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a b s t r a c t

Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical
influences on red blood cell functionalities. The transport Dissipative Particle Dynamics (tDPD) method
can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic
advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation
package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell
membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package
essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream
scheduling andnon-blockingMPI communications to improve inter-node scalability. Our code is validated
for accuracy and compared against the CPU counterpart for speed. Strong scaling andweak scaling are also
presented to characterize scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a
single node, and aweak scaling efficiency of 91% across 256 nodes. The programenables quick-turnaround
and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena
and disorders.

Program summary
Program Title:USERMESO 2.0
Program Files doi: http://dx.doi.org/10.17632/89849t3ngk.1
Licensing provisions: GNU General Public License, Version 3
Programming language: C/C++, CUDA C/C++, MPI.
Nature of problem: Particle-based simulation of a red blood cell suspension with chemical transport
property.
Solution method: Each red blood cell is represented by a 3-D triangular mesh with bonded potential
under area and volume constraints. The solvent is approximated with coarse-grained particles. The time
evolution of the system is integrated using Velocity-Verlet algorithm.
Restrictions: The code is compatible with NVIDIA GPGPUs with compute capability 3.0 and above.
Unusual features: The code is implemented on GPGPUs with significantly improved speed.
Additional Comments: Github repository link https://github.com/AnselGitAccount/USERMESO-2.0

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Blood carries nutrients, hormones, and waste products around
the body. Roughly 35–45% of its volume is occupied by red blood

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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cells (RBCs) that are responsible for vital biological tasks such
as circulating oxygen and carbon dioxide throughout the body.
As illustrated in Fig. 1, the exchange of materials between blood
and its surrounding tissues occurs primarily in the microvascular
bedswhere arterioles and venulesmeet. The capillaries connecting
the arterioles and venules are ideal for chemical diffusion due
to their large surface-to-volume ratio and single-layered fenes-
trated vessel wall. However, this seemingly simple process is un-
derpinned by intricate and detailed mechanisms. In the example
of oxygen release from RBCs, the amount of oxygen discharged
depends on the detailed chemical balancing between compounds
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Fig. 1. An illustration of oxygen release in the microvascular bed. RBCs transverse
from oxygen-rich arterioles to oxygen-scarce venules through the connecting cap-
illary beds. In each segment of the fenestrated capillary, oxygen and other nutrients
diffuse into the surrounding tissue through the porous wall. The oxygen is carried
and released almost exclusively by hemoglobin contained in RBCs. Our long-term
goal is to simulate the chemical exchange process with explicit modeling of the
RBCs as sources at the mesoscopic level. The package presented in this work serves
as an enabling technology to this objective.

such as hemoglobin and carbon dioxide, as well as ambient param-
eters such as plasma solubility and tissue permeability. Simulating
the chemical-exchange process and capturing important details
of blood flow can improve our understanding of the biological
mechanisms. Such technology can be used to further our investi-
gations into totally unexplored mechanisms linking quantitatively
metabolomics with blood flow in a very precise way for the first
time.

Simulations of chemical exchange in the microvascular beds
with an explicit description of the source RBCs involve many
biological phenomena at length scales from nanometers to mi-
crometers. This is difficult to accomplish with either continuum
descriptions based on partial differential equations or atom-
istic models based on classical Hamiltonian mechanics. Meso-
scopic simulation methods such as Dissipative Particle Dynamics
(DPD) [1] are gaining momentum as a promising approach to
capture these phenomena at this intermediate scale. In contrast
to Brownian dynamics and generalized Langevin dynamics, the
pairwise force in DPD depends on the relative position and velocity
between each pair of interacting particles. This ensures Galilean
invariance and momentum conservation that allow the statistical
recovery of the Navier–Stokes equation [2]. Consequently, DPD can
correctly reproduce hydrodynamic behavior at the mesoscale. The
versatility of DPD has been successfully demonstrated for many

interesting biological applications, e.g., blood rheology [3], platelet
aggregation [4], cell sickling [5], and polymer self-assembly [1,6,7].
Our newly developed transport DPD (tDPD) [8] can model the
diffusion, advection, and reaction of the chemical transport process
on top of the classic DPD framework at the molecular level using a
Lagrangian framework.

