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Abstract

We consider a dynamical system where the state equation is given by a linear
stochastic differential equation and noisy measurements occur at discrete times, in
correspondence of the arrivals of a Poisson process. Such a system models a network
of a large number of sensors that are not synchronized with one another, where the
waiting time between two measurements is modelled by an exponential random vari-
able. We formulate a Kalman Filter-based state estimation algorithm. The sequence
of estimation error covariance matrices is not deterministic as for the ordinary Kalman
Filter, but is a stochastic process itself: it is a homogeneous Markov process. In the
one-dimensional case we compute a complete statistical description of this process:
such a description depends on the Poisson sampling rate (which is proportional to the
number of sensors on a network) and on the dynamics of the continuous-time system
represented by the state equation. Finally, we have found a lower bound on the sam-
pling rate that makes it possible to keep the estimation error variance below a given
threshold with an arbitrary probability.

1 Introduction

In this paper we briefly summarize the results described in [5] and [6], concerning the problem
of state estimation for continuous-time stochastic dynamical systems in a situation where
measurements are available at randomly-spaced time instants.

More specifically, we consider the following dynamical model:1

{
ẋ(t) = Fx(t) + Gv(t)
y(tk) = Cx(tk) + z(tk)

t ∈ R, k ∈ N (1)

where x : R → Rn, y : R → Rp, are stochastic processes, and F ∈ Rn×n, G ∈ Rn×m,
C ∈ Rp×n are known time-invariant real matrices. In linear model (1) two different white,

1We will refer to the first equation in (1) as a state equation, and the second equation as a measurement
equation. A formally correct way of writing the state equation would be:

dx = Fx dt + Gdw,

which is the standard notation for stochastic differential equations (whose solutions are known as Itô pro-
cesses, or diffusions [3]).
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Figure 1: Random sampling process.

zero-mean Gaussian stationary noise inputs appear: continuous-time noise v(t), t ∈ R, and
discrete-time noise z(tk), indexed by parameter k ∈ N, with

E[v(t) vT (τ)] = S δ(t− τ), E[z(ti) zT (tj)] = R δij,

where δ(·) is the Dirac distribution while δij is Kronecker’s delta. S ∈ Rm×m and R ∈ Rp×p

are known constant positive definite matrices (in general, S may be just semipositive defi-
nite); we also assume that v(·) and z(·) are independent of each other.

Time instants {tk}∞k=1 are positive, ordered (tk+1 > tk, ∀k ∈ N) and are such that time
intervals

T0 , t1, Tk , tk+1 − tk for k ≥ 1

are i.i.d. exponential random variables with known parameter λ, Tk ∼ E(λ); i.e. the sampling
is generated by a Poisson process [3] of intensity λ. We shall also assume that Tk and v(t)
are independent for all k ∈ N and t ∈ R. Figure 1 illustrates the random sampling process.

Given such a model (in which matrices F , G, C, S, R and intensity λ are known) we wish
to estimate state x(t) in an on-line manner at any time instant t ∈ R, using the set of past
measurements {y(tk) : tk ≤ t} and the knowledge of past Poisson arrivals {Tk−1 : tk ≤ t}. At
time t we only know the realization of the Poisson process up to time t, and the corresponding
measurements. Note in particular that when F = 0 in (1) we are dealing with the problem
of estimating randomly sampled Brownian Motion.

Application: Sensor Networks. The mathematical model we just described arises quite
naturally in the analysis of sensor of networks. Assume in fact that the evolution of a
physical process x(t) may be described by the state equation in (1), and that a number N
of identical sensors measure such process. Each one of them periodically yields a noisy
measurement of x(t) according to the measurement equation in (1) every T seconds. If the
sensors are independent of each other and not synchronized then the process that is obtained
by summing the arrivals of all sensors may be approximated, when N is large, by a Poisson
Process with intensity λ = N/T ; i.e., at any time instant the next arrival will occur after an
exponential (hence memoryless) random time. For a more detailed and rigorous discussion
of this aspect see [5] or [6].

