottom-up luminance contrast. Furthermore, we found that while both
V1 and V2 neurons do not exhibit pop-out response for the BW stimulus, V2 but not V1
neurons do exhibit the pop-out response for the SFS stimulus in a passive fixation task at
the beginning. The pop-out response is defined by the ratio of the response of the neuron
to the odd-ball condition over its response to the uniform condition. In both conditions, the
stimulus on the receptive field is the same, but the surrounding elements are different for
the odd-ball condition and the same for the uniform condition (Figures 7a,b). The finding
that V2 exhibits preattentive pop-out response to shape from shading further reinforces
the conjecture that V2 neurons might be representing 3D shape primitives, and provide an
infrastructure for computing parallel pop-out through lateral inhibition. Recently, Von der
Heydt’s 1ab%® found that V2 neurons are indeed sensitive to convex shape defined by both
shape from shading as well as random-dot stereogram, providing a more direct evidence
supporting the idea that 3D representational elements exist in V2.

INSERT Figure 6: Shape from Shading Stimulus

We found that while V1 neurons were not sensitive to the pop-out signals defined by
the SFS stimulus at the beginning, they become sensitive to the pop-out signals after the
monkeys were trained on a task that requires them to detect the location of the pop-out
target. Interestingly, even though the monkeys can detect the oddball in the BW stimulus
as well as the SFS stimulus, their V1 and V2 neurons exhibited the pop-out effect only for
the SF'S stimulus but not for the BW stimulus. As a population, the SFS pop-out emerged

in V2 at around 95 ms post-stimulus onset, while it emerged in V1 5 ms later, at 100 ms
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(Figure 7). The strength of these pop-out signals were found to be inversely correlated with
the reaction time and positively correlated with the accuracy of the monkeys’ performance
in detecting the oddball.

INSERT Figure 7: Neural Responses to SFS

What is the purpose for these pop-out signals to appear in V1 after the monkeys have
utilized the stimulus? Could this be simply a passive reflection of the stronger response
in V2 enhanced by attention and awareness? We found that the pop-out signal is spatially
precise in V1 — that it can be observed only on the target, but not on the distractor elements
right next to it. This suggests that when the monkeys have to detect the location of a small
target, a more spatially precise signal needs to be established in the high-resolution buffer.
In addition, the fine interpretation of the 3D shape might also involve constant interaction
with V1 as well. Note that the pop-out signal can be observed in a passive task even when the
monkeys have not performed the detection task for several months. This suggests that once
the monkey becomes ‘aware’ of the shape from shading pop-out elements, with practice, its
visual system has enhanced the automatic coupling between V2 and V1 in this particular
computation.

The 3D information from V2 provides the priors for facilitating V1’s parallel pop-out
computation and the precise localization of the pop-out target. Our findings suggest that
these priors not only contain 3D information, but also the information about behavioral
relevance or saliency.'! We could change the top-down priors, for example, by manipulating
the presentation frequency of the different odd-ball stimuli. When a particular oddball
stimulus was presented more frequently than others, the monkey detected and reacted to
this oddball faster and more accurately. The change in stimulus statistics often produce a

change in the behavioral performance of the monkeys, which was accompanied by a parallel
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change in the relative pop-out strength in the neural signals. This interactive coupling
between V1 and V2 are consistent with the hierarchical Bayesian inference framework.
Hierarchical inference is most evident in cases where the brain needs to resolve am-
biguous stimuli in which the correct percept requires integration of multiple factors. In the
illusory contour experiment, there are multiple hypotheses to explain the bottom-up data.
The brain somehow chooses the simplest explanation — that a white square is occluding four
black circular discs, even at the extra expense of hallucinating a subjective contour where
there is really no visual evidence for it. It is only in this ambiguous situation that one can
see a feedback effect in V1. In the shape from shading experiment, it is the need to finely
localize the pop-out stimulus that finally drives the processing back to V1. The experiment
of Bullier’s lab*? is also consistent with this idea. They found the effect of feedback is most
evident in V1 only when the stimuli are of low visibility, low saliency and high ambiguity.
In this context, the psychophysical stimuli used by Adelson®' to study the disambiguation

of edges and shapes could provide useful probes for investigating this hypothesis further.

