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Abstract of \Statistics of Natural Images and Models," by Jinggang Huang, Ph.D., Brown

University, May 2000

We calculate several important statistics from two intensity image databases and a range

image database. Mathematical models are �tted to these statistics, and some interesting

features observed are explained. We examine the scale invariant property of images carefully,

and �nd di�erent scaling behaviors in di�erent types of images. We also explain the well

known `generalized Laplace' distribution of mean-0 �lter reactions under several simple

assumptions, and propose an Ising-like model which duplicates some local statistics we

observed in images. Finally, we show some applications using the statistics we calculate.
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1.1 Overview

Knowledge about statistics of natural images is crucial in many applications such as image

compression, image denoising and target recognition. They are also important in under-

standing the biological vision system.

Due to the complex and speci�c structures in images, simple parametric statistics models

such as Gaussian Models, fail to describe natural images accurately. As was remarked by

Rosenfeld in the 80's, the \noise" in images is more often \clutter", and the statistics of

clutter are not Gaussian at all.

There has been much attention recently to the statistics of natural images. For example,

Field [7] discussed the scale invariance property of natural images and linked the design of

the biological vision system to the statistics of natural images, Ruderman [17] proposed a

model to explain why images are scale invariant. Zhu et al. [23] set up a general frame work

for natural image modeling via exponential models. Buccigrossi et al. [3] and Wainwright et

al. [22] uncovered signi�cant dependencies of wavelet coeÆcients in natural image statistics.

Many of these papers base their calculation on a small set of images, casting doubt on

how robust their results are. Also, because of the small sample sets, rare events (e.g. strong

contrast edges) which are important visually may not show up frequently enough to stabilize

the corresponding statistics. We tried to overcome these problems by using large natural

image databases and systematically investigating the statistics underlying all images.

We also studied the statistics of range images, which by themselves are important in

applications, for example they give priors for stereo algorithms ([1],[2]). We are interested in

them because they lead to a direct understanding of the stochastic nature of the geometry

of the world and make it possible to construct more realistic models of intensity images.

For example, authors in [17], [4] and [14] have modeled intensity images as a perspective

view of the 3D world, with objects of random geometry (size, shape, position) and intensity.

The object geometries in these models are usually based on assumptions which have not

been directly veri�ed in real scenes. There is no doubt that with a fairly large data base of

range images, we will better understand the scene geometry of the 3D world, and thus be

able to develop more realistic models for intensity images.

In the remaining part of this chapter, we will introduce the databases from which we
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calculated all the statistics and some notations we will use later. Chapter 2 gives detailed

results of the statistics we calculated and mathematical models for some of them. In chap-

ter 3, we discuss an `Ising-like' Markov Random �eld model which simulates some of the

statistical properties. In Chapter 4, we show some simple applications of the statistics we

observed.

1.2 Databases

We calculated all our statistics from three image databases.

1. Van Hateren image database. This image database contains 4000 calibrated images,

each image has 1024�1536 pixels, and each pixel is 12-bits deep. Figure 1.1 shows some
sample images from this data base. These images are calibrated, being proportional

to light energy received from the world up to an unknown multiplicative constant.

More details about this database can be found in [10].

2. Sowerby image database. This database was provided by British Aerospace. There

are 214 RGB images in this database, with 512� 768 pixels each. Each pixel is 8 bits

deep. Since we only work with grey levels, we took the weighted average of the three

components, with widely used weights: 0:299; 0:587; 0:114. The images have been

laboriously segmented into pixels representing 11 di�erent categories of the scene.

Table 1.1 shows the categories and the frequencies(in percentage) of each of them.

Figure 1.2 shows two images and their segmentations.

We found that the `manmade' categories 6,8,9 and 11 have similar histograms and

scaling behavior, so we put such categories together. Likewise, the `vegetation' cate-

gories 2 and 7 behave similarly (note that category 7 contains vegetation like hedges,

as well as fences, etc.). Together with the `sky'(category 1) and `road' (category 4)

we have 4 larger categories from which we will calculated di�erent statistics.

3. Range image database. We have collected 205 panoramic range images from varying

environments (both outdoor and indoor scenes) | 54 of these images were taken in

di�erent forests in Rhode Island and Massachusetts during August-September. In

3



Figure 1.1: Four images from the van Hateren data base

this paper, we will focus on the forest scenes, because the statistics of these images

appear more stable than those of other categories (for example, residential and interior

scenes). Figure 1.2 shows a sample. We used a laser range-�nder with a rotating

mirror 1 to collect the range images. Each image contains 444 � 1440 measurements

with an angular separation of 0.18 deg. The �eld of view is thus 800 vertically and

2590 horizontally. Each measurement is calculated from the time of ight of the laser

beam. The operational range of the sensor is typically 2-200m. The laser wavelength

of the range-�nder is 0:9�m, which is in the near infra-red region.

1.3 Symbols and some remarks

In this section, we explain some symbols we will frequently use in the paper:

13D imaging sensor LMS-Z210 by Riegl
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Category Frequency Description

1 10.87 sky, cloud, mist

2 37.62 trees, grass, bush, soil, etc.

3 0.20 road surface marking

4 36.98 road surface

5 6.59 road border

6 3.91 building

7 2.27 bounding object

8 0.11 road sign

9 0.28 telegraph pole

10 0.53 shadow

11 0.64 car

Table 1.1: Categories and Their Weights

� mean

� standard deviation

S skewness

� kurtosis

H(X ) di�erential entropy(in bits) of random variable X

I(X ;Y) mutual information between X and Y

D(p k q) Kullback Leibler distance between two probability mass functions p and q.

The skewness and kurtosis of a random variable X are de�ned below.

� =
E(X � �)4

�4
S =

E(X � �)3

�3

Since the kurtosis is very sensitive to outliers, direct calculation of this statistic would result

in unstable results. To solve this problem, we will only calculate the `trimmed' kurtosis,

i.e. we will discard the probability density outside [�14�; 14�](where � is the standard

deviation of the variable) before we calculate statistics. For the de�nition of other symbols,

see [5].

Most our �gures of probability distributions (or of normalized histograms) will be shown

with the vertical scale not probability but log of probability: this is very important as it
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shows the non-Gaussian nature of these probability distributions more clearly and shows

especially the nature of the tails.

We will regard each image I in the data set as a M �N matrix, and I(i; j) represents

the intensity or range at pixel (i; j). As mentioned in the previous section, all intensity

images measure the light in the world up to an unknown multiplicative constant, i.e. if

we assume the physical intensity of a scene is I0, then the image of the scene is I = CII0,

where CI is some unknown constant, di�erent from image to image. In order to avoid such

constants from entering our statistics, we work on the log contrast of the images, which

is log(I(i; j)) �mean(log(I)). Notice that the multiplicative constant has been cancelled

out in the log contrast. In the future, without speci�cation, a image I always means the

log-contrast of the original image in our databases.

For range images, we also work with log(range) instead of range directly, because the

former statistic is closer to being shape invariant. Figure 2 shows a top view of a laser

range-�nder (see circle) centered at O, and two homothetic triangles 4ABC and 4A0
B
0
C
0

(PA, PB and PC correspond to three pixels in the range image). Assume that the distances

between O and the vertices of 4ABC are rA, rB and rC , respectively, and the distances

between O and the vertices of 4A0
B
0
C
0 are RA, RB and RC , respectively. Let

D = range(PA)� range(PB)

be the di�erence in range for pixels PA and PB , and let

bD = log(range(PA))� log(range(PB))

= log

�
range(PA)

range(PB)

�

be the di�erence in log range for the same two pixels. Then, a scene with 4ABC and a

scene with triangle 4A0
B
0
C
0 will lead to di�erent values for D (rA � rB vs. RA �RB) but

the same value for bD (log( rA
rB
) = log(RA

RB
)). Hence, log(range) is appropriate if we want the

di�erence statistics (or any mean-0-�lter reaction) to be \shape invariant".
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1.4 Scale Invariance Property of Images

Scale invariance is a striking property of natural images. We give a simple explanation of

the meaning of this property for digital images.

Suppose there is a random variable 	0 generating N � N natural images(like those in

our databases) for us. We can assume that 	0 has a density function f	0
(x) on RN�N . For

each N �N image, there are two natural but quite di�erent ways to get N

2
� N

2
images as

shown in Figure 1.5, one is to take the center N

2
� N

2
patch of the N �N image, the other

is to scale the original image down to an image os size N

2
� N

2
by taking disjoint 2� 2 block

average. The two methods corresponds to two projections

�1 : R
N�N ! R

N
2
�N

2

�2 : R
N�N ! R

N
2
�N

2

Then we have two random variables de�ned on R
N
2
�N

2 ,

	1 = �1 �	0

	2 = �2 �	0

and each has an induced density function on R
N
2
�N

2 , denoted by f	1
and f	2

respectively.

We call 	0 is scale invariant if f	1
= f	2

.

In practice, it is impossible to calculate the high dimensional distributions f	1
and

f	2
directly. To verify the scale invariant property, we usually check to see whether some

marginal distributions of f	1
and f	2

(e.g. distribution of linear �lter reactions) match. Also

if we assume that the image generating process is stationary, then marginal distributions

calculated from f	1
should be the same as those calculated from f	0

. So in the future we

verify the scale invariant property by checking marginal distributions of f	0
and f	2

. We

will use I(k) to denote the k � k disjoint block average of I.
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Figure 1.2: Two images from Sowerby Image Data Base and their segmentations.

1 2 3 4

Figure 1.3: A sample image from our range image data base
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Figure 1.4: A laser range �nder centered at O and two homothetic triangles, 4ABC and

4A0
B
0
C
0.
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Figure 1.5: Two ways to generate images of half dimensions. Left: By taking the center

part of the original. Right: By taking disjoint 2X2 block averaging
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Chapter 2

Empirical Study
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2.1 Single Pixel Statistics

2.1.1 Single Pixel Statistics of intensity image

The red curve in �gure 2.1 shows the log(empirical pdf) of the single pixel statistics(log

contrast) calculated from images of the two intensity image database. We can see that this

statistic is slight asymmetric. One important reason is the presence of a portion of sky

in many images, which is quite di�erent from other parts of images, always with a high

intensity value. Another interesting feature is the linear portion in both of the log(pdf).

Obviously, this statistic is not Gaussian.

Figure 2.1 also shows this statistic at di�erent scales and table 2.1 gives some constants

associated to them. We can see single pixel intensity is roughly scale invariant. The last

�eld in the table is the KL distance between the empirical distribution and the Gaussian

distribution with the same standard deviation. From point view of information theory, the

single pixel intensity is roughly Gaussian. This fact can also be seen from the small kurtosis

4.6-4.9(3 for Gaussian distribution) and the parabola shape around 0 in Figure 2.1. We

should point out that this statistic is not very stable and may be quite di�erent in di�erent

databases. In �gure 2.2 we super imposed the log(pdf) of single pixel statistics calculated

from the two intensity images to show the di�erence.

Scale � S � H D(p k np)
1 0.788 0.218 4.56 1.66 0.0469

2 0.767 0.253 4.49 1.62 0.0489

4 0.744 0.253 4.55 1.57 0.0541

8 0.719 0.252 4.67 1.51 0.0628

16 0.693 0.256 4.83 1.44 0.0746

Table 2.1: Some constants associated to single pixel statistics from van Hateran database.

The last column is the KL distance between the single pixel statistics and the normal

distribution with the same variance.
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Figure 2.1: log(pdf) of single pixel intensity.Left: van Hateren Database; Right: Sowerby

Database. Red, Green, Blue, Black and Yellow for scale 1,2,4,8 and 16 respectively
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Figure 2.2: Comparison of single pixel statistics calculated from two databases. Red: van

Hateren data base. Black:Sowerby data base

2.1.2 Single Pixel Statistics of di�erent categories

As mentioned in the introduction, images in the Sowerby database are segmented, this allows

us to make a study of statistics of di�erent categories. Figure 2.3 shows the distributions

of the single pixel statistics of di�erent categories at di�erent scales and table 2.2 shows

some constants associated to the distributions. For each category, the single pixel statistics

is roughly scale invariant.
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Category Scale � S � H D(p k np)

Sky

1 0.887 -0.686 5.33 1.78 0.0979

2 0.867 -0.586 4.93 1.75 0.0953

4 0.855 -0.528 4.77 1.72 0.0964

8 0.841 -0.458 4.58 1.7 0.0983

Vegetation

1 1.89 -0.0459 3.28 2.93 0.0265

2 1.79 -0.132 3.35 2.87 0.0195

4 1.69 -0.222 3.45 2.79 0.022

8 1.61 -0.307 3.55 2.7 0.0279

Road

1 1.03 0.24 3.47 2.07 0.0213

2 1.01 0.315 3.39 2.03 0.0244

4 0.989 0.37 3.32 2 0.0279

8 0.976 0.41 3.29 1.98 0.0321

Man-made

1 1.9 -0.346 2.97 2.94 0.0373

2 1.84 -0.373 3.08 2.9 0.0307

4 1.77 -0.391 3.23 2.84 0.0294

8 1.67 -0.39 3.38 2.75 0.0356

Overall

1 2.07 -0.244 3.21 3.05 0.0485

2 2.04 -0.225 3.24 3.03 0.0447

4 2.01 -0.2 3.26 3.01 0.0421

8 1.98 -0.173 3.28 2.99 0.0397

Table 2.2: Some constants associated to single pixel statistics of di�erent categories. The

last column is the KL distance between the single pixel statistics and the normal distribution

with the same variance.

