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Abstract

Seeking universal probability models for image representations, we employ a spectral ap-
proach where the images are decomposed using several bandpass �lters, and probability models
on the �lter outputs (or spectral components) are imposed. We apply a (two-parameter) analyt-
ical form, introduced in [9] and called a Bessel K form, for modeling the marginal probabilities
of these spectral components, and demonstrate their �t to the observed histograms for video,
IR, and range images. A relationship between the Bessel parameters and certain character-
istics of the imaged objects is established. Using an expression for L2-metric on the set of
Bessel K forms, we suggest a pseudo-metric on the image space for quantifying image similar-
ities/di�erences. Some applications, including clutter classi�cation and pruning of hypotheses
for target recognition, are presented.

Index terms: image statistics, spectral analysis, Bessel K forms, clutter classi�cation, target
recognition.

1 Introduction

Statistical techniques for image analysis and understanding require eÆcient probability models for
the observed images. Given the tremendous variability associated with the imaged objects, detailed
(e.g. 3D deformable templates) models may not be feasible in modeling \all possible targets and
clutter objects". Therefore, one seeks a balance by designing low-level, coarse representations for
modeling the pixel patterns, representations that are tractable and yet capture signi�cant image
variation. Here we study tractable, coarse probability models that can form building blocks for
a larger image understanding system. Since the image space is very high-dimensional, a direct
modeling of the joint probabilities is not possible, even if a large number of observations are
provided, and some method for reducing dimensions is required. There are two general reductionist
approaches presented in the literature: (i) parameterize the probability densities using certain
(low-dimensional) physical parameters (relating to the imaged objects), or (ii) perform dimension
reduction via purely numerical, non-physical approaches.

In the �rst approach, relating to high-level vision, images are characterized by the physical
characteristics of the objects (such as shapes, textures, re
ectance, illumination, and motion).
These quantities are modeled mathematically, within some acceptable approximation, and the
resulting physical variables are used to analyze images. Probability models on images now consist
of: (i) probability models on these physical variables and (ii) the sensing models. An example of this
idea is the deformable template theory ([7]) where images are studied through the transformations
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that match the templates to the observations. These models are detailed and they capture suÆcient
variability to discriminate well even in the challenging situations (cluttered scenes, low SNR, distant
images, etc.). One drawback is that they are computationally expensive to implement, since they
require synthesis of hypothesized images for image analysis. Also, there is a possibility of �nding
new objects in the image whose physical descriptors may not be known beforehand. The second
idea, relating to low-level vision, involves one of many techniques that reduce the dimensions using
purely numerical considerations. That is, by not involving any physical consideration on the imaged
objects, or any contextual knowledge, the images are treated as elements of a vector space and one
seeks a low-dimensional subspace that best represents those numbers (under some chosen criterion).
Principal components [14], independent components [5, 3], sparse coding [19], Fisher's discriminant
[2], local linear embedding [22], and many other statistical learning algorithms are all instances of
this idea. The main advantage is the computational eÆciency and the main drawback is knowledge
de�ciency. Lack of physical or contextual information leads to a limited performance, specially in
challenging situations.

1.1 Models for Image Analysis

An important idea is to develop an adaptive strategy that balances these two levels of inferences. In
this paper, we study a framework that provides some interaction between the pixel-based and the
template-based inferences, and is capable of shifting between the two depending on the available
resources, both computational and informational. Consider a deformable template representation
of the imaged objects, as laid out in the papers [10, 23]. The basic idea is that images are made up of
(images of) objects, and their variability can be represented by physical variables. Using 3D models
of objects (including polygonated surfaces, textures, and re
ectance functions), all occurrences
of these objects can be generated using similarity transformations. 3D scenes containing these
transformed objects lead to 2D images via occlusion and projection. What probability models on
I (an image) can result from this model? As stated earlier, there are two possibilities:

1. First, the template approach where the set of possible objects is small, and the 3D models
are available for all objects. Also, the tools for synthesizing images of these objects under all
transformations are assumed available. Under these assumptions, a probability distribution
on I can be written explicitly in terms of a probability on the transformation space and the
set of objects. Object recognition is now solved on their product space [23, 17]. Inference
procedures are laid out in the papers [8, 10, 17].

2. Second, for general problems in image understanding, 3D models can not be pre-stored for
all objects, and furthermore, the transformations may not be identi�able in all conditions.
Therefore, the representations tend to be less explicit and the probability of I is motivated
through empirical studies [18], and not via the physical parameters.

We seek general models that retain some physical considerations, although not as explicitly as the
template approach. Pursuing the second case, we replace 3D templates by their 2D pro�les (call
them generators) and denote them as g's. g's are the views (signatures, pro�les) of randomly
chosen objects, taken from random poses. Let G be the space of all possible generators associated
with all objects, imaged from all angles. Random translation of 3D objects in a scene will be
modeled by random placements and scalings of g's in an image.