D. Multiple Hypotheses

Is there any neurophysiological evidence that is suggestive of particle filtering in the cor-
tex? A hall-mark of particle filtering is that multiple hypotheses are kept alive during the
computation, so that the system does not need to jump into conclusions and can change its
mind to entertain other possibilities.

One line of evidence that might support such an idea is the binocular rivalry experiment
from Logothetis’ lab.%? When two different images are presented to the two eyes, we can
only see one image at a time. This is known as binocular rivalry. It turns out that this is a

rivalry between two perceptual hypotheses represented in the brain rather than the rivalry
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between information from the two eyes.5? A curious fact is that almost all the relevant I'T
neurons respond consistently with perception, while only 10 percent of the V1 neurons, and
20 percent of the V2 neurons, responded in accordance with the percept. The rest of the V1
and V2 neurons just seem to mind their own business, representing ‘bottom-up information’
independent of the current perception.

This gradual increase in the percentage of neurons whose responses are correlated with
perception along the visual hierarchy have also been observed in both the illusory contour
and the shape from shading experiments.'’»** This gradual increase in the neural correlate
of perception along the visual hierarchy is quite a long-standing puzzle and has been taken
as to mean that V1 is less ‘conscious’ than IT. Particle filtering might furnish a different
perspective on this phenomenon. Maybe the early visual cortex, by keeping a significant
number of neurons independent of the current perception is the area for keeping different
evidence and hypotheses alive. As one moves up the hierarchy, the hypothesis’ space becomes
smaller and smaller, as the hypothesis distribution is successively resampled by the top-down
priors (see also Geman and Bienenstock’s compositional machine®3). In binocular rivalry,
when IT or prefrontal cortex is ‘tired’ of one hypothesis, the remaining hypotheses that are
kept alive lower in the visual hierarchy are able to rebel and push the alternative hypothesis
up to dominance. By perserving a variety of low-level sensory information in intact forms,
independent of cognitive and perceptual decision, the early visual cortex is in a position to
furnish alternative evidence to change the opinions of the high level neurons. Alternatively,
when the high level area changes its idea, the early visual cortex can provide the necessary

data to support the alternative hypothesis.
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E.  Resonance and Predictve Coding

Although we have been thinking primarily of top-down influences as emhancing activity
in lower areas by reinforcing belief with high level context, there are recent very striking
experiments®* showing relative suppression of low level activity when an integrated simple
high level percept can ‘explain’ the low level data. This is work by Murray and Kersten
using fMRI on human subjects and showed that when similar sets of stimuli were presented —
one a relatively complex two-dimensional pattern and one with a simple three-dimensional
interpretation — V1 activity was less for the 3D pattern. This was even the case for a
bistable stimulus, which alternates between a simple 3D percept with occlusion and a more
complex 2D percept. Here they find a correlation between the times in which the subject
reported seeing the 3D percept and the times in which V1 activity decreased. Roe and
her colleagues® also found that in their optical imaging and single-unit experiments, while
V2 neurons’ activities were enhanced by illusory contours defined by abutted sinewave
gratings, V1 neurons’ end-stopping responses were suppressed! These experiments support

38,40,66 i which it has been proposed that certain

our earlier work!® and related ideas
bottom-up pathways carried ‘error’ signals indicating the mismatch between data and their
reconstruction or prediction with contextual priors and that when there was no error, the
lower area would be relatively inactive. However, quite a different interpretation is possible
using the theory of multiple hypotheses or particles. In a situation in which complex data is
present for which no coherent or simple high level interpretation has been found, one would
expect that many particles are needed to approximate the relatively spread out and multi-
model posterior on the low level features. In psychophysical terms, many bits and pieces

of the stimulus are trying to assemble into larger groupings, but none are very successful.

However, when one high level interpretation emerges, this set of particles collapses and only
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one set of confirmed groupings remains. Thus the experiments of Murray and Kersten,%*

5

and Roe and colleagues®® are quite consistent with the present framework.