Developing a realistic RBC membrane model is crucial because
the RBC mechanical and rheological state influences how an RBC
performs its biological function. A coarse-grained DPD membrane
model for RBC was pioneered by Pivkin et al. [9]. It takes bending
energy, in-plane shear energy, and area and volume constraints
into consideration to recover the correct bending stiffness and
shear modulus. Fedosov et al. [10] later extended the aforemen-
tionedmodel to capture the correct non-linear deformation of RBC
under stress as measured from optical tweezers experiments. Al-
though the membrane model has been carefully calibrated, large-
scale RBC simulations using the DPD model remain rare, while
existing works are primarily limited to use a few tens of RBCs at
a time. The large computational overhead has severely limited the
possibility for blood-flow studies in vascular networks using the
DPD-based RBC model.

The effective use of General Purpose Graphics Processing Units
(GPGPUs) has improved the capability of many molecular dynam-
ics simulation software by an order of magnitude thanks to its
massively parallel nature [11–18]. Pushing for the peak perfor-
mance on each of the 18,688 GPUs on the Titan supercomputer,
Tang et al. [19] were able to simulate billions of RBCs flowing
through a cancer cell filtering device. Despite the inclusion of GPUs
to accelerate the simulation and to broaden the accessible time
and length scale, the code was a fixed-purpose solver based on the
classic DPD model.

In this work, a generalized GPU-accelerated implementation
of the RBC model with tDPD adaptation is developed to simulate
RBCs with realistic physiological properties. The software features
a tight integration of our earlier work on RBC membrane model,
transport behavior simulations, and GPU-accelerated DPD simu-
lators. With the new ability to track chemical concentrations, the
program can be used to investigate chemical-driven or chemical-
sensitive phenomena or disorders with unprecedented time and
length scales. The rest of the paper is structured as follows. In
Section 2, we review the classic DPD and tDPD frameworks and
present a short summary of the RBC membrane model. In Sec-
tion 3, we present our software implementations and algorithmic
innovations. In Section 4, we validate the code with verification
cases. In Section 5, we demonstrate the efficiency of the code as
reflected by benchmark cases simulating pure tDPD fluids and RBC
suspensions. In Section 6, we further demonstrate the capability of
the software with a realistic microfluidic channel simulation. We
conclude the paper in Section 7.

2. Mathematical model

2.1. tDPD pairwise interaction

The classic DPD framework describes the evolution of density
and velocity fields through Newton’s laws. In addition to the con-
servation of momentum inherited from the classic DPD, tDPD also
conserves the concentrations of species. Aside from its position
and velocity, each particle explicitly tracks the concentrations of all
species in the volume represented by this particle. A concentration
gradient induces the flux of chemicals between pairs of particles,
in a fashion similar to heat transfer.
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The movements of particles can be described by the following
set of stochastic ordinary differential equations (ODEs) [20]:

dri
dr

= vi, (1)

dvi
dt

= Fi =

∑
i̸=j

(FCij + FDij + FRij), (2)

where t , ri, vi and Fi denote time, position, velocity, and force,
respectively. The net force imposed on particle i is the sum of con-
servative force FCij , dissipative force FDij , and corresponding random
force FRij via interactions with every particle jwithin a radial cutoff

rc of i. Those forces are given as [2]:

FCij = αij ωC (rij) eij, (3)

FDij = −γij ωD(rij) (eij · vij) eij, (4)

FRij = σij ωR(rij) ξij ∆t−1/2 eij, (5)

where eij = rij/rij is the unit vector from particles i and j. ∆t is the
time step of the simulation, and ξ is a symmetric Gaussian random
variable with zero mean and unit variance [2]. αij, γij, and σij are
conservative, dissipative, and random force coefficients, respec-
tively. ωC (rij), ωD(rij), and ωR(rij) are the corresponding weighting
functions. The relationship betweendissipative and randomeffects
is dictated by the fluctuation–dissipation theorem which imposes
the following constraints [21]:

σ 2
ij = 2 kBT γij, ωD(rij) = ω2

R(rij), (6)

where kB is the Boltzmann constant, and T is temperature.
The tDPD model enables us to capture reaction kinetics at the

mesoscopic level. It essentially solves the advection–diffusion–
reaction equation dC

dt = D∇
2C + Q S , where the transport of con-

centration is modeled by a Fickian flux and a random flux [22,23].
It can be described by the following equation:

dCi

dt
= Qi =

∑
i̸=j

(Q D
ij + Q R

ij ) + Q S
i , (7)

where Ci denotes the concentration of a species carried by particle
i, and Qi is the net flux. There are three flux components that can
potentially alter the concentration. Q D

ij and Q R
ij denote Fickian and

random fluxes respectively and are given by [8]

Q D
ij = −κij ωDC (rij) (Ci − Cj), (8)

Q R
ij = ϵij ωRC (rij) ∆t−1/2 ζij, (9)

where κij and ϵij adjust the strengths. The corresponding weights
ωDC (rij) andωRC (rij) are given asωDC = (1−r/rcc)sc1 andωRC = (1−

r/rcc)sc2 with a cutoff radius rcc , analogous to the weights in force
calculations. Taking the same idea from the fluctuation–dissipation
theorem in the classic DPD, the transport version requires [24]

ϵ2
ij = m2

s κij ρ (Ci + Cj), ωDC (rij) = ω2
RC (rij), (10)

where ρ is the tDPD particle density.
It is easy to see the parallel between Eqs. (6) and (10). In partic-

ular, parameter κ adjusts the strength of chemical transfer, as the
dissipative coefficient γ adjusts the strength of momentum dissi-
pation. It is worth noting that each species typically has a distinct κ
value because diffusion coefficients for different chemical species
are generally different. Since the mass of a single solute molecule
ms is much smaller than the mass of a tDPD particle m which
is usually chosen to be one (normalized value), the magnitude
of ϵij is insignificant. This translates to a negligible contribution
from Q R

ij to the diffusion coefficient. In this work, Q R
ij can be safely

ignored considering the simplification ms ≪ m [8]. Finally, the

source term Q S
i represents the external contributions e.g., external

concentration source and boundary conditions.
The random force component in the classic DPD is stochastic

by definition. The stochastic behavior of particle movement yields
an additional contribution to diffusion reflected in the diffusion
coefficient. This additional diffusion componentDζ and the Fickian
diffusion componentDF compose the effective diffusion coefficient
D. Because the random flux Q R is insignificant, Dζ is due to random
movement of particles solely and can be calculated by [2]

Dζ
=

3kBT
4πγρ ·

∫ rc
0 r2ωD(r)g(r)dr

. (11)

The Fickian concentration flux Q D
ij depends on DF entirely, which

can be calculated by [8]

DF
=

2πκρ

3

∫ rcc

0
r4ωDC (r)g(r)dr. (12)

The physical diffusion coefficients are mapped to those of the
particle simulation through parameter κ . The mapping relation
can be extracted from matching simulation results with known
analytical solutions as described in [8].

2.2. RBC model

RBC membrane comprises a lipid bilayer supported by an in-
ner cytoskeleton. Composed of spectrin proteins and actins in a
compact network, the cytoskeleton provides structural stability.
Membrane viscosity and elasticity, as well as bending stiffness,
are physical properties derived from these biological components.
The same physical properties can be recovered with a spring-
network model that resembles a triangular mesh on a 2D surface
as described in [10].

The shape of the viscoelastic membrane is maintained by a
potential derived from a combination of bond, angle and dihedral
interactions. The bonds, also referred to as springs, experience both
an attractive and a repulsive component. The attractive potential
adopts the form of the wormlike chain potential and is given by

UWLC =
kBThm

4p

h
hm

2
(3 − 2 h

hm
)

1 −
h
hm

, (13)

where kBT is the energy per unit mass, hm is the maximum spring
extension, and p is the persistence length. The repulsive potential
adopts the form of a power function given by

UPOW =

⎧⎨⎩
kp

(m − 1)hm−1 , m ̸= 1,

−kp log(h), m = 1,
(14)

wherem is positive exponent, and kp is force coefficient. In addition
to those conservative potentials, a viscous component is needed to
damp the springs. It is realized by a dissipative force, as well as the
corresponding random force, given as

FDij = −γ Tvij − γ C (vij · eij)eij, (15)

FRij =

√
2kBT

(√
2γ T (dWS

ij − tr[dWS
ij]I/3)