Each object contributes to the pixel value I(z) according to aigi(
1
�i
(z � zi)). Here z 2 W �

[0; L] � [0; L] is a variable for pixel location, gi : W 7! IR+ is a generator of a randomly chosen
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object, �i 2 [0; L] is a random scale, and ai 2 IR is a random weight associated with gi. gi's are
assumed to be drawn from the generator set G according to some measure dG. The image formation
is now modeled by the equation:

I(z) =
nX
i

aigi(
1

�i
(z � zi)); z; zi 2W; ai 2 IR; �i 2 [0; L] : (1)

Assume: (i) the weights ai's are i:i:d: standard normal, (ii) the scales �i's are i.i.d. uniform on
the interval [0; L], (iii) the locations zi's as samples from a 2D, homogeneous Poisson process, with
intensity � on a compact set W � IR2, and (iv) ai's, gi's, zi's, and �i's are all assumed independent
of each other. Since gi's are assumed unknown, the related variables n, �i's and zi's are also
indeterminable. However, we aim to derive probability models on I by implicitly incorporating
their variability.

Motivated by a growing understanding of animal vision, a popular strategy has been to de-
compose images into their spectral components using a family of bandpass �lters. Similarly, our
probability model on I will be through its spectral representation. If certain low-dimensional statis-
tics of these �ltered components are found suÆcient, then a signi�cant reduction is achieved. Zhu
et al. [26] have shown that the marginal distributions of spectral components, obtained using a
collection of �lters, completely characterize homogeneous textures. The choice of histograms as
suÆcient statistics implies that only the frequencies of occurrences of (pixel) values, in the �ltered
images, are relevant and the location information is discarded [11, 27, 13]. Chubb et al. [4] also ad-
vocate the use of histogram in texture representation. The focus in these papers has been to model
homogeneous textures but we apply spectral analysis to a general setting of image understanding.
Simoncelli et al. [21] have suggested using the lower order statistics (mean, variance, skewness,
kurtosis) to specify the marginal densities of the wavelet coeÆcients of the images. Wainwright et
al. [24] have studied a family of Gaussian mixtures, for di�erent mixing densities, for modeling the
observed histograms. Lee et al. [15]. have presented a model for capturing the statistics in the
images of leaves.

Using a physical model for image formation, we have proposed a family of two-parameter
probability densities [9], called Bessel K forms, to model the horizontal and the vertical derivatives
of an image. In this paper, we now apply an extended version of this model to a full spectrum of
bandpass �lters and arbitrary images. The two parameters, associated with this family, will form a
suÆcient statistic for a spectral component, denoting a signi�cant reduction in the representation.
The parameters depend only on the variance and the kurtosis of the �ltered image pixels, thereby
implying a simple estimation procedure. The main results presented here are: (i) we demonstrate
the success of Bessel K forms in modeling the spectral components for video, IR, and range images
of natural and arti�cial scenes, (ii) we derive an analytical expression for computing the L2-metric,
on the Bessel family, that leads to a pseudo-metric on image space, and (iii) use the Bessel K forms
(and the pseudo-metric) as a tool for clutter classi�cation and for pruning possible hypothesis set
for recognition of objects from their images. The last claim is based on: (i) motivating the model
in Eqn. 1 by relating it the 3D deformable template representation, (ii) relating Bessel parameters
to certain physical characteristics of the imaged objects, and (iii) an example of pruning pruning
hypothesis using the COIL database. In addition, we will present an asymptotic approximation of
the Bessel K form that can potentially simplify the inference procedures.

This paper is laid out as follows: Section 2 applies Bessel K forms to model spectral components
of images and associates the estimated Bessel K parameters with the observed shapes. Section 3
derives an L2-metric on the Bessel K forms and on the image space, while Section 4 applies these
metrics to clutter classi�cation and target recognition.
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2 Probability Models for Image Spectra

We start with some notation. Given an image I and a bank of �lters fF (j); j = 1; 2; : : : ;Kg, we
compute, for each �lter F (j), a �ltered image I(j) = I � F (j), where � denotes the 2D convolution
operation. As an example, a Gabor �lter is a bandpass �lter with a Gaussian kernel centered
around a speci�c wavenumber (see [12] for details). For a rotation � 2 S1 on the unit circle, a

Gabor �lter is given by: R�(z) Æ
�
exp(� 1

2�2 (z(1)
2 + z(2)2)) exp(�j 2�z(1)� )

�
, where � denotes the

resolution associated with the �lter and R� is the 2�2 rotation matrix. Another �lter suggested by
Marr [16] to model human vision is the Laplacian Gaussian �lter whose operation on I is given by
(G��)I where G is a Gaussian kernel and � is the Laplacian operator. In addition to these �lters,
one can utilize a wide variety of �lters: neighborhood operators, steerable �lters, interpolation
�lters, and so on. Each �lter selects and isolates certain features present in the original image.
In this paper, we do not address the issue of selecting �lters to best accomplish a speci�c task.
Instead, we will assume an arbitrary choice of �lters as long as the resulting spectral components
have marginals that are: (i) unimodal with the mode at zero, (ii) symmetric around zero, and (iii)
are leptokurtic, i.e. their kurtosis are more than that of a Gaussian random variable with the same
variance. Additionally, we want the �lters such that the resulting representation is computationally
eÆcient. This is true for �lters with smaller bandwidths.