4. Conclusion

Recent neurophysiological experiments have provided a variety of evidence suggesting that
feedback from higher order areas can modulate the processing of the early visual cortex.
The popular theory in the biological community to account for feedback is attention mod-
ulation. From that perspective, visual processing is still primarily a series of feedforward
computation, only the computation and information flow is regulated by selective atten-
tion.' On the other hand, within the neural modeling community, there has been a number

of models or theories,!? 23,3840

with increasing sophistication, that emphasize directly or
indirectly the feedback from higher order areas which might serve as contextual priors for
influencing lower-level inference. Here, we suggest that these ideas could be formulated in

the form of hierarchical Bayesian system, and that ideas from Bayesian belief propagation3°

and particle filtering?%:2729

are relevant to understanding these interactive computations in
the visual cortex. From this perspective, attention should not be conceptualized in terms
of biased competition, but may be more appropriately viewed in terms of biased inference,
or providing top-down priors in a hierarchical Bayesian inference framework. These priors
reshaped the probabilistic distribution of the hypotheses by interacting with the data, so
that a maximum likelihood conclusion can be arrived.

We reviewed a number of recent neurophysiological findings that are highly suggestive
of such a hierarchical inference system, and, in particular, of the unique role of the primary

visual cortex as a high-resolution buffer in this hierarchy. The impact of feedback is often

subtle and becomes evident only when high-resolution details are required in certain com-
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putations or when the visual stimuli are ambiguous. In order to keep multiple hypotheses
alive, the early visual areas have to continue to maintain data (and particles) that are not
consistent with the current dominant hypothesis. This might be one of the reasons why
a smaller percentage of early visual neurons are correlated with the perception than the
neurons in the higher areas.

Central to our framework is the forward/backward mechanism which is conceptually

19,23,38-40 51 is critical to the success

already embodied in many existing neural models
of many powerful vision and robotic algorithms. Our current attempts to reconcile an im-
portant difference between two competing schools of thoughts by emphasizing both the
beliefs and the errors need to be propagated in these recurrent interactions. In the adaptive

38 or interactive activation models,?® an active global concept will feed back to

resonance
enhance the neural activities in the early areas, disambiguating and enhancing some of the
lower level informations that are vague but nevertheless are consistent with the global per-
cept. These ideas are supported by neurophysiological experiments that show higher order
information can enhance early visual responses.”!44 On the other hand, pattern theory'?

140

and the predictive coding model*” emphasize that feedback serves to suppress the activities

in the early areas as a way of ‘explaining away’ the evidence. This idea is supported par-

40,64 Tn the latter class of models, only error

ticularly by some recent imaging experiments.
residues are projected forward to the higher areas. In our current proposal on hierarchical
bayesian inference, beliefs are embodied in both the bottom-up signals and the top-down
signals. The activity of the deep layer cells reflects the top-down belief or probability, while
the activity of the superficial layer cells reflects bottom-up belief or probabilities. A particle

is then an ensemble of deep AND superficial cells whose strength as an ensemble (the bind-

ing strength via synchrony or rapid synatpic weight changes) is something like the weight
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of the particle. While other models keep particles for the forward and backward streams
separate and non-interacting until the last step for mathematical reasons,?! it might be
beneficial to combine top-down and bottom-up information as soon as possible so as to
form particles that reflect both bottom-up and top-down information as we suggest.
While the precise computational and neural implementation of many aspects of Bayesian
belief propagagtion and particle filtering is not entirely clear, and remains to work out in
both computational and neurophysiological experiments, we think the parallel and reso-
nance between recent Al work on BBP/ particle-filtering and recent neurophysilogical find-
ings in the visual cortex are striking and should not be ignored. This article summarizes our
thoughts on their plausible connections and aims at stimulating more precise experimental
research along this line. We expect these ideas will grow explosively in the next few years
in the computatinal vision and biological vision community and will revolutionarize how we

think about neural and computational processses underlying vision.
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Figure Legends:

Figure 1:

(a) A schematic of the proposed Hierarchical Bayesian inference framework in the
cortex. The different visual areas (indicated by the boxes) are linked together as a Markov
chain. The activity in V1, z1, is influenced by the bottom-up feedforward data z¢ and the
probabilistic priors P(z1|z2) fed back from V2. The concept of Markov chain is important
computationally because each area can be mainly influenced by its direct neighbors. (b) An
alternative way of implementing Hierarchical Bayesian inference using particle-filtering and
belief propagation. By and By are bottom-up and top-down beliefs respectively. They are
sets of numbers that reflects the conditional probabilities of the particles conditioned on the
context that has been incorporated by the belief propagation so far. The top-down beliefs
are the responses of the deep layer pyramidal cells that project backward, and the bottom-
up beliefs are the activities of the responses of the superficial layer pyramidal cells that
projected to the higher areas. The potentials ¢ are the synaptic weights at the terminals
of the projecting axons. A hypothesis particle may link a set of particles spanning several
cortical areas, and the probability of this hypothesis particle could be signified by its binding
strength either via synchrony or rapid synaptic weight changes.