Paper Summary. In the next section we describe a Kalman filter-based estimation algo-
rithm that also yields, step by step, the covariance matrix of the estimation error. Such a
matrix provides a measure of the effectiveness of our estimation algorithm. The sequence of
estimation error covariance matrices is stochastic due to the random nature of the sampling
process (as opposed to what happens in the case of ordinary Kalman filtering, where the
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same matrix sequence is deterministic): namely, it is a homogeneous Markov process. We
also study the problem of estimating state x(t) between two consecutive Poisson arrivals.
We then give a brief description of the random parameters that appear in the discrete-time
system obtained by sampling the state equation in correspondence with the Poisson arrivals.

In section 3, where our major results are described, we perform an analysis of the sequence
of estimation error variances in the one-dimensional case. By exploiting the Markov property,
we give a complete statistical description of such stochastic process: we study the “transition”
conditional probability density, which plays the role of the transition matrix for a Markov
chain. In particular, we analyze the subtle relation between the sampling rate, the (only)
eigenvalue of state matrix F , and the estimation error variance.

Finally, in section 4 we briefly describe the possibility of bounding the estimation error
variance below a given threshold with arbitrary probability, by an appropriate choice of
sampling intensity λ. Note that when equations (1) model a network of sensors such intensity
is proportional to the number of sensors (λ ' N/T , for large N): therefore choosing λ
corresponds to picking an appropriate number of sensors. Section 5 is dedicated to final
remarks and comments on possible future directions of reserach.

2 Estimation Algorithm

In order to estimate state x at the Poisson arrivals {tk}k∈N we consider the sampled version
(see, e.g., [2]) of the state equation, where the samples are taken in correspondence with the
Poisson arrivals.

The discrete-time, stochastic system that is obtained this way is the following:
{

x(tk+1) = Akx(tk) + w(tk)
y(tk) = Cx(tk) + z(tk)

k ∈ N, (2)

where matrix Ak and input noise w(tk) are given, respectively, by the exponential matrix

Ak = eF (tk+1−tk) = eFTk, (3)

and the vector

w(tk) =

∫ Tk

0

eFτ Gv(tk+1 − τ) dτ . (4)

We should remark that Ak depends on random variable Tk, therefore it is a random matrix.
Note that the randomness of noise w(tk) derives from its dependence from both continuous-
time noise v(t) and random variable Tk.

For on-line estimation purposes we are interested in calculating the mean and the co-
variance matrix of w(tk), given time interval Tk. In fact when estimating state x(tk+1) time
interval Tk is known; in other words, Tk is itself an observation on which we are basing
our estimation. It is simple to verify that E

[
w(tk) |Tk

]
= 0. One can compute that the

covariance matrix of w(tk) given Tk is given by:

Qk , E
[
w(tk)w

T (tk)
∣∣Tk

]
=

∫ Tk

0

dτ eFτGSGT eF T τ ; (5)

being a function of Tk, Qk is a random matrix as well. In general, one can prove that random
process w(tk), conditioned on {Tj}∞j=1, is white Gaussian noise; in particular, w(tk)|Tk ∼
N (0, Qk).
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For a fixed Tk, solving integral (5) analytically is generally unfeasible. However, matrix
Qk may be obtained as the solution of the following linear matrix equation [1]:

Q̇(t) = FQ(t) + Q(t)F T + GSGT , (6)

with initial condition Q(0) = 0, calculated in Tk, i.e. Qk = Q(Tk). Equation (6) may be
solved numerically on-line; see Appendix A of [5] for further details.

2.1 Estimation at Poisson arrivals

The natural way of performing state estimation for a discrete-time system like (2) is Kalman
Filtering [4] [7]. However, one has to pay special attention to the fact that some of the
parameters that are deterministic in ordinary Kalman Filtering are, in our case, random:
namely, matrices Ak and Qk. Also, time intervals {Tk} are themselves measurements , as well
as sequence {y(tk)}.