13



−6 −4 −2 0 2 4 6
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

log−contrast

lo
g(

pd
f)

Sky

−6 −4 −2 0 2 4 6
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

log−contrast

lo
g(

pd
f)

Vegetation

−6 −4 −2 0 2 4 6
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

log−contrast

lo
g(

pd
f)

Road

−6 −4 −2 0 2 4 6
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

log−contrast

lo
g(

pd
f)

Man−made

Figure 2.3: log(pdf) of single pixels statistics at di�erent scales and categories: red = scale

1, green = scale 2, blue = scale 4, yellow = scale 8

2.1.3 Single Pixel Statistics of Range Images

The solid line in Figure 2.4 shows the single-pixel statistics of log(range) images. We observe

a sudden change in slope in the log-log plot at a range of about 20 meters (or log(range) � 3;

see vertical line in �gure) | this may be related to the accumulation of occlusion e�ects.

In Figure 2.4, we have also plotted the log(range) histograms for the top half (dashed line)

and bottom half (dotted line) of a range image separately. The two halves correspond to

di�erent distributions of objects | mainly ground for the bottom half and mainly trees for

the top half | and display quite di�erent statistics. The distribution from the top half has

an approximately linear tail in a semi-log plot (indicating an exponential decay � e
�0:12r),
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Figure 2.4: Semi-log (left) and log-log (right) plots of the single pixel statistics (i.e. range

statistics). Solid: distribution for the whole image. Dotted: distribution for the bottom half

of a range image. Dashed: distribution for the top half of a range image.

while the bottom half shows an approximately linear tail in a log-log plot (indicating a power

law � r
�2:6). We can qualitatively explain the two di�erent behaviors with the following

simpli�ed models:

For the top half, we assume tree trunks (cylinders) uniformly distributed on a plane,

according to a Poisson process with density �. Figure 2.5 shows a top view of a randomly

generated \forest" scene. Each disk represents a cross section of the trunk of a tree.

If we assume all disks are of diameter D, and assume that the probability that a horizon-

tal beam from the laser range-�nder �rst hits a tree at distance r is given by an distribution

f(r). Let g(r0) be the probability that r > r0, then

g(r0) = 1�
Z

r0

0

f(r)dr

hence,

f(r) = �dg(r)
dr

From r0 to r0 + dr, trees in the annulus r0 < r < r0 + dr will block � percent of the beams

which reach the distance r0, since the number of trees in the annulus is

� � 2�r0dr

15



and we have

� =
� � 2�r0drD

2�r0
= �Ddr

By de�nition of g(r), g(r + dr) = g(r) � (1� �). Hence

log(g(r + dr))� log(g(r)) = log(1 � �) = log(1 � �Ddr) = ��Ddr

which indicates that

log(g(r)) = C � �Dr

and g(r) = e
C��Dr. So

f(r) = �dg(r)
dr

= �De
C��Dr

which means that f(r) decays exponentially.

For the bottom half, we assume at ground only. Let the height of the sensor from the

ground be H, as shown in Figure 2.6. Then at angle �, the distance between the sensor

and the ground is r = H

sin�
. The laser range-�nder samples evenly with respect to the polar

coordinate(s) � (and �), i.e. the density function w.r.t. � is some constant,

h(�) = C

for 0 < � < �=2 Then the density function with respect to r is,

g(r) =
d�

dr
h(�) � H

r2
p
(1� (H=r)2)

� 1

r2

for large r.
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Figure 2.5: Top view of a randomly generated forest scene. See text.
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Figure 2.6: Ground model. See text.
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Figure 2.7: Compare the derivative statistics from two databases. Red: van Hateren, Black:

Sowerby

2.2 Derivative Statistics

2.2.1 Derivative Statistics For Intensity Images

We now look at the marginal distribution of horizontal derivatives, which in discrete case,

is simply the di�erence between two adjacent pixels in a row, i.e.

D = I(i; j) � I(i; j + 1)

Figure 2.7 shows the log(pdf) of D for two di�erent databases.

Compared to the statistics of single pixel intensity(�gure 2.2 on page 12), the derivative

statistic is much more consistent through di�erent databases. Let D(k) be the derivative at

scale k, i.e.

D
(k) = I

(k)(i; j) � I
(k)(i; j + 1)

Figure 2.8 shows the empirical distributions of D(k) calculated from the two intensity image

databases, for k = 1; 2; 4; 8; 16. We can see that, except for far in the tails, the distributions

of D(k) match reasonably well over di�erent scales. The scaling behavior is a little di�erent

between the two image databases, the tail of D(k) from Sowerby database goes up(becomes

heavier), and that from van Hateren database goes down. Also, for both image databases,
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the di�erence between scale 1 and scale 2 is relatively larger than that between scale 2 and

other scales.

scale � S � H �1 s1 D(p0 k p1) �2 s2 D(p0 k p2)

1 0.259 0.077 15.4 -0.24 0.69 0.077 0.00211 0.604 0.051 0.00722

2 0.277 0.030 12.8 -0.18 0.616 0.060 0.00119 0.655 0.072 0.00229

4 0.293 0.014 11.1 -0.0563 0.64 0.072 0.00335 0.7 0.093 0.00542

8 0.292 0.011 10.4 -0.0216 0.68 0.080 0.00233 0.722 0.10 0.00323

16 0.282 0.014 10.3 -0.0487 0.72 0.098 0.000929 0.725 0.10 0.000943

Table 2.3: constants associated to the derivatives statistics at di�erent scales , van Hateren

Database. �1; s1 are the constants in the model 2.1 , calculated directly by minimizing the

KL distance between empirical distribution and the model, �2; s2 the are the constants

calculated from 2.2. p0 is the empirical density function; p1 and p2 are the model with

constants (�1; s1) and (�2; s2) respectively

scale � S � H �1 s1 D(p0 k p1) �2 s2 D(p0 k p2)

1 0.248 -0.018 15.1 -0.338 0.624 0.056 0.00396 0.609 0.051 0.00422

2 0.259 0.002 15.8 -0.403 0.533 0.032 0.0013 0.597 0.049 0.00562

4 0.263 0.007 16.7 -0.501 0.465 0.017 0.00124 0.583 0.046 0.0187

8 0.274 0.022 16.3 -0.502 0.428 0.012 0.00262 0.589 0.050 0.0362

16 0.305 0.050 14 -0.319 0.432 0.014 0.00622 0.627 0.069 0.0508

Table 2.4: constants associated to the derivatives statistics at di�erent scales , Sowerby

Database. �1; s1 are the constants in the model 2.1 , calculated by the optimal method.

�2; s2 the are the constants calculated by direct parameter estimation. p0 is the empirical

density function; p1 and p2 are the models with constants (�1; s1) and (�2; s2) respectively

Table 2.3 and 2.4 shows some constants related to each statistics. (The last 6 columns

will be explained later). Notice that the shape of the histogram has a distinct peak at 0,

and a concave tail. Writing the density function for D as f0(x), we consider the popular

`generalized Laplace' model fmodel for f0

fmodel(x) =
1

Z
� e�jx=sj� (2.1)
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Figure 2.8: Derivative statistics at di�erent scales. Upper: van Hateren database, Lower:

Sowerby database. Red, Green, Blue, Black and Yellow for scales 1,2,4, 8,16 respectively
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where s; � are constants, they can be directly related to the variance and kurtosis by:

�
2 =

s
2�( 3

�
)

�( 1
�
)

and � =
�( 1

�
)�( 5

�
)

�2( 3
�
)

(2.2)

There are two ways to �t the model.

1. The optimal method is to �nd constants � and s which will minimize D(f0jjfmodel).

2. Direct parameter estimation is to solve the equation 2.2 for � and s directly.

The second method is much easier to calculate, and has been used in [3] successfully for

parameter estimations.

We calculated the estimation using both methods. The 8th and 11th column of table 2.3

and table 2.4 shows the KL distance between empirical distribution and the models calcu-

lated by the optimal and the direct parameter estimation methods respectively. We can

see that the direct method is almost as good as the optimal method in most of the cases.

Figure 2.9 shows an example of the �t of the model to empirical distribution by using the

optimal method.

2.2.2 Derivative Statistics For Di�erent Categories of Intensity Images

Figure 2.10 shows the density functions for the derivative statistics of di�erent categories

and at di�erent scales and table 2.5 shows constants associated to them. The man-made
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Figure 2.10: log(pdf) of D at di�erent scales and categories: red = scale 1, green = scale

2, blue = scale 4, yellow = scale 8
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and vegetation categories scale fairly well while the sky and road categories do not scale at

all well. Next, we compare the scale behavior of di�erent categories. For each category, let

the standard deviation sd` of D at scale level ` = log2(k). In �gure 2.11 where log2 of the

standard deviation is plotted against `, the negative of the slope of the �tting line gives us

an approximation to half of what the physicists call the `anomalous dimension' �. In other

words we are �tting sd` � 2�
�
2
`
sd0. Equivalently, this is �tting a model for the second order

statistics in which the power spectrum scales as 1=freq(2��).

Here are some observations we made for each category:

1. The vegetation category looks linear in the log plot of the histogram. It scales well

although the power spectrum is modeled by 1=freq1:8 which is very close to what

Ruderman and Bialek found [18]. The log(histogram) can be modeled by C1 �C2jxj,
the 'double exponential' distribution.

2. The man-made category has a histogram with big `shoulders' in the log plot. The

center parts of the histograms match well for di�erent scales, but the tails go up

with increasing scale. We believe this phenomena is caused by large objects and their

edges. Along an edge the total number of pixel pairs goes down by the factor of 2

when scaling, while the overall number of pairs goes down by the factor of 4. As a

result, the frequency of edge pixels increases.

3. For the sky category, the density of the distribution mainly concentrated around 0,

and shifts further to the center with increasing scale. The scaling �t gives an power

spectrum like 1=freq1:0.

4. In the road category, the log histogram is slightly concave, and scales badly. However,

if we correct for the changing variance, using the assumption that its power spectrum

is 1=freq(1:4), we get a much improved �t as shown in �gure 2.12.

To summarize, it appears that the multi-scale families of histograms for each category

can be modeled with three parameters: a) their standard deviation, b) the anomalous

dimension � and c) a `shape' parameter for the histogram which has been identi�ed in [16]

as the parameter in an in�nitely divisible family of probability distributions.
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Category Scale � � H �1 D(p0 k p1) �2 D(p0 k p2)

Sky

1 0.069 59 -3 0.165 0.0158 0.386 0.12

2 0.037 57.3 -3.57 0.147 0.009 0.389 0.128

4 0.024 46.8 -3.83 0.159 0.006 0.412 0.104

8 0.022 46.3 -3.83 0.17 0.007 0.413 0.0837

Vegetation

1 0.34 15.1 0.328 0.937 0.0151 0.607 0.0698

2 0.34 10.3 0.323 0.95 0.00377 0.726 0.0238

4 0.31 9.37 0.197 0.956 0.0033 0.762 0.0172

8 0.28 9.01 0.0697 0.966 0.0044 0.778 0.0168

Road

1 0.14 7.12 -0.87 1.08 0.00389 0.892 0.0121

2 0.12 9.09 -1.19 0.942 0.00423 0.774 0.0129

4 0.10 11.3 -1.61 0.856 0.00505 0.693 0.0137

8 0.08 15.4 -1.93 0.767 0.00823 0.602 0.0173

Man-made

1 0.30 12.6 -0.221 0.522 0.00832 0.659 0.0294

2 0.35 12.3 -0.105 0.461 0.00855 0.666 0.0561

4 0.39 10.8 0.0595 0.443 0.011 0.709 0.0814

8 0.41 9.3 0.259 0.491 0.0155 0.765 0.0717

Table 2.5: Some constants associated to derivative statistics of di�erent categories.

2.2.3 Derivative Statistics for Range Images

scale � S � H
1 0.203 -0.0453 48.9 -2.89

2 0.225 -0.113 39.8 -2.6

4 0.246 -0.217 32.3 -2.19

8 0.266 -0.322 25.9 -1.69

Table 2.6: constants associated to the derivative statistics of range images at di�erent

scales(Scaling down by block minimum).

We calculated the histogram of the Derivative statistics from range images. The red

line in �gure 2.13 shows the log probability density function of D. As in the studies of

intensity images, this distribution has a high kurtosis with large tails, and a peak at 0. It

is closest to the statistics for intensity images of man-made environments(see �gure 2.10).

but has an even higher peak at 0. This strongly suggests a mixture of two di�erent type

of distributions, one is highly concentrated around 0, and the other has heavy tails. We

believe this corresponds to the cases when the two adjacent pixels are on the same object or

di�erent objects respectively. Let x1, x2 be two adjacent pixels, and a = I(x1), b = I(x2)
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Figure 2.11: Plot of log2(standard deviation) vs. scale level and its linear �t in �ve cases:

+ = sky, * = vegetation categories, o = road, x = man-made categories and 4 = all pixels.