+

√
3γ C − γ T

3
tr[dWij]I

)
, (16)

where γ T and γ C are dissipative coefficients, and vij is the relative
velocity. dWS

ij is the symmetric component of a random matrix of
independent Wiener increments dWij.
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The angle interaction is facilitated by area and volume con-
straints given by

Varea =
kg (At

− At
0)

2

2At
0

+

∑
j

kl(Aj − A0,j)2

2A0,j
, (17)

Vvolume =
kv(V t

− V t
0)

2

2V t
0

, (18)

where j is triangle index. kg , kl, and kv are global area, local area,
and global volume constraints coefficients, respectively. The in-
stantaneous area and volume of an RBC are denoted by At and V t ,
whereas At

0 and V t
0 represent the equilibrium area and volume. At

0
is calculated by summing the area of each triangle. V t

0 is found
according to scaling relationship V t

0/(A
t
0)

3/2
= V R/(AR)3/2, where

V R and AR are the experimental measurements.
The dihedral interaction is described by the bending potential

given by

Vbending =

∑
j

kb
(
1 − cos(θj − θ0)

)
, (19)

where kb is the bending constant, and θj is the angle between
two neighboring triangles with the common edge j. More detailed
information regarding RBC membrane model can be found in [10].

3. Parallel implementation

3.1. USERMESO

USERMESO [25] is a GPU-accelerated extension package to
LAMMPS [16] for dissipative particle dynamics and smoothed
particle hydrodynamics simulations. It migrates all computation
workload, except inter-rank communications, onto GPUs and
achieves more than twenty times speedup on a single GPU over
8–16 CPU cores. It utilizes MPI for the inter-node communication
and can scale to at least 1024 nodes. The list below summarizes
the major technical innovations involved in implementing the
package:

• An atomics-free warp-synchronous neighbor list construc-
tion algorithm;

• A 2-level particle reordering scheme, which aligns with the
cell list lattice boundaries for generating strictly monotonic
neighbor list;

• A locally transposed neighbor list;
• Redesigned non-branching transcendental functions (sin,

cos, pow, log, exp, etc.);
• Overlapping pairwise force evaluation with halo exchange

using CUDA streams for hiding the communication and the
kernel launch latency;

• Radix sort with GPU stream support;
• Pairwise random number generation based on binary parti-

cle signatures and the Tiny Encryption Algorithm.

3.2. Data layout

Data in LAMMPS are stored in array of structure layout. To avoid
strided access on the GPU, USERMESO employs structure of array
layout on GPU instead. A pair of interleave/deinterleave kernels
facilitates the conversion between array of structure and structure
of array at runtime. Meanwhile, the concentration and flux arrays
of a particle must be able to hold an arbitrary number of species.
Accessing this information is more efficient when the data are
coalesced. Structure of Array layout is therefore chosen for storing
concentrations and fluxes in CPU and Array of Structure layout in
GPU.

3.3. RBC

Three bonds form a triangle in the 2-D triangulated surface.
Each triangle is associated with an area and a ‘‘quasi’’-volume that
is calculated from the absolute distances of three vertexes. Because
thread-to-thread communication is expensive, it is advantageous
to compute area and volume three times, one by each thread. The
excessive computation outweighs thread-to-thread communica-
tion overhead.

The angle term demands the most computational resources be-
cause the total area and volume for each RBC need to be calculated
before enforcing the area and volume constraints. This is time-
consuming especially when an RBC is split between twoMPI ranks.
Although the areas and volumes are accumulated in a rank-basis
for the portion of an RBC in that rank, the total areas and volumes
must be known for each and every rank that contain any portion
of that RBC. This procedure can be accomplished with an MPI-
allreduce between two kernel calls for each time step. The first
kernel, K-Gather, computes the total area and volume of each RBC
pertaining to that particular rank. The second kernel, K-Apply, then
enforces the area and volume constraints.

This sequential procedure offers no computation overlap be-
tween those two GPU kernels because K-Apply awaits the result of
K-Gather. However, when the time step is very small, the variation
in area and volume between two consecutive steps is insignificant.
Adopting area and volume from the previous time step in K-Apply
for the current time step permits concurrency between K-Apply
and MPI communication, thus overlapping CPU and GPU tasks
for efficiency. A comparison with the sequential version shows
visually identical results in Fig. 2.

