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Abstract. We investigate the statistics of local geometric structures in
natural images. Previous studies [12,13] of high-contrast 3 x 3 natural
image patches have shown that, in the state space of these patches, we
have a concentration of data points along a low-dimensional non-linear
manifold that corresponds to edge structures. In this paper we extend
our analysis to a filter-based multiscale image representation, namely the
local 3-jet of Gaussian scale-space representations. A new picture of nat-
ural image statistics seems to emerge, where primitives (such as edges,
blobs, and bars) generate low-dimensional non-linear structures in the
state space of image data.
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1 Introduction

The study of natural image statistics is an active research area and different
approaches have been taken in this field [3,6,7,13,21,23,25]. It has previously
been shown that natural image statistics — such as the marginal distributions of
image intensity L and the gradient magnitude ||V L|| — are highly non-Gaussian,
and approximately invariant to changes in scale [3,16,21]. Roughly speaking, the
research in natural image statistics can be divided into two related directions:
Researchers such as Zetzsche et al. [26], Simoncelli [23], and Huang et al.[7,6]
have looked at the 1D marginal and 2D joint statistics of filter responses for
a fixed wavelet basis. They have, for example, explored complex dependencies
between pairs of wavelet coefficients at nearby spatial positions, orientations
and scales. Others have looked at the state space of image data and tried to find
a set of directions (or projections of the data) that lead to an optimal image
representation in some sense; see e.g. sparse coding [20] and ICA [2,8].



In this paper, we take a different approach to natural image statistics. We
believe that in order to fully understand the statistics of natural images one needs
to explore the full probability distribution of the salient structures of local image
patches. The analysis is free from such restrictive assumptions as independent
components, or even linear decompositions of an image into basis images.

Our work is inspired by David Marr’s ideas [17] that the structure of images
can be described by primitives such as edges, bars, blobs and terminations —
the so called “primal sketch”. The basic questions we ask are: What are the
probability distributions of Marr’s primitives and how are these primitives rep-
resented geometrically in the state space of image data? Can we develop models
that will tell us how likely we are to observe a local geometric structure (such
as an edge, ridge, blob, corner etc.) of a certain size in an image? Not much
work has been done in this direction to our knowledge. Such probability models
would, however, be useful as priors in image processing and computer vision ap-
plications as diverse as compression, feature detection, segmentation [15], image
reconstruction [19] and enhancement [22,27].

To study the distribution of local geometric image structures, one first has to
choose a representation that captures the image geometry in a neighborhood of
some fiducial point. We need a set of local measurements of the luminance cap-
tured through a set of sensors — a sensorium. The concept of a sensorium makes
sense both from a biological vision point of view (the receptive fields in the early
visual system have been compared to feature detectors [10]) and from a math-
ematical point of view: Mumford and others [4,18] have argued that an image I
is not a function or a pointwise estimate I(z,y) but a Schwartz distribution that
can only be probed by averaging (or measuring) [ [ I(£,n)¢;(z — &,y — n)dEdn
through smooth “test” functions or sensors ¢;.

In our previous study [12,13] of natural image statistics, the sensorium is
defined by the sensors in the CCD camera used to collect the images. More spe-
cifically, we study the joint statistic of the pizel intensity values in high-contrast
3 x 3 natural image patches. We found (for optical images) that the state space
of the patch data is extremely sparse, with most of the data concentrated around
a continuous non-linear manifold in state space. This manifold corresponds to
edges of different orientations a and positions [.

In this work, we investigate whether our previous results (such as the exist-
ence of an ideal edge manifold in state space and the concentration of natural
image data around this manifold) generalize to different scales and more general
image representations.

In the context of linear Gaussian scale-space theory [9], Koenderink and van
Doorn [10] proposed the so-called local jet of an image as a biologically plausible
representation of local image geometry. In this setting, the sensorium consists
of partial derivatives of the Gaussian kernel function. Convolving an image with
these kernels is equivalent to measuring the partial derivatives of a coarse-grained
representation of the image — the so-called scale-space image. The jet space
captures the local geometry in a neighborhood of a point in the image, where



the size of the neighborhood is determined by the standard deviation or “scale”
of the Gaussian kernel.