The slopes are 0.15 for man-made, 0.02 for all, -0.11 for vegetation, -0.30 for road and -0.50

for sky.

be the log-range at the two pixels. Let f0 be the probability density of D, f1 be that of

D given that x1, x2 are on the same object, and f2 be that of D given that x1,x2 are on

di�erent objects. Let 0 < � < 1 be the probability that x1, x2 are on the same object, then

f0 = � � f1 + (1 � �) � f2 (2.3)

Since pixels from the same object are likely have similar values(a � b), it's reasonable

to assume that f1 concentrates around 0. On the other hand, when two pixels are from

di�erent objects, a and b should be independent. Let g0 be the marginal distribution of a

and b, which has been discussed in section 2.1.3, we may calculate f2 by

f2 = convolve(g0(x); g0(�x)) (2.4)

f2 is shown in �gure 2.14(left). Compare the curve in �gure 2.14 and the red curve in

�gure 2.13, we see that they have similar tails, indicating that the outliers of f0 come from

those of f2. Figure 2.14, right, shows the �t of the model given in equation 2.3. We will

explore similar mixture models in section 2.3 when we discuss the joint distribution of pixel
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standard deviations. red = scale 1, green = scale 2, blue = scale 4, yellow = scale 8
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pairs.

We also calculated the distribution of D at di�erent scales. Here we scale down the

range images by taking the minimum, instead of the average of N � N blocks. This is

the appropriate renormalization for range images, because laser range �nders measure the

distance to the nearest object in each solid angle. Figure 2.13 shows the results, which

indicate that range images scale fairly well. Table 2.6 shows constants associated to this

statistic.
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Figure 2.15: Left �gure: Joint Histogram of two adjacent pixels p1 and p2, calculated from

van Hateren database. Right �gure: The product density function of p1 � p2 and p1 + p2.

2.3 Two-point Statistics

2.3.1 Intensity Images

Figure 2.15(left) shows the joint distribution of the intensities a and b at two horizontally

adjacent pixels x1 and x2, calculated from van Hateren database, where a = I(x1) ; b =

I(x2). The di�erential entropy of this joint distribution is: H(a; b) = 1:51 and the mutual

information between a and b is: I(a; b) = H(a) + H(b) � H(a; b) = 1:80 Notice that the

mutual information I between adjacent pixels is a large number, indicating that adjacent

pixels are highly correlated. On the other hand, we can see from the contour plot, that there

is some symmetry along a = b, and a rough symmetry along a = �b, we may guess that the
sum and the di�erence of two adjacent pixels are more likely independent. Figure 2.15(right)

shows the direct product of the marginals of a+ b and a� b(still plotted according to a and

b). Comparing the two contour plots, we can see that at the center part (where the density

is much higher than other places) the product distribution and the original distribution are

very similar, but the shape of the level curves away from (0; 0) becomes quite di�erent. The

mutual information between a+ b and a� b is I(a+ b; a� b) = 0:0255. Compared to that

of a and b, it's very small, indicating a rough independence between a+ b and a� b from

information theory point of view. On the other hand, if the two pixels x1 and x2 are far

away, they are then likely on di�erent objects. As in section 2.2.3, it will be reasonable
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to assume that the intensities a, b are independent. It is interesting to see how the joint

distribution of a and b shifts from one model to another as the distance between the two

pixels becomes larger. Follow the same idea presented in section 2.2.3, we propose the

following model, Let

K(a; bjx) = PrfI(x1) = a; I(x2) = b j kx1 � x2k = xg (2.5)

where I(x1) and I(x2) represent the log contrast at pixels x1 and x2. The odd columns of

Figure 2.16 show the contour plots of K(a; bjx) for separation distances x = 1; 2; 4; :::; 128.

As we saw in Figure 2.15, the joint distribution aligned along u = a+ b and v = a � b, so

we plot the distributions under this coordinate. As in [14], we use the following model to

�t the bivariate statistics of images:

~K(a; bjx) = [1� �(x)]qx(a)qx(b) + 2�(x)hx(a+ b)gx(b� a) (2.6)

where qx is the marginal distribution for a single pixel, hx is some distribution similar to

qx, and gx is a distribution highly concentrated at 0. The �rst term models the case where

the two pixels belong to di�erent objects (we assume that di�erent object are statistically

independent), the second term represents the case where they are on the same object (as-

sume that the di�erence of the pixels is some noise, which does not depend on the average

of the two pixels), and �(x) is the probability of their being on the same object. Under the

coordinate (u; v), the model becomes:

Q(u; vjx) = 1

2
[1� �(x)]qx(

u+ v

2
)qx(

u� v

2
) + �(x)hx(u)gx(v) (2.7)

The even columns of �gure 2.16 shows the best �t of the model 2.6 to the empirical

statistics(shown to the left). The �ts are good around the center, but do not match the

empirical distribution well in the outliers. Figure 2.17 shows the � values and functions

qx,hx and gx in the best �ttings for di�erent x. We can see that qx and hx are almost the

same for all x.
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2.3.2 Range Images

For two adjacent pixels in range images, the mutual information I(a+ b; a� b) = 0:0631 is

also a small number, indicating a similar mixture model for range images. Figure 2.18 shows

the joint distributions of pixel pairs of range images and the best �ts to them. Figure 2.19

shows the � values and functions fx,gx and hx of the models, as in Figure 2.17.

We �nd that the model �ts better to the bivariate statistics of range images than to that

for intensity images (compare to Figure 2.16). This indicates that range images present

a simpler, cleaner problem than intensity images. For example, the concept of objects is

better de�ned for range images where we do not need to take lighting, color variations,

texture etc. into account.
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Figure 2.16: Contour plots of the log histograms of pixel pairs for intensity images (left

column) and the best bivariate �t to the random collage model (right column). x: distance

between the two pixels, u: sum of the pixel values, v: di�erence of the two pixel values.
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Figure 2.18: Contour plots of the log histograms of pixel pairs for range images (left column)

and the best bivariate �t to the random collage model (right column). x: distance between

the two pixels, u: sum of the pixel values, v: di�erence of the two pixel values.
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Figure 2.19: The values for � and the 1D functions gx, hx, qx in the best bivariate �t to

the bivariate statistics of range images at distances x = 1 (yellow), 2 (magenta), 4 (cyan),8

(red), 16(green) 32(blue) and 128(dotted red).
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2.3.3 Covariance of nature images

The covariance of images are de�ned as,

C(x; y) =< I(x; y)I(0; 0) >

Here < > is the expectation, taking over all the images. However, our images are samples

of a distribution which is only well-de�ned up to an additive constant, so we replace this

statistic by the `di�erence function':

D(x; y) =< jI(x; y) � I(0; 0)j2 >

which is related to the covariance by

D(x; y) + 2C(x; y) = constant

when both are well de�ned.

In section 2.3.1, we studied the bivariate statistics, which contain all the information

about the di�erence function. The goal of this section is to check the correlations along

di�erent directions and the scale invariance property.

In [17], Ruderman calculated the `one-dimensional' di�erence function, i.e., he took the

average of D(x; y) over all directions, and got a one dimensional function D1(x) to which

he �t a scaling model:

D1(x) = C1 + C2jxj�� (2.1)

These covariance models correspond in frequency domain to the power spectrum � 1
f2��

.

If � goes to 0, note that 1� r
�� = 1� e

�� log r � � log r giving us the model

D1(x) = C1 + C2 log(jxj) (2.2)

which is the model implied by the assumption that 2�2 block averages of the image I have

the same distribution as I [21]. The best �tting constants Ruderman found from his image

dataset are: C1 = 0:79, C2 = �0:64 and � = 0:19.
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Figure 2.20: Di�erence Function

We calculated the two dimensional D(x; y) from our data set. Using a Fourier transfor-

mation technique, we actually took into our calculation all the possible pixel pairs within

distance of 500 pixels. The statistics we got are very stable, and we can look more closely

at the tail of the statistics, and even take delicate operations like derivatives on them. The

upper two images in �gure 2.20 show the contour and mesh plot of D(x; y) we got. The

lower two show the two cross sections along horizontal and vertical direction. We can see,

the cross section along vertical direction grows faster than that along the horizontal direc-

tion. We believe the main reason is that, in many images, there is a portion of sky at top,

and ground at bottom and the large di�erence between them will contribute a lot to the

di�erence function along the vertical direction.

The upper left image in �gure 2.21 shows the log-log plot of the derivative of the positive

part of horizontal cross section. The base we used when we took the log operation is 2. We

see that, between 2 and 5 (corresponding to distances of 4 and 32 pixels), the derivative is
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close to a straight line, with a slop -1.19. If we use model (6.1), then � = �(�1:19+1) = 0:19,

which is exactly what Ruderman got. But notice how the log-log plot begin to turn and

becomes almost a horizontal line around 8. This clearly indicates that there exists a linear

term , i.e. we can model it as:

D1(x) = C1 + C2jxj�� + C3jxj

Generalizing it to D(x; y), we seek a model:

D(x; y) = C1(�) + C2(�)r
�� + C3(�)r

where, r =
p
x2 + y2, and � = tan

�1( y
x
). The best �tting � we got is 0.32, and the best

�tting C1(�), C2(�) and C3(�) are shown in �gure 2.21. The maximum �tting error we got

is 0:0035, which is very small, considering the range of D(x; y) is between 0 and 0.8, and

the large area on which we �t the model (an annulus with 4 < r < 200).

One interesting observation we make is that C1(�)+C2(�) is almost zero, hence we may

�t our model with one less parameter:

D(x; y) = C2(�)(1� r
��) + C3(�)r

Since C3(�) is very small, the linear term can be omitted when r is small, we get (for r

small):

D(x; y) � C(�)ln(r)

This shows that while random images seem very close to samples from a scale-invariant

process, there are also systematic deviations from scale invariance on a large scale.
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Figure 2.21: log-log plot of the horizontal cross section and some �tting constants,see text
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Figure 2.22: Haar Filters

2.4 Joint Statistics of Haar Filters Reactions

2.4.1 Haar Filters

The idea of applying wavelet pyramids to image processing has proven to be very successful.

We choose the Haar wavelet for its simplicity: any structure in the statistics can be directly

related to pixel values. Figure 2.22shows the four basic Haar �lters in 2D. Assuming we

have a 8�8 image, we can apply the horizontal �lter on non overlapping 2�2 blocks of the

image to get a 4 � 4 matrix of responses, which called the �rst level horizontal sub band.

Similarly, we have the �rst vertical and diagonal sub bands. Next, apply the low pass �lter

on the image, getting a 4�4 image, and repeat the above procedure on this smaller image to
get the second level horizontal, vertical and diagonal sub bands, all of them with dimension

2 � 2. This procedure can go on till we get a 1 � 1 image. This way we get the wavelet

pyramid of sub bands whose statistics we wish to study. Figure 2.23 shows the sub bands of

the �rst two levels. In order to describe the relative positions of wavelet coeÆcients in sub

bands, we borrow some of the de�nitions given in [3]: we call the coeÆcients at adjacent

spatial locations in the same sub band brothers, (left, right, upper, lower brothers according

to the relative positions), call the coeÆcients in same level, same position, but di�erent
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Figure 2.23: Relations Between Wavelet CoeÆcients

orientations cousins. And call the relationship of coarse-scale coeÆcients and �ner-scale

coeÆcients parent and child. Figure 2.23 shows a coeÆcient C in the vertical sub band, and

its relatives.

2.4.2 2D Joint Statistics of Intensity Images

Figure 2.24 shows the mesh plot of the joint statistics of the pair horizontal component(hc),

and its vertical cousin(vc). Figure 2.25 shows the contour plot(red curves) of the joint

density functions of di�erent pairs. Table 2.8 shows some constants about each pair. It's

clear that the pdf of each pair is roughly symmetrical with respect to the origin. All

contour plots show some polyhedra-like structures, each vertex on the level curve represents

a direction along which the probability density is higher than neighboring directions. It is

interesting to see what kind of image patches these vertices correspond to. For example, look

at the vertex marked by H in the upper left subplot of �gure 2.25. Assume it corresponds
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Then a+ b� c� d = a� b� c+ d, hence b = d. So this vertex corresponds to T-junctions.

Likewise, we can explain other vertices(see table 2.7). In section 2.4.5 we will discuss more

about the vertices and their meaning in detail about range images.

We tried two methods to model these statistics. First we made the observation from

�gure 2.24 that, for any angle 0 � � � �, the cross section along hc = tan(�)vc is similar to

the derivative statistics we got in section 2.2.1, and the `generalized Laplacian' model can

be easily used to �t the cross sections here. This suggests, as a �rst step that we �t the

following model to the joint distribution of the pair (hc; hv).

f(x; y) = e
C1(�)+(

r
s(�)

)�(�)
(2.3)

where r =
p
hc2 + hv2 and � is the angle of (hc; hv). From �gure 2.24, log(f(x; y)) is

continuous at 0, hence C1(�) should be a constant. We will also assume � to be constant
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Symbol Typical image patch Description

M

�
a a

b b

�
horizontal edge

N

�
a b

a b

�
vertical edge

H

�
a b

a d

�
T-junction

�

�
a a a a

b b b b

�
continuation in edge

�

�
a a c c

b b c c

�
T-junction

�

�
a b b b

a b b b

�
vertical edge

�

�
a b b a

a b b a

�
vertical bar

Table 2.7: Some interesting features in �gure 2.25 and their explanation

to simplify our model, so we �t the following model to data.

f(x; y) = e
C1+(

r
s(�)

)�
(2.4)

In our calculation, we approximate s(�) by using a �nite set of terms(�rst 10) of their

Fourier expansions, which reduces the number of parameter to �nitely many,

s(�) = a0+a1cos(�)+ b1sin(�)+a2cos(�)+ b2sin(�)+ :::+a10cos(10�)+ b10sin(10�) (2.5)

Here is the procedure we followed to �t the model to data,

1. Let � runs from 0.01 to 1 with step 0.01

2. For each �, we �nd the best C, a's and b's by regression in an appropriate region,

calculate the mean-square error and make a record.