In the light of this, define the following quantities2 (note that, at time tk, measurements
up to y(tk) are known, whereas interarrival times up to Tk−1 are known: refer to Figure 1):

x̂k|k , E
[
x(tk)

∣∣{y(tj), Tj−1}j≤k

]
, (7)

Pk|k , Var
[
x(tk)

∣∣{y(tj), Tj−1}j≤k

]
, (8)

x̂k+1|k , E
[
x(tk+1)

∣∣{y(tj), Tj}j≤k

]
, (9)

Pk+1|k , Var
[
x(tk+1)

∣∣{y(tj), Tj}j≤k

]
; (10)

we should remark that estimator x̂k|k, as defined in (7), satisfies the following:

x̂k|k = arg min
x̂∈M

E
[||x(tk)− x̂||2],

where M is the set of all measurable functions of variables {y(tj), Tj−1}j≤k. An analogous
property holds for x̂k+1|k, defined in (9). The corresponding Kalman Filter equations, which
hold when the noise is Gaussian, are the following:

x̂k+1|k = Akx̂k|k (11)

Pk+1|k = AkPk|kA
T
k + Qk (12)

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T (CPk+1|kC

T + R)−1(yk+1 − Cx̂k+1|k) (13)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T (CPk+1|kC

T + R)−1CPk+1|k (14)

where we have written yk+1 instead of y(tk+1). As for the ordinary Kalman Filter, we will
name the first two of the above formulas time update equations, while the least two will be
called measurement update equations.

We should now note the most significant differences between the above equations and
the ordinary Kalman Filter. First of all Ak and Qk are functions of Tk, therefore they
are not deterministic but random matrices; hence the sequence of error covariance matrices
{Pk|k}∞k=0, which in the ordinary case is (for all k) completely deterministic and can be

2To be more precise, we should define x̂0|0 = E[x(0)] and P0|0 = Var[x(0)]; this way, definitions (7) and (8)
are valid for k ≥ 1, whereas (9) and (10) hold for k ≥ 0.
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computed off-line before measurements start, in our case is itself a random process . In fact,
by using the independence hypotheses between {Tk}∞k=1 and noise v(t), t ∈ R, and the fact
that since Tk’s are iid and v(t) is white and Gaussian, one can prove that {Pk|k}∞k=0 is a
homogeneous Markov process . See [5] and [6] for details.

Secondly, while in the ordinary case time update k → k +1 (i.e. equations (11) and (12))
can be performed at time tk, in the case of random sampling one has to wait time tk+1

since matrices Ak and Qk are needed in equations (11) and (12): both of them depend on
Tk = tk+1 − tk, and at time tk one does not know when arrival tk+1 will occur, i.e. what
value Tk will take. Therefore the time update and measurement update steps will both be
performed at arrival time tk+1 (i.e. when Tk is known).

In section 3 we shall focus on the statistical description of stochastic process {Pk|k}∞k=0 in
the 1-D case; in particular, we will analyze its dependence on the continuous-time dynamics
(represented by F ) and Poisson sampling intensity λ.

2.2 Estimation between Poisson arrivals

Similar techniques may be applied to state estimation between two consecutive Poisson ar-
rivals, i.e. when time elapses with no new measurements occurring. For this purpose, define:

x̂t , E
[
x(t)

∣∣ {y(tj), Tj−1 : tj ≤ t}] ,

Pt , Var
[
x(t)

∣∣ {y(tj), Tj−1 : tj ≤ t}] .

Then one can easily show that for t ∈ (tk, tk+1) the above quantities may be expressed as
follows:

x̂t = eF (t−tk)x̂k|k

Pt = eF (t−tk)Pk|k eF T (t−tk) +

∫ t−tk

0

dτ eFτGSGT eF T τ .

Random process x̂t (for a given realization of the Poisson process) is a piecewise continuous
function of time; discontinuities occur in correspondence of the Poisson arrivals. In the case
of Brownian motion (F = 0) the above equations take, for t ∈ (tk, tk+1), the simpler form:

x̂t ≡ x̂k|k , Pt = Pk|k + GSGT (t− tk);

note in particular that x̂t becomes piecewise constant whereas Pt becomes piecewise linear ;
in both cases discontinuities occur in correspondence with the Poisson arrivals {tk}∞k=1.