Since K-Gather and K-Apply are independent procedures in the
concurrent version, computing K-Gather and K-Apply simultane-
ously is possible due to CUDA stream functionality. Instead of
occupying the default stream exclusively, they are assigned to two
streams as demonstrated in Fig. 3. CUDA-events are placed accord-
ingly for synchronization. Opposite to what we expect, this setup
produces worse performance. This can be explained by streaming
multiprocessor saturation— two kernels competing for computing
resources. The resulting higher cache refresh rate is detrimental to
efficiency. Our hypothesis is validated by the fact that each kernel
takes longer than its sequential counterpart to complete.

Even though concurrent kernels setup produces undesirable
performance, it prompts the possibility of simultaneous data trans-
fer and kernel execution, as well as the possibility of non-blocking
MPI communications. MPI communications are blocking by de-
fault. An imbalanced workload on each device exacerbates the
latency because blocking MPI communications can only initiate
when all devices synchronize with the CPUs. The more ranks there
are, the bigger potential latency there is. Non-blocking MPI com-
munication is generally preferred for this reason. The pseudocode
of an improved implementation is depicted in Algorithm 1, and
a graphical representation is illustrated in Fig. 4. In the improved
version,MPI-Wait triggersMemcpy-HtD that uploads area and vol-
ume from the previous time step fromCPU to GPU. Because the up-
load and K-Gather execution share no dependency, Memcpy-HtD
can be implemented in a different stream for efficiency. K-Apply
execution starts as soon as the result, area and volume fromcurrent
time step, from K-Gather are downloaded to CPU viaMemcpy-DtH.
The completion ofMemcpy-DtH also triggers the non-blockingMPI
communication as a concurrent process. The non-blocking MPI
allows the subsequent kernel or CPU processes to continue prior to
the K-Apply completion. Communication overhead is thus greatly
reduced. This setup maximizes GPU efficiency by eliminating SM
unoccupancy and hiding default MPI communication overhead.
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Fig. 2. An RBC stretching test was devised to show feasibility of adopting area and volume of previous time step for current time step. (a) A graphical representation of
RBC stretching is shown. DT and DA denote transversal and axial diameters, respectively. (b) The time evolutions of DT (top curve) and axial diameter DA (bottom curve) are
shown. The simulation results from the concurrent version match those of the sequential version.

Fig. 3. The multi-stream scheduling schematic drawing. The arrows denote de-
pendency. K-Apply has to wait until the CUDA-event marking the completion of
K-Gather is recorded. The same applies to the MPI communication.

Algorithm 1 Pseudocode to the concurrent implementation.
1: Wait for the completion ofMPI-Iallreduce from last time step.
2: Upload data to device with asynchronousMemcpy-HtD.
3: Compute the total area and volume of each RBC in K-Gather.
4: Place asynchronousMemcpy-DtH in execution queue.
5: Download data to host with asynchronousMemcpy-HtD.
6: Enforce the area and volume constraints in K-Apply.
7: Wait for the completion ofMemcpy-DtH.
8: Sum total area and volume with non-blockingMPI-Iallreduce.

4. Code validation

4.1. Flow

Force accuracy over long-time integration is validated by simu-
lating a transient double Poiseuille flow. The parallel flow is driven
by a body force f on tDPD particles. The system consists of 256,000
particles in a 40 × 40 × 40 box with periodic boundary conditions
in all directions. The simulation parameters were chosen as α =

18.75, γ = 4.5, rc = 1.58, and s = 0.41. Results shown in Fig. 5
are in good agreement with the analytical solution in [26].

Fig. 5. Transient velocity profile in a double Poiseuille flow. A body force f was
imposed from 0 to d, and a body force −f was imposed from d to 2d. The boundary
in z direction is thus zero by periodicity. Snapshots are taken at t = 3, 6, 12, 24
and 48, corresponding to the curves from bottom to top, to show the evolution of
velocity profiles.