We then pick the � which minimize the mean-square error. In �gure 2.25, the blue curves are

for the model, which �t closely to the corresponding data curves. The KL distance between

the model can be found in table 2.8 which are all small. This indicates that model 2.4 is an

appropriate one.
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Pairs H I a11 a12 a22 � D(f k fmodel1)

ChCv -1.03 0.118 0.0582 -0.000116 0.0469 0.47 0.0348

ChCd -1.51 0.119 0.0582 -0.000179 0.0227 0.46 0.0579

ChL -0.981 0.206 0.0582 0.0198 0.0582 0.39 0.0615

CvL -1.18 0.123 0.0469 -0.0076 0.0469 0.39 0.0855

ChU -0.896 0.121 0.0582 -0.011 0.0582 0.43 0.0567

ChPh -0.931 0.229 0.0582 0.0203 0.0638 0.42 0.0259

CdPd -2.19 0.101 0.0228 0.00165 0.0212 0.46 0.0337

CdDl -2.09 0.0843 0.0227 0.00155 0.0227 0.43 0.0876

Table 2.8: Some constants for di�erent pairs.a11,a12,a22 are the entries of the covariance

matrix. The last column is the KL distance between model 2.4 and the data.

For the other approach, we apply the maximum entropy technique described in [23]. Let

~p(x; y) be the empirical pdf of a pair of wavelet coeÆcients (X;Y ). Let ~p�i be the marginal

distributions of �i where i = 1; 2; :::K and � can be any statistics of (X;Y ). We are seeking

the simplest pdf p(x; y) which has the same marginal distributions. As described by Zhu et

al. [23], we have the following constrained optimization problem,

p̂(x; y) = argmaxH(p(x; y))

subject to p̂�i(x) = ~p�i(x); for i = 1; 2; :::;K

As it has been proved in [23], there exists a unique solution p(x; y) to the above optimization

problem, and it can be written in the following form:

p̂(x; y) = e
C+
PK

i=1 fi(�i) (2.6)

To choose the statistics �i, we observed that the level curves have polyhedra-like structures

and all vertices lie on one of the two axes or one of the two diagonal lines. This suggests

that we may be able to reconstruct the two dimensional distributions from the distributions

along these special directions fairly well. Hence we will consider the following four statis-

tics: �1 = X, �2 = X � Y , �3 = Y and �4 = X + Y . We denote the marginal distributions

of these statistics by p�i . With a little abuse of symbols, we also use �i to represent the

corresponding function of �i w.r.t (x,y), e.g. �4(x; y) = x+ y.
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The following algorithm is used in our calculation of the model.

1. let pold be the uniform distribution.

2. let

p
new(x; y) = C

4Y
i=1

(
~p�i(�i(x; y))

pold
�i
(�i(x; y))

)wipold(x; y)

where wi are some positive constants, and
P

wi = 1. C is the constant that makes

the right hand a probability distribution.

3. pold = p
new

4. go to step 2.

We now show why the above procedure works.

Lemma 2.1 Let p; p1; p2; :::pn be any probability density functions, let wi > 0, i = 1:::n

and
P

n

i=1wi = 1 Then

D(pkc
nY
i=1

p
wi
i
) �

nX
i=1

wiD(pjjpi)

where c makes the product a probability density function.

Proof.

D(pkc
nY
i=1

p
wi
i
) =

Z
p log

p

c
Q

n

i=1 p
wi
i

=

nX
i=1

wiD(pjjpi)� log(c)

So we only have to prove that c � 1. Actually,

1 = c

Z nY
i=1

p
wi
i
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Let ui = p
wi
i
, and by the H�older's inequality we have

above = c

Z nY
i=1

ui � c

nY
i=1

(

Z
u

1
wi
i
)wi

= c

nY
i=1

(

Z
pi)

wi = c

Hence c � 1

Lemma 2.2 D(~p k pnew) � D(~p k pold)�PK

i=1 wiD(~p�i k pold�i )
and equality holds i� p

new = p̂

Proof. From the above lemma, we have

D(~pjjpnew) = D(~pjjc
nY
i=1

((
~p�i
pold
�i

)wipold)) �
nX
i=1

D(~pjj p�i
pold
�i

)

=

nX
i=1

wi(

Z
~p(log

~p

pold
� log

~p�i
p
old

�i

)) =

nX
i=1

wi(D(~pjjpold))�
nX
i=1

wi(D(~p�i jjpold�i ))

where we have use the fact that
~p�i
pold�i

p
old integrate to 1.

Let p(n) be the result at nth iteration.

Lemma 2.3 D(p̂�i jjp(n)�i
)! 0; as n!1

Proof.

In the above lemma, the same conclusion holds if we substitute ~p by p̂. Hence D(p̂jjp(n))
decreases to a number c � 0. It follows that D(p̂�i k p(n)�i

) tends to 0 as n!1.

Proposition 2.1 D(p̂jjp(n))! 0; as n!1

Proof. In our numerical calculations, we quantized each variable �i intoM binsBi1; Bi2; :::BiM .

Let �im be the characteristic function of Bim (�imjBim = 1; �imjBc
im

= 0). Then the

marginal distribution of �i is piecewise constant,

~P�i(x) =

MX
m=1

~him�im(x)
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where ~him =
E~p(�im(�i))

�(Bim)
. Let 'im = �im(�i). We can now reformulate the optimization

problem as

p̂(x; y) = argmax H(p(x; y))

subject to Ep̂('im) = Ep̂('im)

By Lagrange multipliers,

p̂(x; y) = e
c+
PK

k=1

PM
m=1 �̂km'km(�k(x;y))

and �̂'s are chosen s.t.

Ep̂('km) = E~p('km)

In order to simplify our notation, we merge the (k;m) index pair to a single index i =

(k � 1)M + m, and let N = K �M . In general, let � = (�1; �2; :::�N ) be an group of

constants, and de�ne

P�(x; y) = e
c+
PN

i=1 �i'i(x;y)

where c is a constant that makes P� an probability. Then

@

@�i
(Ep�('i)) =

@

@�i

Z Z
'ie

c+
PN

i=1 �i'idxdy

=

Z Z
'i'je

c+
PN

k=1 �k'k(x;y) + 'ie
c+
PN

k=1 �k'k(x;y)
@c

@�i
dxdy

Notice that

c = �log(
Z Z

e

PN
k=1 �k'kdxdy)

and

@c

@�i
= � 1R R

e

PN
k=1 �k'kdxdy

Z Z
e

PN
k=1 �k'k'idxdy = Ep�('i)
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which follows that,

@

@�i
(Ep�('i)) = Ep�('i'j)�Ep�('i)Ep�('j) = covp�('i; 'j) (2.7)

Now, let's consider the map T : RN ! R
N

T (�1; �2; :::�N ) = (Ep�('1); Ep�('2); :::Ep�('N ))

by equation 2.7, the Jacobian D(T ) = (covp�('i; 'j)), where i; j = 1; 2; :::N . By de�nition

of 'i's, they are linearly independent, hence the covariance matrix (covp�('i; 'j)) is positive

de�nite. Hence det(D(T )) > 0, which implies that T : RN ! T (RN ) is a homeomorphism.

By lemma 2.2,

T (�
(n)
1 ; �

(n)
2 ; :::�

(n)
N

) = (E
p(n)

('1); Ep(n)
('1); :::Ep(n)

('N ))!

(Ep̂('1); Ep̂('1); :::Ep̂('N )) = T (�̂1; �̂2; :::�̂N )

as n!1, so

(�
(n)
1 ; �

(n)
2 ; :::�

(n)
N

)! (�̂1; �̂2; :::�̂N )

and D(p̂jjp(n))! 0; as n!1

Pairs D(~pjjp) D(~p1jjp1) D(~p2jjp2) D(~p3jjp3) D(~p4jjp4)
ChCv 0.0144 2.02e-08 1.05e-08 5.66e-09 1.71e-08

ChCd 0.0114 8.11e-07 2.59e-07 1.49e-07 3.12e-07

ChL 0.0138 4.02e-09 3.62e-09 3.35e-10 2.04e-09

CvL 0.0139 7.97e-08 3.28e-08 3.85e-08 5.34e-08

Table 2.9: Constants for the �ts of the maximum entropy model to empirical distribution

after 12 iterations. The second shows the KL distance between the 2D empirical distribution

and the model, the last 4 columns shows the KL distance between the marginal of the

empirical distribution and that of the model.

Figure 2.26 and �gure 2.27 shows the level curves and the functions fi's of model 2.6.
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Table 2.9 shows some constants associated to the �t, we can see from the second column

that for all pairs, the KL distance between the data and the model is small. But there

are signi�cant di�erence between the level curves shown in �gure 2.26 and those in the

corresponding plots in �gure 2.25. For example, in the ChCv pair, the model has strong

vertices on the diagonal lines. This is not the case in the data. So we may conclude that

the maximum entropy method based on marginal distributions do not predict the high

dimensional distribution precisely.

2.4.3 2D Joint Statistics of Sowerby Images

We did the same thing on di�erent categories of Sowerby Images. Figure 2.28{2.32 shows

the results, constants associated to them are shown in table 2.10. We use the same contour

levels in all these �gures. There are some similarity between level curves of the same

coeÆcient pairs calculated from di�erent categories. The Man-made category show strong

vertices in the level curves of the distribution of di�erent coeÆcient pairs, which we believe

correspond to some large scale structures in images. For the other categories(more noise

like), there are some similarity between the shape of the level curves of the same coeÆcient

pairs. It seems that any pair of coeÆcients (�a; �b) calculated from these noise like categories

can be written as

(�a; �b) = � � (�a0 ; �b0) (2.8)

where � is some scalar random variable, which is decided by the category but independent of

the choice of (�a; �b), whereas (�a0 ; �b0) is independent of the category. Further discussions

will show that (�a0 ; �b0) is related to the geometry aspect of the world, and � to the color

or intensity of the world.(see section 3.1 for more details).
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Category Pairs H I a11 a12 a22

Sky

ChCv -7.29 0.0828 0.00121 -2.7e-06 0.00104

ChCd -7.59 0.0804 0.00121 1.6e-05 0.000433

ChL -7.32 0.169 0.00119 0.000519 0.00121

CvL -7.32 0.0589 0.00103 -0.000109 0.00104

Vegetation

ChCv 0.145 0.0782 0.0866 1.69e-05 0.0806

ChCd -0.533 0.092 0.0866 -9.49e-05 0.0331

ChL 0.147 0.132 0.0867 0.0272 0.0866

CvL 0.0989 0.0716 0.0806 -0.015 0.0806

Road

ChCv -2.11 0.0468 0.0225 1.55e-05 0.0121

ChCd -2.41 0.0402 0.0225 2.24e-06 0.00764

ChL -1.8 0.138 0.0225 0.00788 0.0225

CvL -2.54 0.0626 0.0121 -0.00236 0.0121

Man-made

ChCv -0.762 0.0811 0.0947 0.000332 0.0742

ChCd -1.85 0.14 0.0947 0.000179 0.0108

ChL -1.01 0.656 0.0941 0.069 0.0947

CvL -1.16 0.15 0.0746 -0.0122 0.0742

Overall

ChCv -1.12 0.151 0.0563 -4.81e-06 0.0459

ChCd -1.7 0.153 0.0563 -3.41e-05 0.0174

ChL -1.03 0.277 0.0563 0.0234 0.0563

CvL -1.35 0.163 0.046 -0.008 0.0459

Table 2.10: Some constants for di�erent Haar Wavelet coeÆcient pairs calculated from

Sowerby database. a11,a12,a22 are the entries of the covariance matrix.
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Figure 2.25: Joint Histogram of Haar Wavelet CoeÆcients calculated from van Hateran

Database. Red: the level curves of the empirical distribution. Blue: the model 2.4.

Ch,Cv,Cd stand for horizontal, vertical and diagonal components respectively; L stands

for left brother; Ph, Pd for horizontal parent and diagonal parent; Dl for upper-left brother.
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Figure 2.26: Maximum entropy model with the same marginals along axes and diagonal

lines
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Figure 2.28: Joint Histogram of Haar Wavelet CoeÆcients calculated from Sowerby Images
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Figure 2.29: Joint Histogram of Haar Wavelet CoeÆcients calculated from the `sky' category

of Sowerby Images
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Figure 2.30: Joint Histogram of Haar Wavelet CoeÆcients calculated from the `vegetation'

category of Sowerby Images
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Figure 2.31: Joint Histogram of Haar Wavelet CoeÆcients calculated from the `road' cate-

gory of Sowerby Images
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Figure 2.32: Joint Histogram of Haar Wavelet CoeÆcients calculated from the `man made'

category of Sowerby Images
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2.4.4 3D Joint Statistics for Haar Wavelet CoeÆcients

Here we just present the joint statistics for the triple: horizontal component, its vertical

cousin and diagonal cousin. Figure 2.33 shows a level surface(counterpart of a single level

curve in Figure 2.25) viewed from di�erent angles. We can see more structures here. There

are four corners on the `horizontal' and `vertical' axes, which imply that the probability

density heavily concentrates on these two axis. We will explain what kind of image patches

correspond to these corners in section 2.4.5.
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Figure 2.33: An equi-surface of 3d joint histogram of horizontal component, its vertical

cousin and diagonal cousin, viewed from three di�erent angles
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Figure 2.34: Contour plots of the log(pdf) of wavelet coeÆcient pairs for range images.