2.3 On matrices Ak and Qk

Due to lack of space, we only briefly summarize the statistical description of the random ma-
trices Ak and Qk. These matrices have rather different behaviors according to the dynamics
of the original continuous-time state equation in (1).

For example, in the 1-D case (m = n = p = 1), i.e. when both Ak and Qk are random
variables) if the (only) eigenvalue of matrix F is negative —that is, if the state equation in
(1) is stable— then the support of the probability density of Qk is bounded. On the other
hand, if the original continuous-time system is unstable then such support is unbounded.
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In fact, in this case random variable Qk only has a finite number of finite moments: the
n-th order moment E[Qn

k ] exists if and only if λ > 2nF , i.e. when the sampling intensity λ
is high enough; in particular, when λ ≤ 2φ random variable Qk does not even have finite
mean. Given the role that Qk plays in equation (12) (and consequently in (14)), this suggests
that in the case on unstable systems it will be harder to perform state estimation, since the
Kalman Filter will tend to yield higher values for estimation error covariance matrix Pk|k.
See [5] for a thorough discussion of this issue, including the analytical expressions of the
probability densities of random variables Ak and Qk.

3 Statistical Description of Estimation Error Variance

The effectiveness of the state estimation algorithm is described by {Pk|k}∞k=0, i.e. the sequence
of estimation error covariance matrices. We have seen already that it has the property of
being a homogeneous Markov process.

Assume that the probability density of x(0) is known and let P0 = Var[x(0)] be the
corresponding covariance matrix; define P0|0 , P0. Consider the distribution function:3

F (k+1)(pk+1, pk, . . . , p1, p0) = P
[
Pk+1|k+1 ≤ pk+1, . . . , P0|0 ≤ p0

]
;

thanks to the Markov property we may write the corresponding probability density as fol-
lows:4

f (k+1)(pk+1, pk, . . . , p1, p0) = fk+1|k(pk+1|pk) · fk|k−1(pk|pk−1) · . . . · f1|0(p1|p0) · f0(p0), (15)

where the meaning of symbols should be obvious. Since {Pk|k}∞k=0 is a homogeneous Markov
process each of the above conditional densities fj+1|j( · | · ), 0 ≤ j ≤ k, does not depend
on index j but only on the value of its arguments. So the joint density of random matri-
ces {Pj|j}k+1

j=0 takes the simpler form:

f (k+1)(pk+1, pk, . . . , p1, p0) = f(pk+1|pk) · f(pk|pk−1) · . . . · f(p1|p0) · f0(p0),

where5

f(p|q) , ∂

∂p
P
[
Pj+1|j+1 ≤ p

∣∣Pj|j = q
]

(16)

does not depend on index j but only on the value assumed by matrices p and q. Note than
since process {Pk|k}∞k=0 is homogeneous Markov, the knowledge of the above conditional
probability density (together with prior density f0) gives a complete statistical description
of such process.

In [5] and [6] we compute an analytical expression for (16) in the one-dimensional case.
We shall describe our results, starting with the support (with respect to variable p) of the

3With the expression Pk+1|k+1 ≤ pk+1 we mean that every element of matrix Pk+1|k+1 is less than or
equal to the corresponding element of matrix pk+1.

4We indicate with f0(·) the probability density of covariance matrix p0, which in general may be random
as well. In case it were deterministic, f0(·) would just take the form of a n × n dimensional Dirac delta
function.

5Here symbol ∂/∂p indicates differentiation with respect to each single element of matrix p (in fact, we
are performing n2 differentiations). In the one-dimensional it just indicates ordinary partial differentiation
with respect to variable p.
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conditional density above.6 We will then give the explicit expression for f(p|q) and illus-
trate some density plots. In particular, we will analyze how the expression of conditional
density (16) is very closely related on the stability of the original continuous time system (1)
and on the intensity λ of the Poisson sampling process, sometimes in quite a surprising
manner.