4.2. Transport

The diffusive property is validated by solving a one-dimensional
diffusion equation in an infinitely long cylinderwith circular cross-
section. The cylinder with radius R = 20 is composed of 402,073
particles in a 80 × 40 × 40 domain. The simulation parameters
associated with force calculation were chosen as α = 18.75, γ =

4.5, rc = 1.58, and s = 0.41. For flux calculations, the simulation
parameters were chosen as s2 = 2.0, κ = 5.0, and rcc = 1.58 as
explained in Section 2.1. An initial uniform concentration C0 and
constant Dirichlet boundary CD were implemented. The Dirichlet
boundary condition is realizedwith the effective boundarymethod
demonstrated in [8]. This method also satisfies the no-slip bound-
ary condition [5,27].

The exact solution C(t) to the diffusion equation ∂C
∂t =

1
r

∂
∂r (rD

∂C
∂r ) is given as [28]

C(t) − C0

CD − C0
= 1 −

2
R

∞∑ J0(λnr)
λJ1(λnR)

· exp(−Dλ2t), (20)

Fig. 4. The solid arrows denote dependency within a time step, and the dashed arrows denote dependency across one time step. Async-Memcpys and Kernels are set up
concurrently whenever possible to engage compute and copy engines simultaneously. Non-Blocking MPI eliminates the need for an additional device synchronization. See
file angle_area_volumn_meso.cu, lines 593–704.
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Fig. 6. Time evolution of concentration profiles in an axial symmetric infinitely long
tube. Initially the system has concentration C0 everywhere. The boundary is kept at
C0 + 0.1 for t > 0. Snapshots are taken at t = 1, 5, 15, 30 and 100 to show the
evolution, from the bottom curve to the top.

Fig. 7. RBC elasticity validation. The top curve represents axial diameterDA , and the
bottom curve represents transverse diameter DT . As Fedosov et al. [10] pointed out,
the small discrepancy in transverse diameter between simulation and experiment
is probably due to the optical measurement being performed from only one angle.

where R is the radius, and λn are the positive roots of Bessel
functions of the first kind J0(Rλn) = 0. The simulation result
matches the analytical solution as shown in Fig. 6.

4.3. RBC elasticity

For validation, the RBC implementationwas comparedwith ex-
perimental data [29] fromanRBC stretching experiment via optical
tweezers. The stretching was simulated by applying a constant
force on few particles in opposing ends of an RBC [10]. By varying
the stretching force, the axial diameterDA and transverse diameter
DT adjust according to the membrane elasticity. Excellent match-
ing between the simulation and the experiment was obtained, as
shown in Fig. 7. The result is identical to the one obtained using a
different code by Fedosov et al. [10].

5. Benchmark

5.1. Method

The benchmarks were run on Titan at the Oak Ridge National
Laboratory. Titan is a Cray XK7 system employing 18,688 nodes,
each containing an AMD Opteron 6274 CPU and a NVIDIA Tesla
K20X GPU. Every CPU contains 16 integer cores and 8 floating
point cores clocked at 2.2 GHz. The Kepler architecture GPU has
2688 CUDA cores with a peak double-precision performance of

Fig. 8. Speedup of pure tDPD fluid simulation over the CPU solver. Two different
neighbor list cutoff values, rc = 1.0 and 1.5, as well as two different numbers of
chemical species, Nspec = 1 and 10, were considered. Neighbor lists were updated
every 5 steps.

Table 1
Speedup of RBC suspension simulation over the CPU solver. The particle count in a
domain depends on Hct . For example, Hct 7% for the system volume of 8192 trans-
lates to six RBCs. Combining with 32,768 pure fluid particles, this RBC suspension
system has 35,768 tDPD particles total.

Hct System Solvent RBC Total Particle Speedup
volume particles count count

7% 8,192 32,768 6 35,768 3.8
16,384 65,536 12 71,536 5.1
32,768 131,072 24 143,072 5.4
65,536 262,144 49 286,644 5.7

35% 8,192 32,768 30 47,768 4.5
16,384 65,536 61 96,036 5.3
32,768 131,072 123 192,572 5.9
65,536 262,144 246 385,144 6.7

1.31 TFLOPS. The CPU solver is compiled with GCC, −O3 opti-
mization. The GPU version uses NVIDIA NVCC compiler with −O3
optimization.

Two system setups, i.e. pure tDPD fluid and RBC suspension,
were tested. The pure tDPD fluid system consists of simple tDPD
particles with pair-interaction only, whereas the system of RBC
suspension contains a combination of pure tDPD fluid and coarse-
grained RBCs. For a fair comparison, only the main execution loop
was timed.