In this work, we choose an image representation defined by Gaussian scale-
space image derivatives up to third order — the 3-jet. This sensorium can dis-
tinguish between image structures such as edges, ridges, blobs and corners [10],
but is blind to structures that require the descriptive power of image derivatives
of order higher than 3.

We believe that such a representation of image data has certain advantages
compared to many other types of multiscale representations. First of all, the
Gaussian scale-space representation gives us a sensible way of defining image
derivatives — the scale-space image derivatives. With these derivatives, we can
use the language of differential geometry to define and interpret local features in
images. The Gaussian kernel and its derivatives are furthermore similar to the
receptive fields found in the mammalian visual system [9,10]. Both the mam-
malian receptive fields and the Gaussian scale-space derivatives are tuned to
structures at different scales, orientations and frequencies.

As in [13], we focus our analysis on edge structures. We first define a model
of an ideal edge in Gaussian scale-space, and show that the 3-jet representations
of edges define a 2-dimensional differentiable manifold in jet space. We then
study how empirical data, extracted from a large database of natural images, are
distributed in 3-jet space with respect to this manifold. We find, in accordance
with previous results in [13], that the natural image data are densely distributed
around the edge manifold with a probability density function of the form 67,
where 0 is the distance to the edge manifold and -~ is close to 0.7. We furthermore
show that the results are approximately invariant to a change of scale.

This work is an attempt to develop a full probability model of edges in natural
images that is universal, i.e. independent of scale and image representation. In
the future, we plan to extend the analysis to representations of other image
primitives (such as bars, blobs, and T-junctions).

The organization of the paper is as follows: In Sec. 2 we provide the necessary
background on jet spaces and linear Gaussian scale-space theory. We introduce
the Gaussian edge model in Sec. 3. In Sec. 4, we describe our image data set,
the whitening and contrast normalization of this data, and the results of our
analysis. Finally, we finish with concluding remarks (Sec. 5).

2 Multi-scale Local Jet

Linear Gaussian scale-space was proposed among others by Koenderink [9] as a
sound theoretical framework for doing multi-scale image analysis. The Gaussian
scale-space L : 2 — IR of an image f : 2+ IR (where 2 C IR?) can be defined
as the solution to the heat diffusion equation
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under the constraint L(z,y;s = 0) = f(x,y). The scale s > 0 is related to ¢ by
t = s2. The Gaussian scale-space representation of an image is thus a convolution

Leyis) = [[ renoe—ey—msdcar 1)
with a Gaussian kernel function ¢ : R? — IR where
1 @2+

P(z,y;8) = me 25 (2)

We interpret the parameter s as the measurement scale of the scale-space image
L(z,y;s) as it corresponds to the width (or standard deviation) of the “smooth-
ing filter” &(-).

An image is in general not a differentiable function, but in scale-space we
obtain a family of smoothed versions of the image which are C'*°-differentiable.
We can compute partial derivatives OynOym (= %) of the scale-space rep-
resentation by convolving the image f(-) with partial derivatives of the Gaussian

kernel function ¢(-; s), as
Lynym (+58) = OgnOym (f % @) = f * (Ogn Oym @)

Note that the scale-space derivatives Ly~ = constitute a scale-space as they also
satisfy the previous heat diffusion equation.

Various approaches exist for discretization of scale-space representations (see
e.g. [14]). Here we evaluate the convolution in Eq. (1) by multiplying the discrete
Fourier transform of the discrete image with discretized Fourier transformed
Gaussian derivatives Og» Oym .