3.1 Conditional probability density support

Let us first introduce some notation for the one-dimensional case (m = n = p = 1). We will
use scalar quantities: φ = F , g = G, σ2 = S. In the 1-D case φ obviously represents the only
eigenvalue of the continuous-time system matrix F . In fact R and C are scalar too; however,
we will not change symbols for these. Note that when φ < 0 continuous-time dynamical
system ẋ = φx is asymptotically stable, when φ = 0 it is simply stable, when φ > 0 it is
unstable; we shall refer to these cases later on.

In this subsection we shall talk about the support of conditional density function (16);
in the next one we will give its explicit expression and illustrate some density plots. First of
all note that, for a fixed q, the support of f(·|q) has to be contained in interval [0, R/C2]. In
fact the second of equations (1), i.e. y(tk) = Cx(tk)+z(tk), implies that the estimation error
is in the worst case determined by noise z(tk), whose covariance matrix is R. If we did not
know past history the probability density fk(pk) of Pk|k would be a delta function centered
at R/C2; in general we can do better than this since we are also using past information,
hence the probability density fk(pk) of Pk|k is “spread” on interval [0, R/C2]. Since, for all k,
the probability density fk+1(pk+1) of Pk+1|k+1 may be computed as

fk+1(pk+1) =

∫ R/C2

0

f(pk+1|pk)fk(pk) dpk ,

the support (in the p variable) of f(p|q) must be contained in interval [0, R/C2] as well.
The support of f(·|q) depends on the system parameters; however, it does not depend

on sampling intensity λ, which only influences the shape of f(p|q) within its support. See
Figure 2, which we will now explain in detail.

In general, we will have that the support of f(·|q) is an interval contained in [0, R/C2].
A “singular” case occurs when eigenvalue φ is equal to the following negative number:

φ∗ , −g2σ2

2q

in which case f(p|q) is a Dirac delta function centered at p = R
C2 q

(
q + R

C2

)−1
, independently

of sampling intensity λ. We shall refer to this “singular” case as Type II conditional density.

We should note that, for a fixed φ, this case occurs when φ = −g2σ2

2q
, which happens with

probability zero since Pk|k is a continuous random variable.

6Since density functions that are relative to absolutely continuous probability distributions are defined
in the “almost everywhere” sense, we should specify what we mean by support. A right-neighborhood of x
is a set of the type {y : x ≤ y < ε}, for some ε > 0; a left-neighborhood is defined in an analogous manner.
We will say that x belongs to the support of probability density f(·) if there exists a right-neighborhood or
a left-neighborhood Ix of x such that f(y) > 0 for all y ∈ Ix. When density f(·) has Dirac delta functions
(i.e. the corresponding random variable has a discrete component) we shall add the corresponding points to
the support.
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Figure 2: Support of conditional probability density f(p|q) with respect to variable p. Note
that it does not depend on sampling intensity λ.

It will be convenient to define the following quantities:

s1 , R

C2

g2σ2

g2σ2 − 2φ R
C2

, s2 , R

C2

q

q + R
C2

, (17)

which in most cases determine the extremes of the support of f(·|q). Note that s1 is a
function of eigenvalue φ and not a function of the previous estimation error variance value q;
on the other hand, s2 is a function of q and not a function of φ; however, none of them is a
function of sampling intensity λ. Note also that when φ = φ∗ (Type II densities) we have
that s1 and s2 coincide, andf(·|q) is a delta function centered at s1 = s2.

When φ < φ∗ (which, since φ∗ < 0, implies a relatively high degree of stability for the
state equation of the continuous-time state equation) we have that s1 < s2 and the support of
f(·|q) is in interval [s1, s2]. In such case we will talk of Type I conditional density functions;
it is the only instance when s1 < s2. Note that as φ, which is negative, decreases (i.e. as we
consider systems that are more and more stable) the value of s1 decreases too, meaning that
the variance of Pk+1|k+1 may assume lower values. This is in accordance with the idea that
stable dynamical systems are easier to track.