2.1 Analytical Models

Applying 2D convolution to both sides of Eqn. 1, we obtain a spectral component

I(j)(z) � (I � F (j))(z) =
X
i

aig
(j)
i (

1

�i
(z � zi)) ; where g

(j)
i = F (j) � gi : (2)

The conditional density of I(j)(z), given the Poisson points fzig, the scales f�ig, and the pro�les

gi's, is normal with mean zero and variance u, where u �Pi(g
(j)
i ( 1

�i
(z� zi))

2. One departure here,
from the model used in [9], is that the generators are now randomly selected and are included at
random scales �i's in Eqn. 2. Under this model and assuming u to be a scaled-Gamma random
variable, the density function of I(j)(z) has been shown to be [9]: for p > 0, c > 0,

f(x; p; c) =
1

Z(p; c)
jxjp�0:5K(p�0:5)(

r
2

c
jxj) ; (3)

where K is the modi�ed Bessel function and Z is the normalizing constant given by Z(p; c) =p
��(p)(2c)0:5p+0:25. Let D be the space of all such densities: D = ff(x; p; c)jp > 0; c > 0g.

We refer to the elements of D as the Bessel K forms and the parameters (p; c) as the Bessel
parameters. The elements of D have the following properties:

1. They are symmetric and unimodal for the mode at zero. For p = 1, f(x; p; c) is the density of
a double exponential. In general, it is the pth convolution power (for any p > 0) of a double
exponential density. Therefore, it is unimodal with the mode at x = 0. For the same reason,
it is symmetric around zero.

2. The kurtosis of a Bessel K form relates to the term 3+ var(u)
(E[u])2 . Hence, the Bessel K forms are

leptokurtic (the tails are heavier as compared to a normal curve with the same variance).
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3. A Bessel K form is a speci�c kind of normal variance-mean mixture where the mixing variable
is scaled Gamma with parameters p and c. It becomes a special case of a larger family of
self-reciprocal normal variance mixtures as described by Barndor�-Nielson et al. [1]. This
connection opens the possibility of a larger family, namely the generalized hyperbolic distri-

butions, to be used in modeling image spectra, if needed. In addition to the shape and the
scale, this family allows for a location parameter, skewness, and di�erent rates (of exponential
decay) on the two tails. The signi�cance here for image analysis is that more �lters, beyond
the ones that lead to symmetric and zero-mean histograms, can also be included in analysis.

4. The family of Bessel K forms is in�nitely divisible, i.e. any random variable in this family
can be written as a sum of two independent random variables from this family. However, if I1
and I2 are independent with densities f(x; p1; c1) and f(x; p2; c2), respectively, with c1 6= c2,
the density of a1I1 + a2I2 (a1; a2 2 IR) may not be a Bessel K form but in certain conditions
can be approximated by f(x; p; c) where

p =
(a21p1c1 + a22p2c2)

2

a41p1c
2
1 + a42p2c

2
2

; and c =
a41p1c

2
1 + a42p2c

2
2

a21p1c1 + a22p2c2
:

5. A Bessel K forms is square-integrable only for p > 0:25. This property is due to the choice
of Gamma density for u and it limits our later derivation of L2-metric to the Bessel K forms
with p-values larger than 0:25.

How to estimate the Bessel K parameters for a given �ltered image? As described in [9], p and
c can be estimated using the equations

p̂ =
3

SK(I(j))� 3
; ĉ =

SV(I(j))

p̂
; (4)

where SK is the sample kurtosis and SV is the sample variance of the pixel values in I(j). The
computational task of estimating the marginal density is that of computing the second and the
fourth moments of the �ltered image. We illustrate some estimation results for a variety of images.

� Shown in the top panels of Figure 1 are some images taken from the Groningen database.
The middle panels display their speci�c �ltered forms (or the spectral components) for Gabor
�lters chosen at arbitrary orientations and scales, and the bottom panels plot the marginal
densities. On a log scale, the observed densities (histograms) are plotted in broken lines and
the estimated Bessel K forms (f(x; p̂; ĉ)) are plotted in solid lines.

� For the image shown in the top panel of Figure 2, we have estimated Bessel K forms for
di�erent Gabor �lters. The middle panels plot the marginals for di�erent �lter orientations
(� = 30; 60; 90, and 150 degrees) while keeping the scale �xed at � = 4:0, and the bottom
panels are for di�erent �lter scales (� = 1; 2; 3, and 5) keeping the orientation �xed at � = 150
degrees.

� Figure 3 shows four examples of estimation for �ltering by Laplacian-Gaussian �lters. The
top panels show the natural images from Groningen database and the bottom panels show
the corresponding estimated Bessel K forms.