5.2. Single node speedup

Pure tDPD fluid
The key performance metric used in this work is speedup,

defined as the ratio of time elapsed between the CPU and GPU
implementations. The benchmark reveals significant speedup up
to 10.3 times over the CPU solver for different parameter values
as shown in Fig. 8. When a large number of species is included, the
performance declines because the computation becomesmemory-
bound. Although Nspec is an impacting factor, the GPU version still
delivers up to 7.2 times speedup even at Nspec = 10. Solutions such
as reduced precision or data compression are viable to alleviate the
bottleneck.

RBC suspension
Systems with two different Hematocrit (Hct), 7% and 35%, were

benchmarked. Each RBC is represented by 500 tDPD particles. The
number of total tDPD particles is the sum of tDPD solvent particles
and RBC particles (Table 1). In this case, only one species was
included. The speedup is comparable to pure tDPD fluid of similar
total particle count.
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Table 2
Speedup of RBC suspension simulation on TITAN X Maxwell and Pascal over the
CPU solver. Under the same simulation domain setup with Hct 35%, the GPUs with
newer architectures outperform the K20X (Kepler) that is currently employed at
Oak Ridge National Laboratory. The larger speedup is contributed by the increased
bandwidth and higher top speed.

System Total particle TITAN X Maxwell TITAN X Pascal
volume count speedup speedup

8,192 47,768 4.8 6.5
16,384 96,036 5.8 9.2
32,768 192,572 7.2 9.9
65,536 385,144 7.2 10.1

We also tested the performance of the code on newer GPU ar-
chitectures, namelyMaxwell and Pascal (Table 2). The workstation
used for benchmark is equipped with two Intel Xeon E5-2630L
CPUs at 2.0 GHz, one GeForce TITAN X Maxwell GPU, and one
GeForce TITAN X Pascal GPU. The speedup is measured as the ratio
between the simulation wall timewith 1 GPU or 8 CPU cores in the
workstation.

5.3. Weak & strong scalings

The same neighbor list update frequency and rc from the single
node benchmarks were used to establish the weak scaling and
strong scaling benchmarks. The metric (million particles) · (steps
per second), orMPS/second, is used for absolute performance char-
acterization and comparison across different systems.

Pure tDPD fluid
Weak and strong scalings were benchmarked on up to 1024

nodes. With 524,288 particles per node, weak scaling demon-
strates nearly linear scaling. Strong scaling with a fixed system
size of 2,097,152 particles is also presented in Fig. 9. Absolute

Fig. 9. Weak scaling and strong scaling of pure tDPD fluid particles in a log–log plot.

performance plateaus around 512 nodes, where the parallel over-
head cancels any extra computational resources. At 1024 nodes,
the parallel overhead and data transfer completely dominate the
computation.

RBC suspension
Strong scaling with a system volume of 2,097,152 is shown in

Fig. 10. It is clearly seen that the non-blocking implementation
of the angle term is more efficient at large node counts. The
slowly diverging absolute performance plots reveal the increasing
penalty caused by blocking MPI communications. Switching to
non-blocking reduces the execution time by approximately 25% in
the case of 1024 nodes. Weak scaling of system volume of 32,768
per node also shows nearly linear scalability. The non-blocking
version clearly delivers a better scalability.

Fig. 10. Log–log plots of (a) strong scaling and (c) weak scaling of the RBC suspension system. The speedup between non-blocking and blocking implementations for (b)
strong and (d) weak scalings. Compared to the blocking versions, the non-blocking counterparts show better scalability at high node counts.
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Fig. 11. An example simulation combining RBC model and tDPD formulation is shown here. The RBC–fluid mixture flows through a microfluidic device from left to right.
The blue intensity field represents concentration gradient qualitatively. The chemical released by RBCs diffuses and dissipates in the fluid. The snapshots were taken at time
0, 200, and 400. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6. Capability demonstration

The role of RBCs inmicrocirculation has been investigated using
microfluidic devices [30–32]. However, certain properties such as
chemical concentrations are difficult to capture experimentally
with high spatial and temporal resolution. The technology pre-
sented in this work can capture the concentration fields of an
arbitrary number of species in one simulation.