When φ∗ < φ < 0 we have Type III conditional densities. In this case s2 < s1 < R
C2 ,

and the support of f(·|q) is in interval [s2, s1]; for increasing values of φ we have that s1

approaches R/C2, i.e. as we approach instability higher values of the error variance are
allowed.

In the case φ = 0, which corresponds to sampling Brownian motion, extreme s1 finally
“merges” with R/C2, the highest possible value for the error variance: this case corresponds
to what we will call Type IV distributions.

Finally, when φ > 0 (unstable systems) we have that the support of Type V densities
is always given by interval [s2, R/C2], independently of the (positive) value of φ. Note,
however, that eigenvalue φ will still influence the shape of the conditional density.

It is important to remark that s2 is a monotone increasing function of q, it is equal
to zero for q = 0 and converges to R/C2 as q → ∞; however, since q can only assume
values in interval7 [0, R/C2], we necessarily have that s2 ∈ [0, 1

2
R/C2]. Since q is the value

previously assumed by the estimation error variance, it is a measure of the reliability of the

7With the only possible exception of prior variance P0|0 , Var[x(0)], which can be arbitrary.
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previous state estimates. The fact that s2 is an increasing function of q means that if the
previous estimate was not good enough (i.e. the value of q is high) then the next estimation
error variance will tend to assume high values, since we won’t be able to use reliable past
information.

3.2 Conditional probability density plots

We will now explicitly show the expression for conditional density f(·|q) in the cases described
in the previous subsection. Since Type II densities are trivial, we will not discuss them. We
will also plot the conditional density is several significant cases. The following parameters
are common to all plots: R = 4, C = 1, g = 1, σ2 = 1, q = 3, so that R/C2 = 4 and
φ∗ = −g2σ2/(2q) ' −0.16667; the particular values of φ and λ are reported on each graph.

Type I densities (φ < φ∗). The explicit form of conditional probability density (16) is the
following [5, §3.2]:

f(p|q) = − λ

2φ

R2

C4

(
q +

g2σ2

2φ

) [(
R
C2 − p

) (
q + g2σ2

2φ

)] λ
2φ
−1

[
g2σ2

2φ
R
C2 + p

(
R
C2 − g2σ2

2φ

)] λ
2φ

+1
· 1(s1 < p < s2), (18)

where 1(·) is the indicator function. Note that the minus sign in front of it makes sense since
the third factor (in round parentheses) is negative for φ < φ∗. Type I densities are shown
are shown in Figure 3 (for a fixed sampling intensity λ = 2 and different values of φ < φ∗)
and in Figure 4 (for a fixed eigenvalue φ = −1 < φ∗ and different sampling intensities).

In the first Figure higher values of φ tend to “squeeze” the probability density towards s2

(which is determined by q) since s1 is an increasing function of φ, as we discussed in the
previous subsection.

In the second Figure the support of density f(p|q) is fixed since we only vary λ, which
has no influence on s1 and s2 (see (17)) but only affects the shape of the curve. We assist to
an apparent paradox , which only occurs for Type I densities: in fact higher values of λ seem
to shift the area below the curve to the right , i.e. higher sampling rates tend to increase the
estimation error variance! The explanation is the following: when φ < φ∗ the continuous-
time dynamics are relatively fast, meaning that state x(t) quickly converges to zero; this
implies that it is somehow convenient to “wait” a long time to get a new measurement
(i.e. it is convenient to have lower sampling rates) since at that time state x will quite likely
be very close to zero and it will be easier to formulate a correct state estimate. Condition

φ < φ∗ implies that q > g2σ2

2|φ| , so we may equivalently interpret the situation saying that the

prior knowledge on the state is poor (i.e. q is relatively high) and, since we cannot rely on
it, it is convenient to wait until x(t) approaches zero before performing state estimation. We
will briefly return on this case in section 3.3 and provide further clarification.