� Figure 4 shows estimation results for three infrared(IR) face images when �ltered by Gabor
�lters. These results suggest the role of Bessel K forms in modeling images beyond the case
of video images of natural scenes.
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Figure 1: Images (top panels), their Gabor components (middle panels), and the marginal densities
(bottom panels). The observed densities are drawn in broken lines and the estimated Bessel K forms
are drawn in solid lines.

� Shown in Figure 5 are some examples of estimating marginal densities for the case of range
images taken from the Brown range database. The three images shown in top panels are
�ltered using Gabor �lters and the resulting densities are plotted in the bottom panels.

Since the estimation of parameters is based on moments, it may be preferable to use robust es-
timation techniques to account for the outliers. A simple idea is to consider a fraction (say one
percent) of the tail as outlier and discard it in parameter estimation. Using this idea we have found
an improvement in estimation performance for the cases where p is quite small (p < 0:1). Another
idea is to relate p and c to the quartiles of f(x; p; c) and use the observed quartiles to estimate p
and c.

2.2 Performance Analysis of Bessel K Forms

To quantify the performance in modeling observed histograms by estimated Bessel K forms, a
number of quantities can be used and we choose the Kullback-Leibler (KL) divergence. For any
two density functions f1 and f2, the divergence is de�ned as the quantity:

D(f1; f2) =

Z
IR
log(

f1(x)

f2(x)
f1(x)dx :

We have computed it by discretizing at the center points of the histogram bins. To illustrate KL
divergence values for our application, we start with some examples. Shown in Figure 6 are six
plots, each containing a pair of densities: observed and estimated, and the KL divergence between
them. These six cases show a decreasing match, in going from top left to bottom right. The
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Figure 2: Plots of observed and estimated marginals (on a log scale) of the spectral components of
a given image (top panel). Middle panels depict the marginals for di�erent �lter orientations: 30,
60, 90, and 150, while the bottom panels are for di�erent �lter scales: 1, 2, 3, and 5.

KL divergence, in that order, is found to be 0.0005, 0.0086, 0.0786, 0.1459, 0.2260, and 0.3625,
respectively.

Using KL divergence for evaluating match between the observed and the estimated densities, we
have computed the performance over two larger databases. In each case, for a large combination of
images and �lters drawn randomly, we have averaged the KL divergence over thousands of resulting
�ltered marginals. The �rst database is made up of 300 natural video images downloaded from
Groningen natural image database, and the second database is made up of 220 IR face pictures.
Shown in Figure 7 are the convergence plots of the average KL divergence, plotted against the
sample size. The left plot is for the natural video images with a limiting value of 0.0719 while the
right plot is for the infrared images with a limiting value of 0.0479. A comparison of these values
with the examples in Figure 6 underscores the degree of match between the observed histograms
and the estimated Bessel K forms.

2.3 Relating the Shape Parameter to the Imaged Objects

Before we present some applications of these Bessel K forms, we deal with an interesting question.
How do the Bessel K parameters p and c, estimated for a spectral component of an image, relate
to the objects that are present in that image. The physical characteristics of the imaged objects,
and the �lter used in generating a spectral component, should dictate the resulting Bessel K form.
Since c is essentially a scale parameter relating to the range of pixels values in I, its role is not as
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Figure 3: Estimated Bessel K forms for natural images (top panels) when �ltered by Laplacian
Gaussian �lters.

important as p. In the following analysis, we outline a relationship between the imaged generators
and the estimated shape parameter. We will perform the analysis for the pixel I(z) as composed
of the generators fgi( 1

�i
(z � zi))g (Eqn. 1), although the analysis remains same for any spectral

component I(j)(z) composed of the generators fg(j)i ( 1
�i
(z � zi))g (Eqn. 2). Let the characteristic

function of the random variable ai' be given by �(!). (Later we assume a speci�c � by choosing
ai's to be standard normal.) The conditional characteristic function of I(j)(z), given the Poisson
points fzig's, the scales f�ig's, and the generators fgig's, is:

	I(!jfzig; f�ig; fgig) =
nY
i=1

�(!gi(
1

�i
(z � zi))) ;

using the i.i.d. nature of ai's. Integrating out the uniform, independent placement of zi's, for a
given n, we obtain the conditional characteristic function:

	I(!jn; fgig; f�ig) /
nY
i=1

�Z
W
�(!gi(

1

�i
(z � zi)))dzi

�
:

Similarly, integrating out the scales we get:

	I(!jn; fgig) /
nY
i=1

 Z
W

Z L

0
�(!gi(

1

�i
(z � zi)))d�idzi

!
:

Now integrate out the random selection of the generators gi's. As stated earlier, each gi is drawn
independently from some generator space G according to some measure dG. This gives,

	I(!jn) /
 Z

G

Z
W

Z L

0
�(!g1(

1

�1
(z � z1)))d�1dz1dG1

!n

:

The last step is to integrate with respect to the Poisson random variable n:

	I(!) /
1X
n=0

 
exp(��)�n
fact(n)

 Z
G

Z
W

Z L

0
�(!g1(

1

�1
(z � z1)))d�1dz1dG1

!n!
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Figure 4: Observed and estimated marginal densities (bottom panels) for the IR face images (top
panels) and arbitrary Gabor �lters.