To demonstrate versatility of our software, chemical diffusion
from an RBC suspension flowing in a microfluidic device was sim-
ulated. As the chemical diffuses from the RBCs, it reacts with the
solvent and dissipates. In reality, the dissipation can be induced by
a number of causes, such as chemical reaction, disintegration and
evaporation. The blue intensity field shown in Fig. 11 represents
concentration gradient qualitatively. The bluish tone surrounding
RBCs indicates abundant presence of the chemical near the sources.

Among the 720,778 tDPD particles in the simulation, roughly
95% represents the fluid and the solid channel wall at a density
of 4 particles per unit volume. For each RBC, the membrane is
composed of 500 particles connected by a network of springs, and
the cytoplasm is portrayed by 372 particles enclosed by the mem-
brane. The cytoplasm and fluid particles reside in their respective
sides, enforced by a novel boundary resolving technique [33]. This
technique is also applied on the fluid–wall interface to prevent
penetration of fluid particles. The same simulation setup will take
approximately 12 times as long on the CPU, deduced from the
benchmark results.

7. Summary

In this paper, a GPU-accelerated RBC simulation package based
on a tDPD adaptation of our RBC model [10] is presented. Taking
advantage of the ability to model chemical transport in tDPD, RBC
dynamics and the advection–diffusion–reaction processes can be
simulated simultaneously. The effective use of GPUs improves the
code performance dramatically as revealed by the benchmarks
done on Titan at Oak Ridge National Laboratory. With some novel
algorithms in streamlining the RBC computation, our code was
able to produce up to 10.1 times speedup when compared with its
CPU counterpart on a single-node. The weak scaling benchmarks
show almost linear scaling, while further speedup is possible even
beyond 1024 nodes as indicated by strong scaling benchmarks.
Furthermore, we demonstrated the software’s capability by sim-
ulating chemical diffusion in an RBC suspension traversing in-
side a microfluidic device. Incorporating the boundary resolving
technique that deals with arbitrary shapes [33], the software can
easily reconstruct complex experimental apparatuses and perform
realistic RBC simulations.

It should be stressed that the software presented in this study is
highly customizable, as opposed to the fixed-purpose program by
Rossinelli et al. [19]. We encourage researchers to adopt our user-
friendly software in their research. The software is freely available
on Github, following the link https://github.com/AnselGitAccount/
USERMESO-2.0.

Fig. A.1. Schematic representation of 2D layered texture. Each layer holds the
concentration of all particles for a particular species. The particles thenwrap around
to form a 2D array within each layer.
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Appendix A

Another attempt in speeding up the program was to reduce
concentration access-time on the GPU. Layered textures are com-
monly used due to their optimization on accessing data with spa-
tial locality. Because 1D layered texture has a valid extent upper
limit of 16,384 for Maxwell GPU architecture, 2D layered texture
illustrated in Fig. A.1 must be used to hold a reasonable number
of particles. Unexpectedly, the layered texture memory imple-
mentation performs worse than the non-texture version revealed
by benchmarks. NVIDIA GPU profiling pinpoints ‘‘data request’’
as the main stall reason. The much diminished texture hit rate
indicates that the limited texture cache resources are experienc-
ing cache depletion. The data locality in coordinates and velocity
texture cache are strategically optimized for cache hit rate. The
concentration texture data deplete the cache and thus disrupt
the data locality optimization. The overall texture cache hit rate
is therefore reduced significantly, and this translates directly to
worse performance.

Appendix B

Example simulations are included in the program source code
package which can be downloaded from CPC or Github repository.

https://github.com/AnselGitAccount/USERMESO-2.0
https://github.com/AnselGitAccount/USERMESO-2.0
https://github.com/AnselGitAccount/USERMESO-2.0


A.L. Blumers et al. / Computer Physics Communications 217 (2017) 171–179 179

The instruction for compilation and execution is detailed in the
top-level README file. A simple simulation of single RBC can be
found under directory <working_copy>/examples/simple.
Both the flow and transport validations described in Sections 4.1
and 4.2 are also included under directory
<working_copy>/examples/validations, along with the
optical tweezers simulation described in Section 4.3. A single-node
benchmark described in Section 5.2 can be conducted by interested
readers with files under directory
<working_copy>/examples/single_node_benchmark.
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