2.4.5 Statistics for Haar Wavelet from range images

We calculated similar joint distributions from range images. Figure 2.34 shows contour

plots of the joint density functions for di�erent wavelet coeÆcient pairs. We observe strong

cusps in all contour level curves; most of which lie on the lines x = 0, y = 0, x = �y and

x = �2y. As a comparison, look at Figure 2.25 where the corresponding contour plots are

calculated for optical images in van Hateren image database. We see that many cusps occur

along the same lines, but are not as peaked.

Furthermore, we did the following experiments on the range images:

1. We scaled the images down by taking the block minimum and calculated the joint

histograms. Figure 12 shows the result.

2. We scaled the images down by taking the block average and calculated the joint

histograms, Figure 13 shows the result.

When we scale a range image down by taking block minimum, the resulting image is
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Figure 2.35: Contour plots of the log histogram of wavelet coeÆcient pairs, calculated from

range images scaled down by taking the minimum of 2X2 blocks.

approximately the same as the image taken in the same environment at half resolution (as

mentioned in section 2.2.3, range images are roughly scale invariant under block minimum).

The second method (block averaging) is, however, closer to how a digital camera for opti-

cal images works: The intensity at each pixel is the average (or some weighted mean) of

the intensity at points covered by that pixel. This explains why the statistics shown in

Figure 2.35 is similar to that in Figure 2.34, and the statistics in Figure 2.36 is similar to

that in Figure 2.25. We can do the experiment the other way around. For each intensity

image, we scaled it down by taking the max or min of each block, whichever closer to the

mean. This way, every pixel in the resulting image is closer to the point intensity instead of

average of blocks. Figure 2.4.5 shows the joint distributions of wavelet coeÆcients, which

look like those calculated from range images.

Note that the observed cusps in Figure 2.34 are not caused by noise, but correspond to

some special structures in the images. It is important to see what these structures are:

For the cousin pairs (horizontal and vertical; horizontal and diagonal) this is relatively

straight-forward | because the joint distribution of horizontal, vertical and diagonal wavelet
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Figure 2.36: Contour plots of the log histogram of wavelet coeÆcient pairs, calculated from

range images scaled down by taking the average of 2� 2 blocks.

coeÆcients is a suÆcient statistics for 2� 2 blocks modulo mean (3 variables). Figure 2.38

shows an equiprobable surface of the 3D joint distribution (horizontal, vertical, diagonal).

We see vertices along the lines y = z = 0, x = z = 0, x = y = 0 and x = �y = �z.
Simple calculations show that these vertices correspond to the following 2 � 2 blocks and

their rotations: 0
@ a a

b b

1
A ;

0
@ a b

b a

1
A ;

0
@ a b

b b

1
A

Notice that the bar-like patch(on the line x = y = 0) happens less frequently than the other

types of patches. This can be seen from the lower-left plot of �gure 2.38

For the horizontal �lter and left brother pair(see lower right subplot of �gure 2.34), we

see cusps along y = 0, x = 0, y = x, y = 2x and y = 1
2
x. To �nd the 2 � 4 patches that

correspond to these vertices, we sample randomly from our database for patches with strong

�lter reactions along these directions. The 8 range values in the typical patches fall clearly
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Figure 2.37: Contour plots of the log histogram of wavelet coeÆcient pairs, calculated from

intensity images scaled down by taking the max or min, whichever closer to the mean

into 2 and occasionally 3 tight clusters. Calling the clusters a,b, and c, we get for example:

direction typical patches

y = 0

0
@ a b b c

b b b c

1
A ;

0
@ a a b c

b b b c

1
A ;

0
@ a b a a

a a a a

1
A

y = x

0
@ a b b b

a a a b

1
A ;

0
@ a b b a

a a a a

1
A ;

0
@ a a a a

b b b b

1
A ;

0
@ a a a a

b b b b

1
A ;

y = 1
2
x

0
@ a a a b

b b b b

1
A

For the horizontal �lter and upper brother pair(see the lower left subplot of �gure 2.34),
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we see cusps along y = 0, x = 0, y = �x, y = �2x and y = �1
2
x. The typical patches in

the database, that lead to high �lter reactions along these lines are:

direction typical patches

y = 0

0
BBBBBB@

a a

b b

b b

b b

1
CCCCCCA

y = �x

0
BBBBBB@

a a

b a

b a

a a

1
CCCCCCA
;

0
BBBBBB@

a a

b a

b a

a a

1
CCCCCCA
;

0
BBBBBB@

a a

b b

b b

a a

1
CCCCCCA
;

0
BBBBBB@

a b

b b

b b

b a

1
CCCCCCA

y = �2x

0
BBBBBB@

a b

b b

b b

a a

1
CCCCCCA
;

0
BBBBBB@

a a

b a

b b

a a

1
CCCCCCA

y = x

0
BBBBBB@

a a

b b

a a

b b

1
CCCCCCA
;

0
BBBBBB@

a a

a b

a b

b b

1
CCCCCCA
;

0
BBBBBB@

a b

b b

a a

a b

1
CCCCCCA

We see that all the striking cusps in the contour plots in the Haar wavelet domain relate to

the piecewise constant geometric structure in range images.
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Figure 2.38: An equi-surface of a 3D joint histogram of horizontal, vertical and diagonal

wavelet coeÆcients in range images, viewed from three di�erent angles.
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2.5 Joint Statistics for Other Wavelet CoeÆcients

Since Haar �lters are not well localized in the frequency domain, they may get block e�ects

which is perceptually undesirable. In applications such as noisy removal and image restora-

tion, more sophisticated �lters are often used instead. Here we studied the joint statistics

for the coeÆcients of two types of popular wavelets.

2.5.1 Joint Statistics for QMF

Buccigrossi et. al [3] utilized a recursive pyramid decomposition based on separable Quadra-

ture Mirror Filters(QMFs) in image compression. Figure 2.39 shows the horizontal, vertical,

diagonal and low pass �lters. Details can be found in [19]. Figure 2.40 shows empirical

joint distribution of di�erent QMF �lter pairs. The horizontal-vertical coeÆcient pair of

QMF and that of Haar �lters(see 2.25) have very similar distributions. But the contour

plots of the other three pairs show di�erent level curves, especially the horizontal-diagonal

pair.

2.5.2 Joint Statistics for Steerable Pyramids

Steerable pyramid decomposition was developed by Freeman and Adelson [8], which is

quite di�erent from the Haar Wavelet and QMF Wavelet. The following paragraph is

a simple introduction(Copied from the manual of EPWIC package, which is available at

http://www.cns.nyu.edu/ eero/). For more details, see [20].

The steerable pyramid is a multi-scale representation that is

translation-invariant, but that also includes representation of

orientation. Furthermore, the representation of orientation is

designed to be rotation-invariant. The basis/projection functions

are oriented (steerable) filters, localized in space and frequency.

It is over-complete to avoid aliasing. And it is "self-inverting"

(like the QMF/Wavelet transform).

The system diagram for the steerable pyramid is as follows:
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horizontal filter vertical filter

diagonal filter low pass filter

Figure 2.39: QMF Filters(9-tap)

IM ---> fhi0 -----------------> H0 --------------------------> RESULT

| |

| |

|-> flo0 ---> fl1/down2 --> L1 --> up2/fl1 ---> flo0 -|

| |

|----> fb0 -----> B0 ----> fb0 ---|

| |

|----> fb1 -----> B1 ----> fb1 ---|

. .

. .

|----> fbK -----> BK ----> fbK ---|

The filters {fhi0,flo0} are used to initially split the image into
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Figure 2.40: Joint Histogram of QMF Wavelet CoeÆcients calculated from natural images

a highpass residual band H0 and a lowpass subband. This lowpass

band is then split into a low(er)pass band L1 and K+1 oriented

subbands {B0,B1,...,BK}. The representation is substantially

overcomplete. The pyramid is built by recursively splitting the

lowpass band (L1) using the inner portion of the diagram (i.e.,

using the filters {fl1,fb0,fb1,...,fbK}).

We use the 2-orientation band �lters(K = 1 in the above diagram) The �lters fb0 and fb1

are shown in �gure 2.41. Figure 2.42 shows the empirical distributions of di�erent coeÆcient

pairs. We see that for all the pairs, the level curves around the origin are nearly elliptic,

especially those for the horizontal and vertical pair where they are almost circular.

2.5.3 An interesting phenomenon

In [3], the authors observed a interesting phenomena in the joint histograms of the QMF

wavelet coeÆcients of images. Let hp represents horizontal coeÆcient at parent level(we

normalized both hc, hp by their L1 norm. Hence the variance of the coeÆcients should
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Figure 2.41: 2-orientation steerable pyramid �lters
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Figure 2.42: Joint Histogram of Steerable Pyramid CoeÆcients calculated from natural

images

be the same, if the images are scale invariant), and hc represents horizontal coeÆcient at

child level, they observed that the conditional histogram H(logjhcj j logjhpj) has a shape

shown in Figure 2.43 (we will explain how we get this �gure next). We tried to explain this

phenomena. First, �gure 2.44 shows the joint distribution of hc and hp. We found that the

shape of level curves of joint histogram is close to a circle. So our general model 2.4 may

reduce to:

f(hc; hp) = C1e
�C2r

�

(2.9)

where r =
p
hc2 + hp2, and C1, C2, � are just constants, independent of �. We found

that this model �ts fairly well to the data for C2 = 1 and � = 0:5. From the phenomena

they observed, the authors concluded in [3] that, the conditional expectation, E(jhcjjjhpj)
is approximately proportional to P, and derive a very simple linear predictor from it. For
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the left part, they suspected these low-amplitude coeÆcients are dominated by quantization

and other noise sources.

This phenomena can be actually explained mathematically, if the joint distribution of

the two variables are in the form of (2.9). Since f(hc; hp) is symmetric, the density function

for (jhcj; jhpj) should have the same expression, only that C1 is di�erent. So we just assume

hc > 0; hp > 0. Let x = log(hc) and y = log(hp), then the joint density function for x; y is:

g(x; y) = C1e
x
e
y
e
�C2r

�

where r =
p
e2x + e2y. The conditional density function will be:

g(xjy) = C(y)exe�C2r
�

Figure 2.43 shows the numerically calculated g(x j y). Next, we explain analytically this

phenomenon. For �xed y, let's �nd x which maximize g(x j y). Set the derivatives of g(x j y)
to zero, and substitute C2 by 1, we get the equation:

e
2y = e

2x(�
1

1��=2 e
2x �

2�� � 1) (2.10)

From this equation, it is easy to see that:

x � (1� �

2
)y � 1

2
log�; if y !1

x ! � 1

�
log�; if y ! �1:
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Figure 2.43: The conditional histogram H(logjhcj j logjhpj) calculated from our model.
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Figure 2.44: Joint Histogram of QMF Wavelet CoeÆcients calculated from natural images
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2.6 DCT CoeÆcients

DCT-based method has been used in JPEG image compression standard. In this section, we

study the statistics of DCT coeÆcients. First, we review the de�nition of (2 dimensional)

DCT. Assume A is aM�N Matrix, with entries Amn for 0 � m �M�1 and 0 � n � N�1.
Then the discrete cosine transformation of A is,

Buv = �u�v

M�1X
m=0

N�1X
n=0

Amncos
�(2m+ 1)u

2M
cos

�(2n+ 1)v

2N

for 0 � u �M � 1, 0 � v � N � 1 where

�u =

8><
>:
1=
p
M; u = 0p

2=M; 1 � u �M � 1

�v =

8><
>:
1=
p
N; v = 0p

2=N; 1 � v �M � 1

As in standard JPEG, we work on 8 � 8 blocks, i.e. M = N = 8. Figure 2.45 shows the

empirical distribution of all the DCT coeÆcients. B00 is the DC coeÆcient, the others are

AC coeÆcients. Since DC coeÆcient is a measure of the average value of the 8 � 8 block,

its distribution (shown in the �rst subplot of �gure 2.45) is similar to that of single pixel

statistics(with di�erent standard deviation). All the AC coeÆcients are the �lter reactions

of mean-0 �lters, and their distributions can also described by generalize Laplace model. A

interesting fact here is that, although the coeÆcients have di�erent variance, they all have

quite similar shapes. Table 2.11 shows constants associated to these coeÆcients, we can

see that the kurtoses of all the DCT coeÆcients are close to each other. As formula 2.2

suggests, the kurtosis decide the constant � in the generalized Laplace distribution , which

in turn decide the shape of the log(pdf). Another interesting phenomenon we observed here

is that the DC terms with the same u+v value have similar standard deviations. Figure 2.46

shows the contour plot of the stand deviations of DCT coeÆcients, with respect to u and

v. We can see that the contour lines are roughly parallel to the u+ v = constant lines.
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u v � S � H �1 D(p0 k p1) �2 D(p0 k p2)
0 0 5.54 0.256 4.83 4.44 1.14 0.00905 1.18 0.00934