= exp

 
�(

Z
G

Z
W

Z L

0
�(!g1(

1

�1
(z � z1)))d�1dz1dG1 � 1)

!
:

WLOG, we can substitute z = 0. Furthermore, assume that the generators g 2 G are all even
functions. Then,

	I(!) / exp

 
�(

Z
G

Z
W

Z L

0
�(!g1(

z1
�1
))d�1dz1dG1 � 1)

!
: (5)

To �nd the cumulants of I, we use the relation: �k =
dk log(	I (!))

d!k
j!=0, The two cumulants that we

need are:

�2 = ��00(0)

 Z
G

Z
W

Z L

0
g1(

z1
�1
)2d�1dz1dG1

!
; �4 = ��(iv)(0)

 Z
G

Z
W

Z L

0
g1(

z1
�1
)4d�1dz1dG1

!
:

The kurtosis of I(z), according to this model, is given by:

kurtosis(I) =
�4
�22

=
�(iv)(0)

�R
G
R
W

R L
0 g1(

z1
�1
)4d�1dz1dG1

�
�
�
�00(0)

�R
G
R
W

R L
0 g1(

z1
�1
)2d�1dz1dG1

��2 :

Comparing this with an earlier result that p = 3
kurtosis(I)�3 , derived in [9], we get

p =
1

�
3� � 1

; where � =
�(iv)(0)

�R
G
R
W

R L
0 g1(

z1
�1
)4dz1dG1

�
;

(�00(0))2
�R

G
R
W

R L
0 g1(

z1
�1
)2d�1dz1dG1

�2 : (6)
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Figure 5: Top panels: range images of a forest. Bottom panels: corresponding observed and
estimated marginal densities.

Remark 1: One can replace g1 by g
(j)
1 to obtain this relation for any spectral component of I.

When ai � N(0; 1), �1 is �xed to be 1:0, and all the gi � g (i.e. a �xed generator), then � simpli�es

to � =
(
R
W

g(z1)4dz1)

(
R
W

g(z1)2dz1)
2 . This equation provides an important relationship between a generator g and

the parameter p. According to Eqn. 6, p < 1 occurs when � < �
6 . If the generator g has sharp,

distinct boundaries (i.e. � is larger) then the p value is small unless the frequency of occurrence
(�) is large. Speci�cally, if a �lter F (j) is used to extract a particular feature (e.g. oriented
edges, junctions, bands, etc.) from the image I, then p is dictated by the distinctness (�) and
the frequency of occurrence (�) of that feature in the image. For example, shown in Figure
8 is a variation of p value when the images are �ltered for extracting vertical edges (� = 90).
The top row shows images with increasing frequency of vertical edges in going from left to right.
Correspondingly, the estimated p value shows an increase (0:26, 0:73, 1:21, and 3:74). Summarizing
the relation between p and �, we have:

If

(
0 < � < �=6 then p < 1
�=6 < � < �=3 then p > 1

:

2.4 Asymptotic Approximation of Bessel K Forms

Although the proposed Bessel K forms model the observed histograms very well, their functional
form is not easy to work with. Following the discussion in [1], it is possible to approximate the
tails of Bessel K forms using a gamma density as follows. For large values of x, the modi�ed Bessel

function K�(x) can be approximated by the function
q

�
2x exp(�x) uniformly over compact sets

of �. Since small values of � imply a large tail, this approximation holds well for a large part of
the domain in cases where p is small. The approximation of the Bessel K form can be stated as

10
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Figure 6: Examples of Kullback-Leibler divergence: the divergence values for the six plots are
0.0005, 0.0086, 0.0786, 0.1459, 0.2260, and 0.3625, respectively.

follows:. The tails of a Bessel K form with the parameters p and c can be approximated well by
the function:

~f(x; p; c) =
1

�(p)
(
2

c
)p=2jxjp�1 exp(�

r
2

c
jxj) : (7)

This result is useful as it provides a simpler expression although only in an asymptotic setting.

For p > 1, the maxima of ~f(x; p; c) is attained at the points �(p � 1)
q

2
c , and therefore this

approximation holds only for p << 1:0. To illustrate this approximation on �ltered marginals,
shown in Figure 9 are three examples. The top panels show original images and the bottom panels
show the log densities for arbitrary Gabor �lters. The observed histograms are plotted in broken
lines (- - -), the Bessel K forms f(x; ; p; c) are plotted in dotted lines (-.-) , and the asymptotic
approximations ~f(x; p; c) are plotted in solid lines.

3 Pseudo-Metrics for Comparing Images

We have chosen to represent images via the Bessel parameters of their spectral components. One
distinct advantage, of having such analytical forms for the marginals of the spectral components,
is the resulting theoretical framework for image analysis. For instance, we would like to be able to
compare images by directly comparing their respective Bessel parameters. An analytical form is
very useful in the sense that we do not need to compute the full densities.