To be able to compare scale-space derivatives at different scales, it is con-
venient to use dimensionless coordinates (the so-called natural coordinates) and
scale-normalized differential operators [14]. In the (z,y)-coordinate system the
dimensionless coordinates are given by

Ty
(z',y) = (ga g) 3)

and the scale-normalized partial derivatives are
Lormym (2,Y;8) = Oprm Oym L(2, Y3 8) = 8" 0gn Oy L(w, y; 5). (4)

In the rest of this paper we will assume that all scale-space derivatives Lynym
are scale normalized.

We can describe the local geometry of an image by the so-called local jet
[5,10]. Since the scale-space image L(z,y; s) is a smoothed, differentiable version
of an image, we can use a Taylor series to describe its behavior around a point
(z0,90)- For (zg,y0) = (0,0), for example, we have

1

1 .
+ E(Lmzm3 + 3Lyy @y + 3Lyyxy® + Lyyyy®) + ... (5)



where the scale-space derivatives L, L,, L, ... are evaluated at (zo,yo) = (0, 0).
Consider now the truncated Taylor expansion of degree k. The so-called local
k-jet (of L(x,y;s) at (xo,y0)) is an equivalence class of smooth functions with
respect to the map j¥L : R* = J*(R?> » R) c RN, N = (2 + k)!/(2k!), where

7*L(z,y;8) = (L(x, 5 8), Lo (3,93 8), Ly(2,43 8), - . ., Lonym (2,95 8))"  (6)

and n + m = k. The space J*(IR? — IR) of all k-jets of functions IR? — TR is
sometimes called a k-jet space. Images that belong to the same k-jet (i.e. the
same point in J¥(IR? — IR)) “look” the same up to order k, in the sense that we
can not distinguish between them by only looking at scale-space derivatives up
to order k. Koenderink and van Doorn [11] named this class a metamer inspired
by the terminology of Schrédinger’s theory of colorimetry.

Edges, ridges, blobs and corners are all common geometric structures found
in images. In this paper, we will focus on the statistics of edges. We limit our
analysis to the partial derivatives parameterizing the 3-jet, as the 3-jet captures
the characteristics of the above mentioned geometric structures (edges, ridges,
blobs, and corners) [10,11].

In the following, we will study the statistics of images mapped into 3-jet
space by j3L : R% — J3, where

33L($7 Y; 3) = (Lwa Lya L:cw: Lzy: Lyy: szw: szy; Lwyy: Lyyy)T (7)

and the measurement scale s > 0. The scale-space derivatives Ly, Ly, Ly, . ..
are evaluated at (x,y;s), and are scale normalized according to Eq. (4), i.e.
Lynym(z,y;8) = 8" 0ynOym L(z,y;s). In the above 3-jet representation, we
have excluded the intensity L(z,y;s) of the blurred image, as we are only inter-
ested in variations in the local image geometry. The tilde notation is to indicate
that J* c J*(R? = R).

3 The Edge Manifold

Geometric structures corresponding to edges can in jet space be modeled by the
scale-space of an ideal step edge. In this section, we show that the contrast-
normalized 3-jet representations of edges of different orientations, positions and
scales trace out a differentiable 2D submanifold in the jet space J°.

For convenience, we define the edge model in the local orthonormal (u,v)-
coordinate system where the v-axis has the direction of the local gradient at any
point Py and the u-axis is perpendicular, i.e. we define unit vectors

1
ey = (cos a,sin @)’ = ———=(L,, L))"

L2+ L2

ey = (sina, —cosa)l . 9)

(8)

Py

and



In this coordinate system, an ideal step edge (defined on IR?) has the form

1 ifo>1
f(U,U,l): {0 ifo<l (10)

where | € IR is the displacement of the edge from the origin in the v-direction.
The scale-space representation of the ideal step edge is (according to Eq. (1))
given by

v

Glu, 31, 8) = flu,v31) % Bu, v; ) = / SiLs)d (11

v'=—00

(=12

where 9(v;1,5) = ﬁei 2.2 is a one-dimensional Gaussian kernel centered

at I. For the scale-normalized partial derivatives of the edge model G(u,v;l,s)
along the u and v-axes, we have
Gyn (u,v;1,8) =0