Type III densities (φ∗ < φ < 0). The formula for f(p|q) is in this case the same as in
expression (18), except that it does not have the minus sign in front and the multiplying
indicator function is 1(s2 < p < s1), i.e. the support is [s2, s1]. Type III densities are plotted
in Figure 5 (for a fixed sampling intensity λ = 0.5 and different values of φ, with φ∗ < φ < 0)
and in Figure 6 (for a fixed eigenvalue φ = −0.04 ∈ (φ∗, 0) and different sampling intensities).

In the first Figure higher values of φ tend to expand the probability density towards
R/C2 = 4 by increasing the value of s1, whereas s2 is unchanged by φ. In other words, the
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Figure 4: Type I densities, for a fixed value of φ (less than φ∗).
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Figure 6: Type III densities, for a fixed value of φ.
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more the system moves towards instability, the harder it is to estimate its state. On the
other hand, if we fix the value of φ ∈ (φ∗, 0) and choose different intensities λ then we have
the situation depicted in Figure 6, which does not show the paradoxical behavior that is
typical of Type I densities, thus being closer to intuition: higher sampling intensities reduce
the estimation error variance by shifting the area below the graph of f(p|q) to the left.

Type IV densities (φ = 0, Brownian motion). In this situation the expression for f(p|q)
is the following:

f(p|q) =
λ

2ϕ

R2

C4

(
R

C2
− p

)−2

exp

[
− λ

g2σ2

(
R

C2

p
R
C2 − p

− q

)]
· 1

(
s2 < p <

R

C2

)
.

We will not report any graph of this case here, due to lack of space; see [5], [6] for plots and
more details. We will just say that the corresponding graphs are similar to the ones reported
in Figure 6, except that support is given by interval [s2, R/C2].

Type V densities (φ > 0). In this case f(p|q) has the same expression as in (18), except
that (as for Type III densities) there is no minus sign, while the multiplying indicator function
is 1

(
s2 < p < R

C2

)
. These densities, that correspond to the random sampling of unstable

dynamical systems, are are shown in Figure 7 (for a fixed sampling intensity λ = 1 and
different values of φ > 0) and in Figure 8 (for a fixed eigenvalue φ = 0.2 and different
sampling intensities). The support of f(p|q) is given by [s2, R/C2], independently of the
(positive) value of φ (and of sampling intensity λ).

As Figure 7 illustrates, the more unstable the continuous-time system is, the hardest it is
to track its state. On the other hand, Figure 8 shows that increasing the sampling intensity
shifts the area below the graph of f(p|q) to the left, thus making state estimation more
accurate. In other words performing state estimation of an unstable system is easier when
such system is sufficiently slow, or when measurements occur sufficiently often.

3.3 On the behavior of f(·|q) for φ < 0

It is appropriate, at this point, to spend a few more words on the asymptotically stable
case (φ < 0); such case, as we have shown above, presents certain subtleties (characteristic
of Type I densities) that do not appear when φ ≥ 0.

For a given one-dimensional system eigenvalue φ is fixed, which implies that extreme s1

is fixed. On the other hand Pk|k varies in time, hence the value that q assumes changes as
well: this means that φ∗ = −g2σ2/(2q) is variable in time too. Therefore if φ < 0 we may
have density Types I, II or III at different times. Assume for instance that Pk|k = q, such
that φ < φ∗ (i.e. q is relatively high) so that we have a Type I density: then Pk+1|k+1 might
assume a low enough value p so that φ > −g2σ2/(2p), which is the “new” value of φ∗ (in
fact p plays the role of q in the subsequent step: see the beginning of section 3); so density

f(pk+2|pk+1) =
∂

∂pk+2

P
[
Pk+2|k+2 ≤ pk+2

∣∣ Pk+1|k+1 = pk+1

]
,

with pk+1 = p, will be of Type III.
In fact we have shown rigorously [5] [6] that, for fixed values of φ < 0 and λ, if a Type I

density f(pk+1|pk) occurs in formula (15) then it will sooner or later “turn” into a Type III
density and stick to that type. More rigorously speaking, with probability one there exists a
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Figure 7: Type V densities, for a fixed value of λ.
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Figure 8: Type V densities, for a fixed value of φ.
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index j > k such that for all ` ≥ j we will have φ∗ = −g2σ2/(2p`) < φ, so that all densities
f(p`+1|p`) will be of Type III; such transition occurs in a random time whose mean is finite.
This phenomenon corresponds to the intuitive idea that in the case we were performing state
estimation on an asymptotically stable system (φ < 0) it may be convenient to wait until its
state x(t) approaches zero in order to have better estimates, as we discussed previously. As
the state approaches zero, Type I densities turn into Type III densities.