To quantify the distance between two Bessel K forms, we have chosen the L2-metric on D. It
is possible that other metrics, such as the Kullback-Leibler divergence or the L1 metric, may prove
more useful in certain situations. Since we are restricting ourselves to only D, and not the full set
of pdfs, we suggest that many of these choices will provide similar results, specially if the task is
classi�cation or hypothesis pruning. The main drawback of choosing L2 is that Bessel K forms are
not in L2 for p < 0:25. In the case of natural images, the p-values are mostly larger than 0.25,
while for images of objects with sharp, well-de�ned edges, p can sometimes be below 0:25.
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Figure 7: Convergence of average KL-divergence between the observed and the estimated densities
as the sample size increases. The left plot is for the Groningen database of natural images and the
right plot is for the FSU IR face database.

Remark 2: In cases where the estimated p < 0:25, we can choose one of following: (i) drop that
�lter, (ii) approximate p (perhaps badly) by 0:25 + �, and then compute the L2-metric, or (iii)
compute the L2-metric numerically using the quadrature integration.

For f(x; p1; c1) and f(x; p2; c2) inD, the L2-metric is d(p1; c1; p2; c2) =
qR

x(f(x; p1; c1)� f(x; p2; c2))2dx.

This metric can be computed in a closed form, under certain restrictive conditions, as follows.

Theorem 1 The L2-distance between the two Bessel K densities, parameterized by (p1; c1) and

(p2; c2), respectively, is given by: for p1; p2 > 0:25, c1; c2 > 0,

d(p1; c1; p2; c2) =

 
1

2
p
2�

�(0:5)

 
G(2p1)p

c1
+
G(2p2)p

c2
� 2G(p1 + p2)p

c1
(
c1
c2
)p2F

!!1

2

; (8)

where G(p) = �(p�0:5)
�(p) and F = F ((p1 + p2 � 0:5); p2; p1 + p2; 1 � c1

c2
) (F is the hypergeometric

function). If c1 = c2 = c, then the metric becomes

(
1

2
p
2�

�(0:5)p
c

(G(2p1) + G(2p2)� 2G(p1 + p2)) :

Proof: Please refer to the appendix. Shown in Figure 10 are some examples of this metric. Each
plot shows two Bessel K forms with the parameters (p1; c1) and (p2; c2). In these examples p1 = 0:5
and c1 = 10:0 are kept �xed, while p2, c2 are varied to demonstrate di�erent cases. The distances
increase in the plots going from left to right.

Theorem 1 provides a metric between two Bessel K forms, or between two spectral marginals.
It can be extended to a pseudo-metric on the image space as follows. For any two images, I1 and

I2, and the �lters F (1); : : : ; F (K), let the parameter values be given by: (p
(j)
1 ; c

(j)
1 ) and (p

(j)
2 ; c

(j)
2 ),

respectively, for j = 1; 2; : : : ;K. Then, the L2-distance, between the spectral representations of the
two images, is de�ned as:

dI(I1; I2) =

vuuut
0
@ KX
j=1

d(p
(j)
1 ; c

(j)
1 ; p

(j)
2 ; c

(j)
2 )2

1
A : (9)
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Figure 8: Variation of p-values for extracting vertical edges (� = 90). Top panels are the original
images, middle panels are the �ltered images, and the bottom panels are the densities (log-scale).
The estimated p-values are: 0:26, 0:73, 1:21, and 3:74, respectively.

Note that dI is not a proper metric on the image space because two di�erent images can have
dI = 0 between them. Also, dI is dependent upon the choice of �lters. It has been established
in the literature that di�erent spectral components of the same imager are often correlated, and
therefore, this Euclidean form may not be appropriate. In such cases, another choice such as the
max of all components may be pursued.

4 Application of Bessel K Representations

Now we present some examples of applying these Bessel K formulations and the resulting metric
to image understanding problems. We have selected examples from: (i) clutter classi�cation, and
(ii) target recognition.

4.1 Clutter Classi�cation

An important application of this Bessel K representation is in the classi�cation of clutter for ATR
(automated target recognition) scenarios. In particular, given an observed image of a target, imaged
in a cluttered environment, one would like to characterize the clutter to the extent that it improves
the ATR performance. Some knowledge of clutter type, whether it is grass, buildings, trees, or
roads, can help improve the task of target recognition. In this section, we utilize the Bessel K
forms to represent the image spectra, and employ the metric de�ned in Eqn. 9 to classify the
clutter types from their images. We will demonstrate the strength of this model in the context
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Figure 9: Asymptotic approximations of Bessel forms: For the images shown in top panels, the
bottom panels plot the observed histogram (- - -), Bessel K form (-.-.-), and the approximation
(solid line).
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Figure 10: Examples of the L2-metric on D: (i) p2 = 0:5, c2 = 20, d = 0:063, (ii) p2 = 0:75, c2 = 10,
d = 0:114, (iii) p2 = 1:0, c2 = 1:0, d = 0:125, (iv) p2 = 2:5, c2 = 2:0, d = 0:161. p1 = 0:5 and
c1 = 10:0 are held constant.

of natural clutter classi�cation. Consider the images of natural clutter shown in Figure 11. For a
simple illustration, let the images in the top row be training images that are already classi�ed, and
the bottom row be images that are to be classi�ed. Using 27 small-scale Gabor �lters (K = 27),
for nine di�erent orientations at three scales each, we have computed the pairwise distances dI 's.