12
Gon (u,v;1,8) = 8"0yn-19(v;1, 8) (12)

for n > 1.
We now map the edge model G (u,v; a1, 5) into the jet space J° by computing
the nine components of the map j2G(0,0; «, [, s) defined by Eq. (7). Since

Oy = cosad, +sina d,

Oy =sinad, —cosady , "
we get that
Gwm o (0, 07 a, l, S) — COSm o Sinn o va+n (’U/, v; l7 S) (u,’U):(O’O)
=" cos™ a sin™ @ Oym+n—1 Y(vsl, 8)‘

Denote the map that takes the edge model to the 3-jet space J3 by € :
[0,27) x R x R4 \{0} =~ J°, where

E(a,1,8) = (G£(0,0;a,1,8),Gy(0,0; 0,1, 8), G52(0,0; 0,1, 5),
Gzy(oa 0; 0,1, 5)7 ny((]: 0; 0,1, 5)7 Gzzz(oa 0; 0,1, 3)7
Gay(0,0;,1, 8), Gayy(0,0; 0,1, 8), Gyyy (0,05, 1, 8)) 1. (14)

Although the edge map € is a function of three variables (the angle «, the
displacement, [ and the scale s), the loci of all points &(«a,l,s) trace out a 2-
dimensional C* differentiable manifold in IRY that only depends on a and the
ratio /s (see Appendix A). Note that the edge manifold is periodic in « for fixed
l/s.

In Fig. 1, we show some image samples that correspond to the edge manifold
&(a,l,s). These samples are for illustration purposes only and correspond to a
Taylor expansion around the origin (Eq. (5)) truncated beyond the 3rd order
terms.
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Fig. 1. Gaussian edge images. Each image is of size 65 x 65 pixels and corresponds to
a 3rd order truncated Taylor expansion (Eq. (5)) of a Gaussian edge at scale s = 1
pixel.

4 Statistics of Edge Structures

4.1 The Empirical Data Set

In our experiments, we use the van Hateren still image collection consisting of
4167 1024 x 1536 pixels gray-scale images' [24] (see Fig. 2 for samples from the
database). Before doing any processing of the images f(x,y) in the database,
we compress the intensity range by taking the logarithm log(f(z,y) + 1) of the
intensity.

For each scale-space image L) (x,;s) at a fixed scale s, where s = 1,2,4,8,
16,32 pixels and ¢ = 1,...,4167, we extract a random set of 1000 spatial co-
ordinates X () C 2 (2 C R? denotes the image domain). At these spatial
coordinates, we compute the 3-jet representations defined according to Eq. (7).
This gives us data sets

Jo = {PLO@,y5) CP|(w,y) € XOi =1, 4167} (15)

! We use the raw image set (.iml) where the intensity values have been linearized by
the camera’s lookup table.



Fig. 2. Sample images from the van Hateren still image collection. We show the log-
transformed intensity values, log(f(z,y) + 1).

where s = 1,2,4,8,16,32 pixels. Elements in each set J, are points in J3 that
have been sampled from different spatial positions and different images at a fixed
scale s. The total number of data points ? in each set J; is |J5| ~ 4.1 - 10°.

4.2 'Whitening and Contrast Normalization

The lighting conditions may vary across and between images. We are interested
in variations in the local geometry of the image and would like to disregard
variations caused by changing lighting.

Before contrast-normalizing (or more precisely dividing out the multiplicative
factors in the scale-space derivatives) we need to first whiten the data. This will
lead to a vector representation of the 3-jets where the elements are uncorrelated
and of the same order of magnitude.

Assume that & € J; where J;s is our data set (Eq. (15)). The covariance
or correlation matrix C =< zx > is scale invariant, so we can get a robust
estimate of C' from the joined data set |J, J; where s denotes the scale. The
mean < x >= 0 due to the convolution with mean-zero scale-space filters.