0 1 1.06 -0.014 9.66 1.87 0.729 0.00254 0.75 0.00273

0 2 0.671 -0.133 10.3 1.18 0.679 0.00582 0.725 0.00677

0 3 0.465 -0.0171 11 0.645 0.675 0.00454 0.703 0.0049

0 4 0.348 -0.0481 11.3 0.217 0.669 0.00441 0.693 0.00467

0 5 0.27 -0.0342 12.1 -0.162 0.66 0.00315 0.67 0.00321

0 6 0.218 -0.00888 13.3 -0.492 0.65 0.00245 0.643 0.00255

0 7 0.185 -0.0192 14.5 -0.763 0.626 0.00189 0.619 0.00198

1 0 1.07 0.0108 10.7 1.83 0.673 0.00366 0.711 0.00443

1 1 0.673 0.00351 9.29 1.21 0.689 0.00978 0.765 0.0123

1 2 0.505 9.73e-05 9.51 0.783 0.681 0.00958 0.756 0.012

1 3 0.38 0.000789 9.77 0.372 0.68 0.00803 0.745 0.00992

1 4 0.296 -0.00122 10.1 0.0086 0.682 0.00619 0.733 0.00735

1 5 0.236 -0.00475 10.5 -0.325 0.678 0.00425 0.719 0.00503

1 6 0.195 -0.00177 11.3 -0.621 0.669 0.00259 0.693 0.00289

1 7 0.169 -0.0016 12.5 -0.855 0.649 0.00163 0.662 0.00171

2 0 0.672 -0.207 11.4 1.14 0.639 0.00953 0.69 0.0109

2 1 0.497 0.00392 9.87 0.753 0.674 0.0107 0.741 0.0127

2 2 0.403 0.0436 9.97 0.45 0.673 0.0096 0.737 0.0114

2 3 0.323 0.00598 10.1 0.126 0.674 0.00768 0.733 0.00925

2 4 0.26 0.0141 10.3 -0.183 0.679 0.00568 0.726 0.0067

2 5 0.213 0.00668 10.6 -0.476 0.678 0.00378 0.716 0.00446

2 6 0.179 0.0142 11.2 -0.739 0.674 0.00224 0.697 0.0025

2 7 0.158 0.0077 12.3 -0.947 0.658 0.00138 0.666 0.00141

3 0 0.456 0.00171 12.2 0.567 0.635 0.00654 0.669 0.0072

3 1 0.365 0.00243 10.3 0.297 0.666 0.00865 0.724 0.0103

3 2 0.313 -0.00501 10.4 0.0763 0.667 0.00783 0.722 0.00923

3 3 0.263 0.00264 10.4 -0.172 0.672 0.0061 0.72 0.00718

3 4 0.221 -0.00739 10.5 -0.423 0.679 0.0044 0.717 0.00507

3 5 0.186 0.00244 10.7 -0.67 0.683 0.00288 0.712 0.00327

3 6 0.16 0.00268 11.2 -0.894 0.681 0.00171 0.696 0.00182

3 7 0.144 -0.00142 12.2 -1.07 0.668 0.00113 0.668 0.00114

Table 2.11: constants of DCT coeÆcients(part 1)
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u v � S � H �1 D(p0 k p1) �2 D(p0 k p2)
4 0 0.331 -0.0861 12.7 0.0956 0.628 0.00555 0.657 0.00603

4 1 0.277 -0.000888 10.8 -0.113 0.66 0.00606 0.71 0.00729

4 2 0.245 0.0238 10.7 -0.286 0.665 0.00546 0.711 0.00649

4 3 0.213 0.00406 10.7 -0.482 0.673 0.00417 0.711 0.00487

4 4 0.184 0.0122 10.8 -0.685 0.682 0.00301 0.708 0.00333

4 5 0.16 0.00156 11 -0.887 0.688 0.00195 0.703 0.00205

4 6 0.142 0.00468 11.4 -1.07 0.689 0.00122 0.69 0.00123

4 7 0.13 0.00206 12.3 -1.22 0.678 0.000953 0.667 0.00106

5 0 0.248 0.0197 13.3 -0.34 0.619 0.00315 0.643 0.00351

5 1 0.214 -0.0037 11.3 -0.499 0.651 0.00353 0.694 0.00453

5 2 0.194 -0.00129 11.1 -0.634 0.66 0.00318 0.7 0.00401

5 3 0.173 -0.000753 11 -0.789 0.672 0.00244 0.702 0.00289

5 4 0.154 0.00321 11.1 -0.948 0.685 0.00172 0.7 0.00184

5 5 0.138 0.00225 11.2 -1.11 0.694 0.00119 0.695 0.0012

5 6 0.125 0.00382 11.6 -1.25 0.697 0.000848 0.686 0.000945

5 7 0.116 -0.00292 12.4 -1.37 0.689 0.000949 0.663 0.0014

6 0 0.192 -0.0414 14.3 -0.726 0.612 0.00161 0.622 0.00167

6 1 0.17 0.00287 12 -0.849 0.642 0.00159 0.674 0.00219

6 2 0.157 0.00348 11.7 -0.955 0.654 0.00147 0.682 0.00192

6 3 0.143 0.00431 11.5 -1.07 0.669 0.00115 0.686 0.0013

6 4 0.131 0.00407 11.5 -1.19 0.685 0.00089 0.687 0.000893

6 5 0.12 -0.000198 11.6 -1.32 0.696 0.000768 0.683 0.000872

6 6 0.111 0.00379 12 -1.43 0.7 0.000834 0.674 0.00125

6 7 0.105 -0.00181 12.8 -1.52 0.693 0.00114 0.654 0.00212

7 0 0.158 -0.000334 15.8 -1.05 0.593 0.00175 0.597 0.00178

7 1 0.143 0.00587 13.2 -1.14 0.623 0.000714 0.644 0.00105

7 2 0.133 0.00169 12.9 -1.22 0.637 0.000661 0.652 0.00081

7 3 0.124 -0.00168 12.6 -1.31 0.656 0.000676 0.657 0.000678

7 4 0.115 0.00114 12.5 -1.4 0.672 0.000714 0.66 0.000806

7 5 0.108 -0.00298 12.6 -1.49 0.686 0.00092 0.659 0.00139

7 6 0.102 -0.00801 12.9 -1.57 0.691 0.00124 0.652 0.00221

7 7 0.0982 -0.0116 13.6 -1.63 0.692 0.00217 0.636 0.00427

Table 2.12: constants of DCT coeÆcients(part 2)
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Figure 2.45: log(pdf) of DCT coeÆcients
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Figure 2.46: contour plot of the standard derivations of DCT coeÆcients

2.7 Random Filters

In the previous section, we observed an interesting fact that the log(pdf) of all the DCT

coeÆcients have similar shapes. We want to make sure that this fact is caused by some

property of natural images not the special design of the DCT �lters.

For the �rst experiment, we generate random mean-0 �lters in the following way: Get a

random 8� 8 matrix F0 whose 64 entries are independent and are sampled uniformly from

[01], and let

F =
F0 � �(F0)

kF0 � �(F0)k2

We can regard F as a mean-0 �lter and apply it to images. Figure 2.47 shows the distribu-

tion of these �lters' reactions for several random mean-0 �lters and table 2.13 shows some

constant associated to them.

In the second experiment, we generate random �lters in a di�erent way: we pick ran-

domly 32 of the 64 entries of a 8 � 8 matrix, assign 1 to these picked entries and -1 to the
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Figure 2.47: The empirical pdf of some random mean-0 �lter reactions

filterid � S � H �1 D(p0 k p1) �2 D(p0 k p2)
1 0.316 -0.0145 7.95 0.194 0.806 0.00278 0.835 0.00304

2 0.302 -0.00828 7.39 0.132 0.798 0.00469 0.872 0.00644

3 0.352 -0.0112 6.99 0.376 0.848 0.00303 0.903 0.00391

4 0.244 -0.0151 7.72 -0.179 0.793 0.00396 0.849 0.00499

5 0.297 0.021 7.42 0.111 0.808 0.00479 0.87 0.00599

6 0.292 -0.0112 7.58 0.0814 0.797 0.00503 0.859 0.00624

7 0.445 0.0288 8.47 0.651 0.753 0.00268 0.805 0.00375

8 0.33 0.0554 7.54 0.263 0.808 0.00415 0.862 0.00508

9 0.343 0.00999 7.38 0.319 0.81 0.00436 0.872 0.00558

10 0.317 -0.0218 7.43 0.205 0.812 0.00327 0.869 0.00435

Table 2.13: constants of random mean-0 �lter coeÆcients

others. We called such random �lters the binary random mean-0 �lters. Figure 2.48 and

Table 2.14 show the results for some binary random mean-0 �lters.

We can see that in both experiments, the distributions of the �lter reactions are very

similar to each other. Also, the log(pdf) of all the distributions show linear tail, as we ob-

served in the derivative statistics calculated from the vegetation category (see section 2.2.2),

this fact can also be con�rmed by the � values in the two tables where they are all close to

1.
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Figure 2.48: The empirical pdf of binary random mean-0 �lter reactions

filterid � S � H �1 D(p0 k p1) �2 D(p0 k p2)
1 4.69 0.018 6.51 4.15 0.949 0.00162 0.946 0.00163

2 4.75 0.00752 6.51 4.17 0.944 0.00146 0.945 0.00146

3 4.83 -0.00886 6.55 4.2 0.959 0.00187 0.942 0.00196

4 4.79 -0.0335 6.42 4.18 0.946 0.00107 0.954 0.00108

5 4.1 0.00689 6.14 3.97 0.963 0.00253 0.983 0.00261

6 4.04 -0.0107 6 3.95 0.97 0.00325 0.999 0.00342

7 3.87 0.0058 5.9 3.88 0.943 0.00514 1.01 0.00605

8 4.07 0.00537 6.06 3.95 0.944 0.00358 0.993 0.00407

9 4.23 -0.00779 6.05 4.02 0.972 0.00225 0.994 0.00234

10 4.39 0.000961 6.28 4.06 0.944 0.00231 0.968 0.00244

Table 2.14: constants of binary random mean-0 �lter reactions
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2.8 2X2 blocks

The joint statistics of horizontal, vertical and diagonal Haar wavelet coeÆcients at the same

level and same location almost describe the probability distribution of 2X2 blocks, except for

the mean value or the DC coeÆcient. In this section we extend the discussion in the previous

section, and check some simple properties of 2�2 blocks by testing some simple hypotheses.

First, we calculated the joint empirical distribution of all 2X2 blocks. Let [X1X2X3X4]

be the pixels values, and a linear transformation:
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i.e. Y1; Y2; Y3; Y4 are the �lter reactions of the low-pass,horizontal,vertical and diagonal

Haar �lters. Let the empirical distribution of the random variables under the xi coordinate

be f0(x1; x2; x3; x4), and the same thing under the yi coordinate be ~f0(y1; y2; y3; y4). We

now check according to the information theory, how good are the following hypotheses:

Hypothesis 1 X1; X2; X3;X4 are independent.

Let f1(x1; x2; x3; x4) = g1(x1)�g1(x2)�g1(x3)�g1(x4), where g1 is the marginal distribution
of single pixels. we have:

D(f0jjf1) = 3:9

Obviously, this is a bad hypothesis, adjacent pixels are closely related to each other. But in

applications, independent assumptions are usually made to simplify algorithms. The test

on the following two hypotheses show that under the yi's are more independent to each

other.

Hypothesis 2 Y1 is independent from Y2; Y3; Y4.
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Let

~f1(y1; y2; y3; y4) = ~g(y1)� ~h(y2; y3; y4)

where ~g, ~h are the marginal distributions of Y1 and [Y2; Y3; Y4] repectively. We have:

D( ~f0jj ~f1) = 0:078

Hypothesis 3 Y1; Y2; Y3; Y4 are independent.

Let

~f2(y1; y2; y3; y4) = ~g1(y1)~g2(y2)~g3(y3)~g4(y4)

where ~gi is the marginal distribution of Yi. We have

D( ~f0jj ~f2) = 0:316

In [13], Koloydenko has assumed that the statistics of 2� 2 blocks are invariant under

rotations, ips and inversions. Next, we check from our data how good these assumptions

are. Let eftranspose; eflrflip; efudflip; efinv be the pdf of the transposition, left-right ipping, up-
down ipping and inversion of the orginal 2X2 blocks. Since there are a lot of empty bins in

our histogram, the KL distance between these and the orginal distribution maybe in�nity.

A more resonable way to is to check the KL distance between the orginal and the average

of the orginal and transformed pdf.

Hypothesis 4 The joint distribution of X1;X2; X3; X4 is invariant under totations, ips
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and inversion.

D(f0jjf0 + ftranspose

2
) = 0:0036

D(f0jj
f0 + flrflip

2
) = 0:0020

D(f0jj
f0 + fudflip

2
) = 0:0024

D(f0jjf0 + finv

2
) = 0:0241

It is not a surprise that D(f0jjf0+flrflip2
) is the smallest among these KL distances,

because it should be true that an left-right ipped natural image is another perfect natural

image. The fact that D(f0jjf0+ftranspose2
) and D(f0jjf0+fudflip2

) are also very small indicates

that some large structures(e.g. the horizon) is not clearly reected by this local statistics.

On the other hand, some large structures(e.g. portion of sky) do make D( ef0jj ef0+ efinv2
)

signi�cantly larger than the other three values.
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2.9 8X8 patches

In this section, we try to describe some important statistics structures in the 8 � 8 image

patches. Since now we are dealing with such a high dimensional space, the direct histogram

methods used in previous sections do not work here, instead we apply some non-parametric

statistics technique, e.g. k-means centers method. Similar methods was used by Malik et

al. in [15] in analyzing `textons'.