4 Bounding the Estimation Error

Recall the motivating example of a network with a large number of sensors. It is reasonable
to think that it is possible to choose the number of such sensors; in other words, if T is the
common sampling period of all sensors, one can control the magnitude sampling intensity λ
by picking an appropriate number N of sensors by relation: λ ' N/T .

In the previous section we have seen how Poisson intensity λ has a direct influence on the
performance of the state estimation algorithm we formulated in section 2, since the shape
of conditional probability density (16) depends on the intensity of the sampling process
(sometimes in a very subtle way: think of Type I probability densities).

In [5], [6] we have given an answer (although not an optimal one) to the following problem:
“Let φ be the eigenvalue of system (1), fix an arbitrary probability α ∈ (0, 1) (close to 1) and
an arbitrary estimation error variance p∗; find a sampling intensity λ∗ such that: P

[
Pk|k ≤

p∗
]

> α, ∀k ∈ N, for any choice of λ > λ∗.” The answer we have found depends on the sign
of eigenvalue φ (there is also a solution for φ = 0). For example, here is the proposition we
have proved in the case of unstable systems.

Proposition. Assume φ > 0. Choose α ∈ (0, 1) and p∗ ∈ (
1
2

R
C2 ,

R
C2

)
arbitrarily. Define:

λ∗ , 2φ log(1− α)


log




(
R
C2 − p∗

) (
R
C2 + g2σ2

2φ

)

g2σ2

2φ
R
C2 + p∗

(
R
C2 − g2σ2

2φ

)





−1

;

then we shall have that
P
[
Pk|k ≤ p∗

]
> α , ∀k ∈ N , (19)

for any choice of λ > λ∗.

Similar results hold for the case of Brownian motion (φ = 0) and for asymptotically stable
systems (φ < 0); in the latter case lower values of p∗ are admissible, however for (19) to hold
one has to wait until conditional probability densities f(pk+1|pk) “become” of type III (for k
large enough: as noted in the previous section, this occurs in finite mean time). We should
also note that our results are not optimal, in the sense that they provide sufficient but not
necessary conditions for (19) to hold. We strongly suspect there may be lower values of λ∗

that would imply the same expression. The refinement of our results is left for future work.

5 Conclusions and Future Work

In this paper we have presented recent work on random sampling of continuous-time stochas-
tic dynamical systems. We have provided a Kalman-based state estimation algorithm and
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we have performed (in the 1-D case) a complete statistical description of the corresponding
estimation error variance process. In particular, we have discussed the dependence of such
a description on the dynamics of the original continuous-time system and on the intensity
of the Poisson sampling process. Finally, we have briefly presented a result that makes it
possible to bound the error variance of the state estimation process by choosing a suitable
Poisson sampling intensity.

Research in this field has a number of natural future directions. The most prominent one
is the extension of our study to multi-dimensional, linear dynamical systems: the study of the
general case should start from the Jordan form of the system matrix; we expect the periodic
case (i.e. the presence of complex eigenvalues, which do not occur in one dimension) to
present subtle and interesting phenomena. Also, in analogy with Markov chains, it is rather
intuitive that there should be a stationary probability density π(·), such that, if we started
with an error variance P0|0 distributed according to it, the probability density of Pk|k would
not change in time; we find the problems of proving its existence or, more ambitiously, of
finding π(·) in analytic form to be quite interesting ones. Another challenging problem would
be the one of refining the results we briefly presented in section 4, regarding the bounding
of the estimation error variance below a given threshold with arbitrary probability.
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