The first step in the data preprocessing is to define transformed input vari-
ables

y=A"U", (16)

where U is a 9 x 9-matrix with the normalized eigenvectors of C' as columns, and
A is a diagonal 9 x 9-matrix with the corresponding eigenvalues of C' as diagonal
elements. The transformed data y is “white” in the sense that the covariance
matrix < yy? >=1.

The second step is to contrast-normalize the data according to

N Yy
p=1-5 (17)
Iyl
2 To prevent numerical problems during contrast normalization (see Sec. 4.2 and Eq.
(17)), we discard data points y with a norm ||y|| that is close to zero after whitening.
This corresponds to 1% of all data points.



so that scale-space images of similar geometric structure have the same rep-
resentation. The whitened and contrast-normalized data points p all lie on a
8-dimensional unit sphere

s*={pl Ipll =1} e R’ . (18)

The 8-sphere S® is the state space of whitened and contrast-normalized 3-jet
representations. The whitened and contrast-normalized data set J; at a fixed
scale s is denoted by J, € S8.

Similarly, we define the map & : [0,27) x R — S® that takes the edge map
&(a, 1, s) (Eq. (14)) to the state space of whitened and contrast normalized 3-jet
representations by

APUTE(a,l/s,1)
|A=12UTE (e, U/, 1)1

We measure the distance between two data points p,, P, € S by their angular
separation, i.e.

E(a,l/s) = (19)

dist(po, P,) = arccos(p py)- (20)

4.3 Density Results for the Empirical Data Set

In Sec. 3, we described the theoretical manifold of edges in 3-jet space. In this
section, we verify that the empirical data from natural images (i.e. the whitened
and contrast-normalized data in sets .J; from Sec. 4.1 and Sec. 4.2) are really
densely distributed around the manifold of edges. By putting parallel bins around
the manifold and computing histograms of the data, we can get an estimate of
the functional form of the probability density around the surface. .

First we divide the whitened and constrast-normalized edge manifold &(a,1/s)
of Eq. (19) into a mesh of spherical triangles in the same fashion as in [13]. We
sample the edge manifold with parameters [ € [—4s,4s] and a € [0,27). We re-
fine the mesh of triangles until no vertices in a triangle are more than 11 degrees
apart. This gives us a triangulated mesh with a total of 22944 triangles. We use
the triangulated mesh of the manifold to estimate the distances between the data
points of J; and the manifold of edges £(a,/s) on the 8-sphere S®. The distance
dist(x, &(a,1/s)) between a data point = € J, and the edge manifold &(a,1/s)
is approximated by the distance to the center point of the closest triangle in the
mesh.

Fig. 3 (top) shows a normalized histogram of the number of whitened and
contrast-normalized data points p; € Js (n=1,..., |j3|) versus the distance 6
to the edge manifold &(a,1/s) C S®. Let

N(H;s):#{n 5 5

g_ 20 < dist(p?, &(e, 1/5)) < 0 + ﬁ} (21)

where Af is the histogram bin width and dist(p?, &(e,1/s)) is the angular dis-
tance (Eq. (20)) from the data point p;, to the closest point on the triangulated
mesh of the edge manifold (e, 1/s).
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Fig. 3. (Top) The normalized histograms N(8; s)/|Js| of the data sets J, (|J,| ~ 4.1-10°
points), where s = 1, 2,4, 8,16, 32 (see legend) and 6 is the distance to the edge manifold
&(a,1/s) C S°. (Bottom) Normalized histogram V (6)/Viet, which corresponds to the
Monte Carlo estimated volume on S® of the histogram bins of N(6;s) (Vies = 107
points).

To get an estimate of the probability density of points around the edge mani-
fold, we also need to calculate the volume of the bins [ — %, 0+ %) in the state
space S®. We here estimate the bin volume by sampling V;o; = 107 uniformly
randomly distributed points v, (n = 1,...,Viot) on the 8-sphere. The histogram

V(H):#{n 2

6 — % < dist(vy,, &(a, 1/5)) < 6 + ﬁ} (22)

of the number of samples versus the distance 6 to the surface of edges is a Monte
Carlo estimate of the volume of the histogram bins. Fig. 3 (bottom) shows the
normalized histogram V' (6)/V;et.