But �rst, we follow the ideas in [15] and preprocess our data. For each 8 � 8 patch,

we calculate the 3-level Haar Wavelet transformation to get 63 AC coeÆcients, and we

renormalized the coeÆcients at level 2 and 3 by dividing 2 and 4 respectively. This way,

we can assume all �lters are of the same L1 norm(for scale invariance). So we have a linear

map from the space of 8� 8 patches to R63,

T0(P ) 2 R
63

where P is an 8� 8 image patch. The authors in [15] further renormalized the above map

by log-function to create local maxima in the distribution, away from the origin. We here

use a more direct approach, we simply project all the non-zero vectors to the unit sphere

T1(P ) =
T0(P )

kT0(P )k

for kT0(P)k > 0. So given a non-constant P , we get a sample point T1(P ) on the unit

sphere S62. For each image I, let P runs through all the 8� 8 patches, and we get a set of

samples on S
62. We then run the k-means algorithm on these samples to get 128 k-means

centers. We put together all these centers calculated from all 4000 images in van Hateren

database, and do k-means again to get the �nal 128 centers, which are shown in �gure 2.49.

We can see most of the centers show edge or bar structures.

We want to see how well the centers represent the sample points on S
62. Let's de�ne:

Sr = fv 2 S
62jangle(v; C) < rg
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Figure 2.49: k-means centers of 8X8 images patches. The number is the frequency that

images patches are closest to the center.

where C is the set of all the 128 centers, and

angle(v; C) = minc2C(angle(v; c))

We can calculate the percentage of samples fall in Sr for di�erent r0s. Also, we can

calculate the volume of Sr numerically. The lower curve of �gure 2.51 is the plot of the

percentage of samples fall in Sr against
vol(Sr)

vol(S62)
. We can see from the curve that about 90%

of sample points fall in a region of 10% of the total volume.

From our experience with low dimensional natural scene statistics(e.g. 3D joint statistics

of Haar coeÆcients), we know that the density function may have di�erent rates of change
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along di�erent directions. To get a rough description of this, we de�ne for each c 2 C a

map Pc : S
62 ! R

62 by:

Pc(v) =
v� < v; c > c

kv� < v; c > ckangle(v; c) (2.11)

where v are samples that are closer to c than any other centers in C. This way, we map

all samples around c to vectors in R
62, and we can calculate the covariance matrix Qc of

all the samples Pc(v), the eigenvectors and eigenvalues of which roughly tell us along which

direction the value of the density function on S
62 concentrates. Figure 2.50 shows two

examples of the principle components around two centers. For each c 2 C, let Qc be the

covariance matrix of the samples Pc(v), we de�ne the pca normalized angle as

^angle(v; c) =

q
Pc(v)Qc

�1
Pc(v)T

and similarly de�ne

eSr = fv 2 S
62j^angle(v; C) < rg

Again, we plot the percentage of samples fall in eSr against
vol(fSr)
vol(S62)

. The top curve of

�gure 2.51 shows the plot. Now we can see that 90% of the samples fall in only a region

of 2% of the total volume, and we can claim from this that the k-means centers shown in

�gure 2.49 do represent some common structures in natural images.
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1 46

Figure 2.50: Principal components around centers. The upper-left subplot is the center,

and the others are the eigenvectors of the covariance matrix around the center, See text
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Figure 2.51: Percentage of samples fall in percentage of the total volume. Bottom curve:

assuming disk like regions, top curve: assuming elliptic regions. See Text
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Chapter 3

Simulating local statistics with a

generalized Ising model
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3.1 Basic Setup

In his paper [17], Ruderman tried to explain the scale invariance property by assuming

that the world can be broken down into discrete objects of di�erent scales. More recently,

Lee et al [14] have developed the `Random Collage Model', which simulates some statistics

of natural images as well as the scale invariance property. A problem of such approaches

is that images synthesized by this model is diÆcult to analyze. Still, it's surprising that

complicated structures like those observed in �gure 2.25 can be simulated under some quite

seemingly irrelevant assumptions. This lead us to believe that the statistical features we

observed in natural images are caused by some simple stochastic process. Grenander [9]

suggested a model using the product of Gaussian random variables, and from this model

he derived a family of distributions for derivative statistics. Here we introduce a di�erent

approach.

First, as in [4], we assume a real scene �(x; y) is a function(or more properly a generalized

function ,see [16]) de�ned on R
2. A (digitized) image I of � is a function de�ned on integer

grid Z
2, such that the value of I(i; j) is the average of �(x; y) over the square(or pixel)

Sij = [i; (i+ 1)] � [j; j + 1], i.e.

I(i; j) =

Z
Sij

�(x; y)dxdy

According to Ruderman's idea, an real scene consists of objects, the color(or intensity)

of objects are independent of each other, i.e.

�(x; y) =

NX
i=1

�iIndAi

where Ai's (objects) are some non-overlapping sets, and �i is the intensity of the corre-

sponding object. Here we make a further assumptions about the local structures.

Assumption 1 On a small patch of real scene 
(say a region covered by 2� 2 pixels),

there are at most two `objects' A and B. And the intensity � on A and � on B are constants,
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i.e.

�j
 = �IndA + �IndB

where A [B = 
, and IndA and IndB are the identi�cation functions.

We can argue that on a small non-homogeneous image patch, we are likely to observe an

edge or a bar, where the above assumption is reasonable. T-junctions are de�nitely counter

examples, but they are rare events compared to edges and bars. To test this assumption,

We did an experiment following the procedure given below.

1. For each image I, we scale it down by taking the maximum or minimum of each 4� 4

blocks , whichever closer to the mean value. Let's denote the resulting image by I 0.

2. For each M �M block BM�M of I 0, normalize all pixels in that block by:

f(x) =
x�min(BM�M )

max(BM�M )�min(BM�M )

3. Collect all the normalized pixel values f(x) except the 1's(maximum) and 0's(minimum)

and calculate the histogram of f(x).

Step 1 in the above procedure is to make I 0 more like a `real scene' by reducing the averaging

e�ects in the pixels of digital images. Figure 3.1 shows the result of the experiment for

M = 2 and M = 4. We can see that in both cases, the distributions have two maximum

values at the two ends, which indicates that the above assumption is reasonable.

In assumption 1, when 
 is �xed, �j
(we will just write � in the future) is generated

by two processes: an object generating process �0 which generates A(and hence B), and a

`coloring process', �0 = (�; �) which `paints' A and B with `colors' � and � respectively.

The following two assumptions are adopted by Ruderman [17] and Lee et al. [14].

Assumption 2 The object generating process �0 and coloring process �0 are independent.

Assumption 3 �0 and �0 are independent.

86



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

pd
f

normalized intensity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

3

pd
f

normalized intensity

Figure 3.1: The pdf of `normalized intensities'(see text). Left: for 2 � 2 blocks. Right: for

4�X4 blocks

Let's see what we can conclude from these assumptions. Let �0 be the `characteristic

function' of the `objects'.

�0jA = 1; �0jB = �1

Then

� =
�0 + 1

2
�+

1� �0

2
�

Assume we have a group of �lters supported by 
: f1, f2 ... fn. Each �lter reaction of

� will be:

< fi; � >=

Z
fi(x; y)�(x; y)dxdy =

Z
fi(x; y)(

�0 + 1

2
�+

1� �0

2
�)dxdy

=
�� �

2

Z
fi(x; y)�0(x; y)dxdy +

�+ �

2

Z
fi(x; y)dxdy

If fi is a mean-0 �lter(i.e
R
fidxdy = 0), we have

< fi; � >=
�� �

2

Z
fi(x; y)�0(x; y)dxdy

With a linear transformation, we can assume any group of n linear �lters consists of n
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zero-mean �lters or n-1 zero-mean �lters and one non zeo-mean �lter. For the former case,

the joint reactions of all the �lters can be written as:

(< f1; � >; :::: < fn; � >) =
�� �

2
(< f1; �0 >; :::: < fn; �0 >) (3.1)

So we have factored the joint �lter reactions into two simpler independent processes. We

call � = ���
2

the color factor, call � = (< f1; �0 >; :::: < fn; �0 >) the object factor. Hence

the �lter reactions  = (< f1; � >; :::: < fn; � >) = � � � is the independent product of

the color factor and the object factor. Assume the pdf of the two factors are h�(y) and

h�(u1; u2; ; ; un) respectively, so the joint density function of the two factors (�; �)(with the

in�nitesimal elements) is

h�(y) � h�(u1; u2; :::un)dydu1du2:::dun

let (x1; x2; :::; xn) = y �(u1; u2; :::un), so (u1; u2; :::un) = (x1; x2; :::; xn)=y and the probability

density function of (�; ) will be:

h�(y) � h�(x1
y
;
x2

y
; :::

un

y
)dy

dx1dx2:::dxn

jyjn

By integrating w.r.t y, we get the density function of h :

h(x1; x2; :::xn) =

Z
h�(y)

1

jyjnh�(
x1

y
;
x2

y
; :::

xn

y
)dy (3.2)

Let's call the above operation the independent mixing of h� and h� , and denote it by:

h = h� ~ h�

Notice that independent mixing to independent product of two random variables is what

convolution to independent summation of two random variables. There are some interesting

properties of independent product of two random variables.

Proposition 3.1 If X and Y are independent, then �(X � Y ) = �(X) � �(Y )
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Proposition 3.2 If X and Y are independent, and �(X) = �(Y ) = 0, then:

var(X � Y ) = var(X) � var(Y )

kurtosis(X � Y ) = kurtosis(X) � kurtosis(Y )

skewness(X � Y ) = skewness(X) � skewnewss(Y )

(3.3)

proof

We only show the proof for kurtosis, others are similar. If �(X) = �(Y ) = 0, we have:

kurtosis(X � Y ) =
�((X�Y )4)

�((X�Y )2)2

=
�(X4)�(Y 4)

�(X2)2�(Y 2)2

= kurtosis(X) � kurtosis(Y )

Proposition 3.3

kurtosis(X � Y ) � max(kurtosis(X); kurtosis(Y ))

This is a direct conclusion given the following lemma.

Lemma 3.1 For any random variable X, kurtosis(X) � 1, and equality holds if and only

if the density function p(x) of X can be written (symbolically) as:

p(x) =
1

2
Æ(x� �� a) +

1

2
Æ(x� �+ a)

where � is the mean of X and a 6= 0 is some constant.

proof

Without loss of generality, we can assume that � = 0. Notice that,

(

Z
x
2
p(x)dx)2 = (

Z
x
2
p(x)

1
2 p(x)

1
2dx)2 �

Z
x
4
p(x)dx �

Z
p(x)dx =

Z
x
4
p(x)dx
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The Cauchy-Schwartz inequality is used above, and the equality holds if and only if

x
2
p(x)

1
2 = C � p(x) 12

all most everywhere for some constant C. This can only be true when

p(x) =
1

2
Æ(x� a) +

1

2
Æ(x+ a)

where a =
p
C.

These conclusions explain why we observed high kurtosis in the distributions of �lter

reactions of images. More exactly, we believe the independent mixing of two density func-

tions is responsible(at least partially) for the `generalized Laplace' distributions of local

�lter reactions of images.

Since we assume � and � are sampled independently from the single pixel empirical

distribution(with pdf f0(x), see section 2.1.1 on page 11), the density function h�(x) of the

color factor � can be calculated by,

h�(x) = 2 � convolve(f0(y); f0(�y))(2x) (3.4)

which is shown in �gure 3.2. The object factor � is more diÆcult to model. Noticed that

the color factor does not depend on the choice of �lters f1; f2; :::; fn, but the object factor

does. Now let's look at a example of independent mixing.

Consider the simplest mean-0 �lter reaction: the derivative D. In section 2.2.1, we have

calculated the empirical distribution of derivative statistics from van Hateren database.

Let's use the statistics at scale 2(which is more stable than that of scale 1) as an example.

We have:

D = � � �
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Figure 3.5: An vertical edge and an diagonal
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It is reasonable to assume that E should be invariant under ipping,rotating and invert-

ing(1 to -1 and -1 to 1), so we only have to de�ne E on the following 4 cases:

(1; 1; 1; 1); (1; 1; 1;�1); (1; 1;�1;�1); (1;�1;�1; 1)

(1; 1; 1; 1) is a constant patch, hence E(1; 1; 1; 1) = 0. Without loss of generality, we can

de�ne E(1; 1;�1;�1) = 1. To �nd an appropriate x = E(1; 1; 1;�1), consider the two

images shown in �gure 3.5. Both of them are of the same size(say n� n). The left �gure

has a horizontal edge. There are n�1 2�2 blocks of type (1; 1;�1;�1) and all others 2�2

blocks are constant patches. So the total energy for this image is n�1. The right �gure has

a diagonal edge, and there are 2n� 3 2 � 2 blocks of type (1; 1; 1;�1), so the total energy
will be (2n�3) �x. Since we want to treat horizontal and diagonal edges equally, and notice
that the length of the diagonal edge is

p
2 that of the horizontal edge, we have

(2n� 3) � x =
p
2(n� 1)
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when n large, x �
p
2
2
. Hence we de�ne E(1; 1; 1;�1) =

p
2
2
. We can think (1;�1;�1; 1) as

a patch with two edges, and de�ne E(1;�1;�1; 1) = 2 �E(1; 1; 1;�1) =
p
2. Table 3.1 gives

the exact de�nition of E.

a b c d E

-1 -1 -1 -1 0

-1 -1 -1 1
p
2
2

-1 -1 1 -1
p
2
2

-1 -1 1 1 1

-1 1 -1 -1
p
2
2

-1 1 -1 1 1

-1 1 1 -1
p
2

-1 1 1 1
p
2
2

1 -1 -1 -1
p
2
2

1 -1 -1 1
p
2

1 -1 1 -1 1

1 -1 1 1
p
2
2

1 1 -1 -1 1

1 1 -1 1
p
2
2

1 1 1 -1
p
2
2

1 1 1 1 0

Table 3.1: De�nition of the potential function. a; b; c; d are entries of a 2� 2 block from left

to right and up to down.