Figure 2:

V1 is reciprocally connected to all the expert visual modules either directly or indirectly.
It therefore can serve as a high-resolution buffer to integrate various information together
into a coherent percept. In this example of the high-resolution buffer, the bottom-up cues
from the illuminated part of the face caused a face hypothesis particle to respond, this
particle provides the contextual priors of the face to re-examine the data at the high-

resolution buffer, locating the faint edge in the shadow as a part of the face.
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Figure 3:

Selected stimuli in the subjective contour experiment. (a) An example sequence of
stimulus presentation in a single trial. (b) Receptive field of the tested neuron was ‘placed’
at 10 different positions across the illusory contour, one per trial. (c) amodal contour —
the subjective contour was interrupted by intersecting lines. (d) One of the several rotated
pac-men controls. The surround stimulus was roughly the same, but there was no illusory
contour. (e) One of the several types of real squares defined by luminance contrast. (f).
Square defined by lines. These controls were used to assess the the neuron’s positional
sensitivity to real contour as well as for comparing the temporal responses between real and
illusory contours. Adapted from Ref 44 with permssion from authors.

Figure 4:

(a) The spatial profile of a V1 neuron’s response to the contours of both real and
illusory squares, in a temporal window 100-150 ms after stimulus onset. The real or illusory
square was placed at different spatial locations relative to the receptive field of the cell.
This cell responded to the illusory contour when it was at precisely the same location where
a real contour evoked the maximal response from the neuron. This cell also responded
significantly better to the illusory contour than to the amodal contour (T-test, p < 0.003)
and did not respond much when the pac-men were rotated. (b) Temporal evolution of the
cell’s response to the illusory contour compared to its response to the real contours of a
line square, or a white square, as well as to the amodal contour. The onset of the response
to the real contours was at 45 ms, about 55 ms ahead the illusory contour response. (c)
Population averaged temporal response of 49 V1 neurons in the superficial layer to the
illusory contours and controls. (d) Population averaged temporal response of 39 V2 neurons

in the superficial layer to the illusory contours and controls. Adapted from Ref 44 with
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permssion from authors.

Figure 5:

Ramachandran®® showed that shape from shading stimuli produce instantaneous seg-
regation, whereas black-and-white contrast stimuli did not. Given the main distinction be-
tween the two types of stimuli is that the stimulus elements in (a) but not those in (b)
afford 3D interpretation, 3D information must have directly influenced the early parallel
processes of perceptual grouping.

Figure 6:

Higher order perceptual pop-out. (a) A typical stimulus display was composed of 10 x
10 stimulus elements. Each element was 1° visual angle in diameter. The diameter of the
classical receptive field (RF) of a typical cell at the eccentricities tested ranged from 0.4°
to 0.8° visual angle. Displayed is the LA (Lighting from Above) oddball condition, with
the LA oddball placed on top of the cell’s receptive field, indicated by the open circle. The
solid dot indicates the fixation spot. (b) Each stimulus set had four conditions: singleton,
oddball, uniform, and hole. Displayed are the iconic diagrams of all the conditions for the
LA set and the LB set, as well as the oddball conditions for the other four sets. The center
element in the iconic diagram covered the receptive field of the neuron in the experiment.
The surround stimulus elements were placed outside the RF of the neuron. The comparison
was between the oddball condition and the uniform condition, while the singleton and the
hole conditions were controls. Adapted from Ref 11 with permission from authors.

Figure 7:

Temporal evolution of the average population average response of 22 V2 units and 30
V1 units from a monkey to the LA set and the WA set in a stage after the monkey had

utilized the stimuli in its behavior. Each unit’s response was first smoothed by a running
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average within a 15 ms window, then averaged across the population. A significant difference
(pop-out response) was observed between the population average response to the oddball
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Figure 3:
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Figure 6:
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Figure 7:
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