We define the empirical density of data points around the edge manifold as

o= N/
PO = 0) Vi 9
Fig. 4 shows the calculated density for the data sets js, where s = 1,2,4,8,16,32
pixels. These results seem to indicate that the probability distribution of data
points in the jet space has an infinite density at the surface of scale-space edges
(where @ = 0). This is consistent with the results on high-contrast 3 x 3 pixel
image patches in [13]. Furthermore, the density function p(6; s) is approximately
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Fig. 4. Density p(6; s) versus the distance 8 to the edge manifold &(a,1/s) C S® for
data points in Js. Each graph represents the density at a fixed scale s, where s =
1,2,4,8,16,32 pixels (see legend). By linear regression for § < 9 degrees we get that
pat(0;8) ~ 077, where v =1.7,1.0,0.7,0.7,0.7,1.1 (s = 1, 2,4, 8,16, 32).

scale invariant and seems to converge towards the functional form p(6; s) ~ =07
as we increase the scale s. The latter results are consistent with many of the
previous empirical findings on scale invariance of natural image statistics; see
e.g. [3,21].

In Fig. 5 (top), we calculate the cumulative sum 3 ;o N (8; s)/|Js| (in per-
cent) of the number of data points as a function of the distance 6 to the surface
of edges. For all scales s, we get that 20% of all data points are within 29 de-
grees of the surface of edges, which corresponds to less than 12% of the total
surface area of the 8-sphere S8 (see Fig. 5 (bottom)). In other words, points in
these subsets of J; are densely clustered around the low-dimensional manifold
of edges.

To better illustrate the connection between the density function p(#;s) and
the image space, we end this section by computing p(6;s) for pixels in the clas-
sical “Lena” image. Fig. 6 shows both scale-space images of Lena and the corres-
ponding densities p(6; s) for different scales s. In the density calculation, we first
map the pixels in the scale-space of Lena into the jet space J° in Eq. (7) and then
whiten and contrast normalize according to Sec. 4.2. We subsequently compute
the distance 6 of these points to the edge manifold &(a, 1/s) C S? and, finally, we
look up the fitted density values pgi(0;5) ~ 6 7= (see Fig. 4) corresponding to
the computed 6-values. The gray values in the second and fourth rows of Fig. 6
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Fig. 5. (Top) Cumulative sum »7;_, N(8; s)/|Js| (in percent) of the number of data

points in J, as a function of the distance to the surface of edges. (Bottom) Cumulative
volume versus cumulative number of data points for data sets Js.

code for the magnitude of pa¢(6;s) ~ 67 for different scales s = 1,2, 4, 8,16, 32.
The first and third rows show the corresponding scale-space images.

5 Conclusions

We have extended the results in [13] from a pixel-based image representation to
the jet space representation of linear Gaussian scale-space. The goal of this work
is to investigate whether our previous findings on small image patches generalize
well to larger scales and more general filter-based image representations.

In this work, we analyze Gaussian scale-space derivatives computed at ran-
domly chosen points in (a large database of) natural images. At each chosen
location, we compute the 3-jet representation (a 9-dimensional vector of up to
3rd order scale-space image derivatives) at different fixed scales. After whitening
and a contrast-normalization, the data is on the surface of a unit 8-sphere in IR?
centered at the origin.