Using the nearest neighbor approach, and the metric dI one can perform clutter classi�cation.
To illustrate the classi�cation of clutter types, we have plotted a clustering chart in the left panel
of Figure 12 using the dendrogram function in matlab. This function generates a clustering tree for
points in image space when their pairwise distances are given. The clustering of I1 with I2, I3 with
I4, and so on, demonstrates the success of this representation and the metric chosen. This results
suggest a role for Bessel representations in clutter classi�cation. For comparison we run clustering
program using a Euclidean metric on a principal subspace of the image space. We extracted non-
overlapping patches of size 20�30 from the original images, performed principal component analysis
(PCA) in IR600, and retained only �rst 40 components. Images are then projected onto this linear
subspace to compute coeÆcients and the resulting pairwise Euclidean distances.

Shown in Figure 13 is another example of natural images with the clustering, based on dI , as
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Figure 11: Ten natural images from the Groningen database: top row are the training images and
bottom row are the test images.
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Figure 12: Dendrogram clustering of images in Figure 11 using dI (left panel) and using a Euclidean
metric on PCA (right panel).

shown in the right panel of Figure 12.

4.2 Pruning Hypotheses for Target Recognition

The Bessel K forms can also prove useful in pruning the hypothesis set in target recognition.
Recognition of objects from their observed images corresponds to the selection of hypothesis in
presence of the nuisance parameters [10]. As stated under Case 1 in Section 1.1, this hypothesis
selection is often performed using detailed models involving physical shapes, texture, pose and
motion [23, 8, 10]. Such methods are based on low- and high-dimensional deformations of targets'
templates in order to match their synthesized images with the observed images. The deformations
capture the variability in pose, motion, illumination, etc. and form the set of nuisance parameters,
call it S, for hypothesis selection; they typically are computationally expensive to implement. Given
an image, the task of searching over all possible templates is demanding and can bene�t from a
pruning that places signi�cant probability only on a small subset.
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Figure 13: For the images shown in left, a dendrogram clustering plot using Bessel K forms is
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Let A be the set of all possible objects. De�ne a probability mass function on A according to:

P (�jI) =
exp

�
�mins2S(

PK
j=1 d(p

(j)
obs; c

(j)
obs; p

(j)
�;s; c

(j)
�;s)2)=D

�
P

�0 exp
�
�mins2S(

PK
j=1 d(p

(j)
obs; c

(j)
obs; p

(j)
�0;s; c

(j)
�0;s)

2)=D
� ; (10)

where D controls our con�dence (analogous to the temperature in Gibbs' energies) in this proba-

bility. Here (p
(j)
obs; c

(j)
obs) are the estimated parameters for the image I and �lter F (j), and (p

(j)
�;s; c

(j)
�;s)

are the estimated parameters for the �lter F (j) and the target � rendered at the nuisance variable

s 2 S. Note that (p
(j)
�;s; c

(j)
�;s) can be pre-computed o�ine all � 2 A, s 2 S, and j 2 f1; 2; : : : ;Kg.

To illustrate this idea, consider the following experiment. Shown in Figure 14 are some sample
images of objects from the Columbia object image library (COIL) [20]. This database consists of
72 images of each 100 objects, taken at �ve degree separation in azimuth, and has been widely used
in testing object recognition algorithms. In this experiment, we have divide 7200 images into non-
overlapping training and test sets. Some of the images are used as training and the remaining for
testing, similar to the work presented in [20]. We have used K = 39 �lters, including the gradient
�lters, the Laplacian of Gaussian �lters, and the Gabor �lters. For each image of the object � at

the pose s in the training set, we estimate (p
(j)
�;s; c

(j)
�;s), for each �lter F (j). Then, given a test image

I, the estimated parameters (p
(j)
obs; c

(j)
obs) are used to compute the probability P (�jI) according to

Eqn. 10. Shown in Figure 15 are the plots of P (�jI) versus � (for D = 0:5) for six di�erent images
I in the COIL database. All the objects with probabilities larger than some threshold, say 0:01, can
be shortlisted for detailed hypothesis testing. As an example, the plot in top left corresponds to an
image of � = 1. In the short-listing by thresholding, we are left with only 14 possible hypothesis, a
signi�cant reduction from 100. Bottom middle plot displays the worst case of the whole experiment
and still short-lists 35 objects.
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Figure 14: Sample images of objects from COIL image database.
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Figure 15: Plots of P (�jI) versus � for six test images in the COIL database. The test images
are of objects �1, �12, �15, �12, �15, and �78, respectively, for arbitrary orientations. Dotted lines
suggest a threshold level for pruning.