Once the potential function is given, the Markov Random Field is de�ned as:

P (x) =
1

Z
e
�P

fx1;x2;x3;x4g
E(x1;x2;x3;x4)=T

where fx1; x2; x3; x4g runs through all 2� 2 blocks and T is the temperature.

In our simulation, we pick T evenly between [0.1 5] and generalized 512 � 512 binary

images for di�erent temperature T by Gibbs Sampler. Figure 3.6 shows a sample of the

MRF. Let U =
P

fx1;x2;x3;x4gE(x1; x2; x3; x4) be the energy, Figure 3.7 shows �(U) as a

function of temperature T as well as the derivative
d�(U)
dT

against T , and we can see that

the critical temperature T0 is around 1.88.
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Figure 3.6: A sample from our MRF at T = 1:88.
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Figure 3.7: Left �gure: Expectation of the energy of samples v.s. temperature. Right

�gure: Derivative of the expectation of the energy. The vertical dotted line is T = 1:88, the

critical temperature.

96



3.3 Simulation of the Derivative Statistics

Here is the procedure to get one derivative sample from �0 (a 512 � 512 sample from the

MRF at �xed temperature T). Again we assume each pixel contains K �K subpixels,

(1) Get a K � 2K patch 
 from �0. Let A, B be the objects in 


A = fx 2 
j�0(x) = 1g

B = fx 2 
j�0(x) = �1g

(2) Sample randomly two values � and � from the empirical distribution of single pixel

statistics. As we calculated in section 2.1.1.

(3) Let �1 = �IndA + �IndB , which is a K � 2K patch at subpixel resolution.

(4) Take K �K block average of �1 to get two pixel intensities, and the di�erence of them

gives a sample of the derivative statistics.

Repeat the above procedure for di�erent patches 
 and di�erent �0(samples for a �xed

temperature T), and we can collect a histogram of the derivative statistics at temperature

T.

A more eÆcient way was used in our calculation. In equation 3.1, let n = 1 and f1 be

de�ned on a K � 2K grid, with f1jleft K�K block = 1
K2 and f1jright K�K block = � 1

K2 . We

only have to calculate the distribution of the object factor < f1; �0 >, because the distri-

bution of the derivative can then be calculated from equation 3.2. Here is the procedure to

get a sample of the object factor:

1. Get a K � 2K patch 
 from �0.

2. Take K�K block average of the patch to get two pixels `intensities', whose di�erence

gives a sample of the object factor.
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We run this algorithm for samples at di�erent temperature T separately, and also we

use 2 di�erent K values to simulate 2 scales: K = 8 and K = 16. Figure 3.8 shows

the result of the simulation of the derivative statistics at di�erent temperatures and scales .

Figure 3.9 shows the KL distance between the empirical derivative statistics calculated from

natural image database and that from our model, also the comparison of the variances. It

is interesting to observe that around the critical temperature, everything comes together:

the derivative statistics calculated from our model are roughly scale invariant and they

are close to the empirical distribution calculated from natural images. It's well known in

physics that the Ising model is scale invariant at the critical temperature. Notice that,

in most of the literatures in physics, the system is scaled down by taking block majority

instead of block average. Nevertheless, it may be not a surprise that we observed a rough

scale invariance at the critical temperature. On the other hand, the fact that single pixel

statistics + the Ising-like model +scale invariance predicates distribution the the derivative

statistics is interesting, it indicates that our model does capture some stochastic structures

in natural image.

Figure 3.10 shows the distribution of the object factor at the critical temperature. Notice

that this variable is close to but not exactly scale invariant. Since the object factor can

have 129 possible values for K = 8 and 513 possible values for K = 16, we can not de�ne

scale invariance exactly for �nite K in the �rst place. We may overcome the problem by

studying the limit behavior when K !1, but this is not our concern here.

3.4 Simulation of the Haar Wavelet CoeÆcients

Similar to the derivative statistics, we can calculate Haar Wavelet CoeÆcients of the simu-

lation. Since the simulation works best at the critical temperature for derivative statistics,

we will only simulate at the critical temperature here.

Figure 3.11 shows the joint statistics of some 2d Haar wavelet coeÆcients calculated

from our simulation. Compare that to �gure 2.25, we can see our simulation captures the

polyhedra structures in the level curves.
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Figure 3.11: Haar Wavelet CoeÆcients of the Simulations at Temperature T=1.88
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Chapter 4

Applications
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4.1 Image Compression

We estimate the limit of (lossless) image compression from the statistics we calculated.

(1)DCT

The standard JPEG image compression algorithm utilizes the marginal distribution of single

AC coeÆcients. For the DC coeÆcient, the distribution of the di�erence of adjacent DC

coeÆcients is used. The total bits needed to code a 8 � 8 patch of an image according to

this compression method is:

63X
i=1

H(pi) +H(q0)

where H(pi)'s are the di�erential entropy of AC coeÆcients(see the last column of table 2.11

at page 71). H(q0) is the entropy of the di�erence of two adjacent DC coeÆcients. Notice

that the DC coeÆcient of DCT is simply 8 times the average of the 8X8 block. The entropy

of the di�erence between two adjacent 8X8 blocks is 0.02 (see section 2.3 on page 19). Hence

H(q0) = 0:02 + log2(8) = 3:02. Adding these numbers up, we get that the total number of

(di�erential)bits needed for coding a 8� 8 block is: -24.34 bits, or -0.38 bit/pixel. Notice a

single pixel statistics has the entropy 1.66(see table 2.1), so the number of true bits saved

is: 1.66-(-0.38) = 2.04 bit/pixel

(2)Haar 3D

The di�erential entropy of the horizontal, vertical and diagonal �lter reactions is E0 =

�2:48, calculated from the 3D joint distribution of the Haar �lter reactions(see section 2.4.4).

Let's assume that the wavelet coeÆcients at di�erent scales or di�erent locations are inde-

pendent. For a N �N image, the total entropy for the wavelet coeÆcient at �rst level will

be:

N �N

4
E0

For the second scale, if we assume scale invariance property of images, and assume the Haar

�lters are normalized so that the L1 norms are 1, then we should have the same di�erential

entropy E0. Since Haar �lters are actually normalized according to L2 norm, the di�erential
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entropy is E0 + log2(8), so the total entropy for the wavelet coeÆcients at second level will

be:

N �N

42
(E0 + log2(8))

Repeating this procedure, we get the total entropy at level k is:

N �N

4k
E0 + log2(8)(k � 1)

Hence the average entropy of each pixel will be

1

4
E0 +

1

42
(E0 + 3) +

1

43
(E0 + 3 � 2) + ::: =

1

3
E0 +

1

3

which is about �0:498 bit/pixel, and the number of bits saved: 1:66 � (�0:498) = 2:16

bit/pixel, which is slightly larger than that from DCT coeÆcients.
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4.2 Noise removal

In this section, we apply the statistics of wavelet coeÆcients to the application of noise

removal of images. Next �gure shows an image of boats(we have taken the logarithm of the

original intensity). We add an iid Gaussian noise to each pixel to get a `dirty' picture. Our

goal is to reduce the noise in the picture. We used the ordinary MAP method, explained

next.

Fist, let's assume X is a single dimensional random variable, with density f(x) �
exp(h(x)), and Y = X +N , where N is a Gaussian noise � N(0; �). Suppose we observed

Y , and want to make a `best' guess of X. One way is to calculate the argmaxxf(xjy),
where f(xjy) is the posterior density of X given Y . Since

f(xjy) � f(x)f(yjx) = f(x)g(y � x)

we have the MAP estimation of x:

~x = argmaxx(f(xjy)) = argmaxx(h(x) +
(y � x)2

2�2
) (4.1)

Similar method applies when X is a random vector instead of a random variable,

~x = argmaxx(f(xjy)) = argmaxx(h(x) +
1

2
(y � x)Q�1(y � x)T ) (4.2)

where Q is the covariance matrix of the noise N .

Now, given an noise image, we calculate the steerable pyramid decomposition of it

with two oriented subbands B0; B1 at each scale(as in section 2.5.2). At each scale, let

Yi;j = ((B0(i; j); B1(i; j)). We assume these coeÆcient pairs are independent of each other,

and apply the MAP estimation given in 4.2 separately on each pair. Here we use the

empirical distribution calculated in section 2.5.2 as the prior h. The covariance matrix Q

for the Gaussian noise can be calculated from the de�nition of the �lters. Once we get the

MAP estimation ~X for each coeÆcient pairs, we can then reconstruct the image from them

to get the `cleaned image'. The result of our experiment is shown in the lower left subplot

of �gure 4.1.
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Figure 4.1: Noise removal experiments. From up to down and left to right are the original

image, the noisy image and the cleaned image
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Figure 4.2: The 70 textures we used in our experiment

4.3 Texture Classi�cation

To see how well the statistics we got in section 2.9 capture the important features of vision,

we utilize these statistics to do some experiments on texture classi�cation. Figure 4.2 shows

the 70 textures used in this experiment.

To measure the similarity of textures, we adopt the idea `textons' in [15]. In our case,

we �xed the textons to be the 128 k-means centers we calculated in section 2.9, and denote

them by C1; C2; ::: C128. Each one of the texton can also be regarded as a 63-dimensional

vector. For a N �N texture T , we calculated a texton histogram FT as the follows,

1. Let FT be a 128 dimensional vector, which is initialized as 0.

2. For each 8� 8 patch P of T , there are 63 AC wavelet coeÆcients in the Haar Wavelet

decomposition of P . We normalize these coeÆcients in the way described in sec-

tion 2.9. Thus P corresponds to a vector ~P in R
63.

3. Find the texton CK which is closest to ~P , and increase the Kth bin of FT by 1.

4. Repeat step 2 and 3 for all 8� 8 patches P of T , and we get the histogram FT .

We measure the similarity of two textures T1 and T2 by the `distance' between the two
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texton histograms FT1 and FT2 . As in [15], we choose the chi-square test as the `distance':

�
2(FT1 ; FT2) =

1

2

128X
k=1

(FT1(k)� FT2(k))
2

FT1(k) + FT2(k)
(4.3)

For the �rst experiment, we subdivide each texture into 16 patches to get in total

16 � 70 = 1120 patches. Then pick a single patch from them, we order the other patches

according to the similarity(de�ned above) to the picked patch. If the similarity we de�ned

works perfectly, then the picked patch and the �rst 15 `most similar' patches should all come

from the same texture. Figure 4.3 shows three examples of the result of our experiments.

Our algorithm works perfectly in one example, but only works partially well in another ,

and fails totally in the third example. We should point out that situations as in the third

example are very rare in our experiments.

In another experiment, we pick randomly a patch from a texture, and using the same

method to see whether we can �nd which texture it belongs to. The rate that this method

succeeds in �nding the correct texture is 98:3%.
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Figure 4.3: three examples of texture classi�cation results. The patch at the upper left

corner is the picked patch, the others are the patches which are most `similar' to the picked

patch according to our algorithm.
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Chapter 5

Conclusion
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In this thesis, we have presented several important statistics from intensity images and

range images. We �tted mathematical models to these statistics and explained some phe-

nomena we observed. To see how useful are the statistics we calculated, we applied them

to some simple applications.

We found that statistics involving local �lters are approximately scale invariant, but

there are systematic deviations from scale invariance on a large scale. The scaling behavior

of di�erent types of images is quite di�erent, and can be characterized by their `anomalous

dimension'.

Statistics of any mean-0 �lters can be well modeled by `generalized Laplace' distributions

and the common statistical features(highly peaked center and heavy tails) are related to the

fact that these statistics can be decomposed to two independent factors, one corresponds to

the distributions of objects of the world, one corresponds to the intensity or color of objects.

There are signi�cant dependencies between �lter reactions at adjacent locations, scales

or orientations. The joint distributions of such �lter reactions can be quite complicated,

yet can still be explained by assuming the independ product of a object factor and a color

factor.

The statistics calculated from range images are closely related to those calculated from

intensity images. Some of the striking features observed in the Haar �lter reactions indicate

that range images are much simpler to analyze than intensity images. We believe that

segmenting range images from natural scenes and a thorough analysis of the results will

lead to a better understanding of the scene geometry of the 3D world, as well as more

realistic statistical models for intensity images.

Our simulations of natural images by using Ising-like MRF are successful in duplicating

some of the local �lter reactions. To make the model work well for more complicated �lters,

we must reconsider the assumptions we made in section 3.1. For example, assumption 1 is

a very strong statement, and it holds well only for small(e.g. 2� 2 or 4� 4) image patches.

One possible way to release the restrictions is to assume 3 or more objects in a image patch,

and use more general Potts-like MRF to generate objects.
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