Analysis shows that the probability distribution of empirical data has an in-
finite density at a 2-dimensional C'*°-differentiable manifold in the 8-sphere (the
state space of whitened and contrast-normalized 3-jet representations). This non-
linear surface corresponds to the loci in jet space of Gaussian edges of different
orientations «, positions [ and scales s. Our results are approximately invariant
to a change of scale. In fact, for increasing scales s, the density around the sur-
face seems to converge towards the functional form p(8) ~ =97, where 6 is the



Fig. 6. The first and third rows show scale-space images of “Lena” (226 x 226 pixels) for
scales s = 1,2,4, 8,16, 32 pixels. The second and fourth rows show the corresponding
log-densities log(p(6; s)) in jet space (a bright pixel corresponds to a high density at
that position in the image). The densities p(;s) are estimated at each pixel by first
computing the distance 6 to the manifold of Gaussian edges and then looking up the
density values pg(6; s) (see Fig. 4) that correspond to these 6-values.

distance to the edge manifold. For all scales, we find that 20% of the randomly
chosen image points have a 3-jet representation that are within 29 degrees of the
edge manifold. This region around the manifold corresponds to less than 12% of
the total surface volume of the 8-sphere.

The results above are consistent with our earlier findings in [13] for 3 x 3 nat-
ural image patches. In this work, we have studied the manifold of Gaussian edges
parametrized by the orientation a and the scale-normalized position I' = /s of
an edge. More generally, we believe that one can define a dictionary of probability
models on representations of general primitives (edges, bars, blobs, T-junctions)
parametrized by ® = {¢1, ¢2,...} for any set of filters f1,..., fx in a sensorium.
In the N-dimensional state space of the filter-based image representations, the



image primitives will define manifolds of the general form
M(®) =[f1(-) * I(59),..., [n() « I(®)]".

The picture that seems to emerge is that natural images are extremely sparse
with most of the data in state space concentrated along these low-dimensional
structures that correspond to edges, blobs, bars etc. One has to realize that these
manifolds are in general highly non-linear — this makes our approach funda-
mentally different from, for example, ICA and sparse coding where one studies
linear projections in state space. It should also be noted that the dimension of
the state space of the image data is determined by the number of filters in the
analysis (which is usually very large), while the dimension of the manifolds of im-
age primitives is fixed and determined by the complexity of the primitives only.
Because of the low dimensionality of the primitive manifolds (2 for edges, 3 for
bars, etc), a “probabilistic primal sketch” of natural images may have important
implications on the information-theoretic bounds one can put on compression of
these images.
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A Appendix: The Edge Manifold

Theorem 1. The loci of all points E(a,l,s) (Eq. (14)) trace out a 2-dimensional
C>-differentiable manifold in the jet space 33 C R®. This manifold of edge
representations is parametrized by the angle a and the ratio l/s between the
displacement [ and the scale s.

Proof. The edge map & (Eq. (14)) is infinitely differentiable, as

+

Gom yn (T, 4501, 8) = 8™ cos™ a sin™ o Oym+n-19(v;1, 5)

and the functions cosa, sina and v (v;l, s) are C°°-differentiable with respect
to a, I and s (for s > 0).
Furthermore, if we introduce the dimensionless variables

l
W=—, v==,1'=-, éd=1
s s s

and assume scale-normalized derivatives as in Eq. (12), we get that
Gv" (u,v;l,s) = Gv'"(ulavl;llasl) (24)

for n > 1. Eq. (24) follows from the scaling properties of the Gaussian function
¥(v; 1, s): We have that
P, 8") = syp(vsl,s)



and [1]

Bib(v;1,5) = (%)k e (2 ) vt

for k£ > 0. Hence,

1/ -1\* o' =U\1, .,
Opetp(vsl,8) = o (m) Hy, <m) glﬁ(v i1, 8")

1
= Oy (51,8,

which is equivalent to (Eq. (24))

s 9p(v;l, s) = 8T e (v's 1, 8)

Gyn (u,vsl,s) Gin (U 0'50,8")

wheren=%k+1>1.

Although the edge map & in Eq. (14) is a function of three variables (the

angle «, the displacement | and the scale s), the loci of all points (a1, s) trace
out a 2-dimensional manifold (in the jet space) which only depends on « and
the dimensionless ratio I/s.
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