To support the use of Bessel K models in hypothesis pruning, we have actually used P (�jI) for
object recognition and have compared results with some other recently proposed procedures: prin-
cipal component analysis (PCA), independent component analysis (ICA), support vector machines
(SVM), and SNoW. Pontil and Verri [20] have applied SVM (Support Vector Machines) method
to 3D object recognition and have tested it on a subset of the COIL-100 dataset with half for
training and the other half for testing. As pointed out by Yang et al. [25], this dense sampling of
training views simpli�es the recognition problem. Hence, we have presented recognition results for
di�erent training to test ratios in splitting the COIL database. The number of components selected
is such that complexity remains similar to that of Bessel representations. As Table 1 summarizes
that Bessel representations, in addition to being analytic and parametric, mostly outperform these
other methods.
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Table 1: Correct recognition rate for the full COIL-100 dataset using PCA, ICA and Bessel forms

Training/test per object PCA ICA SNoW [25] SVM [20] Bessel Forms

36 / 36 98.58% 98.47% 95.81% 96.03% 99.89%

18 / 54 96.67% 96.52% 92.31% 91.30% 99.00%

8 / 64 87.23% 87.91% 85.13% 84.80% 92.44%

4 / 68 75.82% 76.03% 81.46% 78.50% 78.65%

4.3 Texture Synthesis

To further illustrate the strength of Bessel representations, we present some examples of texture
synthesis. For homogeneous textures, it is possible to completely characterize them using their
spectral responses. As described in [27, 26], choosing the �ltered marginals for several �lters as
suÆcient statistics leads to a Gibbs' distribution on the image space. This points to a natural
Gibbs' type MCMC sampling method to generate high probability images from the probability
model. Zhu et al. have utilized the observed marginals to characterize the Gibbs' measure and
then derived MCMC algorithms to sample from it. Using the same sampling scheme, except the
observed marginals are now replaced by the estimated Bessel K forms, we have generated high
probability samples on the image space. The Gibbs' distribution on the image is space is given by:

fI(I) =
1

Z
exp(�

KX
j=1

�jkH(I(j))� f(x; p(j); c(j))k2) ;

where H denotes the observed histogram and Z is a normalizing constant. We have used the
same procedure as in [26] to estimate the most likely values of the Lagrangean weights �j and have
applied them to characterize fI . It must be noted that the marginal density of the image intensity I
is not included in the representation; only the Bessel K forms for the Gabor spectral components
(for K = 39) are involved. Shown in the top panels of Figure 16 are the given texture images
used to estimate the Bessel K parameters, and shown in the bottom panels are the corresponding
samples from a distribution based on the estimated parameters.

5 Conclusion

We have applied Bessel K forms to model the probability densities of the �ltered marginals. The
estimated parametric forms are shown to match well with the observed histograms for a variety
of images: video, IR, and range, for gradient, Gabor and Laplacian Gaussian �lters. Given the
assumptions behind this construction, we expect this model to perform well in other imaging
modalities such as MRI, PET, and radar imaging. We have used L2 metric on the set of Bessel
forms (restricted to p > 0:25) to derive a pseudo-metric on the image space. This metric can be used
for, among other things, clutter classi�cation and target recognition. Although the performance of
Bessel representations in challenging object recognition situations remains to be tested, their ability
to prune possible hypotheses, to feed to a more detailed model, seems promising. Bessel parameter
p is related to the distinctness and the frequency of occurrence of the �ltered characteristics of
imaged objects.
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Figure 16: Top row: observed images of the textures. Bottom row: synthesized images using the
Bessel K densities.
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A Appendix

A.1 Proof of Theorem 1

To establish the theorem, we will need the integral formula ([6] page 676, Eqn. 4):Z 1

0
x��K�(ax)K�(bx)dx =

2�2��a��+��1b�

�(1� �)
�(
1� �+ �+ �

2
)�(

1� �� �+ �

2
)

�(
1� �+ �� �

2
)�(

1� �� �� �

2
)

F (
1� �+ �+ �

2
;
1� �� �+ �

2
; 1� �; 1� b2

a2
) ; (11)

where <(a+ b) > 0, <(�) < 1� j<(�)j � j<(�)j. F is the hypergeometric function; it is an in�nite
series in its last argument.
To derive the L2-metric, we start with its square:

d(p1; c1; p2; c2)
2 =

Z
x
f(x; p1; c1)

2dx+

Z
x
f(x; p2; c2)

2dx� 2

Z
x
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Consider these terms one by one, starting with the �rst term:
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using the integral formula Eqn. 11. Similarly, the second term becomes
p
2

4� �(0:5)
�

1p
c2

�(2p2�0:5)
�(2p2)

�
.

Substituting for the integral in the cross term gives:
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Combining these three terms, the result in Eqn. 8 follows. It should be noted that the metric is
symmetric in the parameters (p1; c1) and (p2; c2), even though it does not appear that way from
the expression in Eqn. 8. The condition associated with the formula Eqn. 11 implies that p1 and
p2 must be greater than 0.25.
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