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We propose and analyse a new finite-element method for convection–diffusion problems based on the
combination of a mixed method for the elliptic and a discontinuous Galerkin (DG) method for the hyper-
bolic part of the problem. The two methods are made compatible via hybridization and the combination
of both is appropriate for the solution of intermediate convection–diffusion problems. By construction,
the discrete solutions obtained for the limiting subproblems coincide with the ones obtained by the mixed
method for the elliptic and the DG method for the limiting hyperbolic problem. We present a new type
of analysis that explicitly takes into account the Lagrange multipliers introduced by hybridization. The
use of adequate energy norms allows us to treat the purely diffusive, the convection-dominated and the
hyperbolic regimes in a unified manner. In numerical tests we illustrate the efficiency of our approach
and make a comparison with results obtained using other methods for convection–diffusion problems.

Keywords: convection–diffusion; upwind; finite-element method; discontinuous Galerkin methods; mixed
methods; hybridization.

1. Introduction

In this paper we consider stationary convection–diffusion problems of the form

div(−ε∇u + βu) = f in Ω,

u = gD on ∂ΩD, −ε
∂u

∂ν
+ βνu = gN on ∂ΩN,

(1.1)

whereΩ is a bounded open domain inRd, for d = 2,3, with boundary∂Ω = ∂ΩD ∪ ∂ΩN consisting
of a Dirichlet and a Neumann part,ε is a non-negative function andβ: Ω → Rd is a d-dimensional
vector field.

Similar problems arise in many applications, for example, in the modelling of contaminant transport,
in electrohydrodynamics or macroscopic models for semiconductor devices. A feature that makes the
numerical solution difficult is that convection often plays the dominant role. In the case of vanishing
diffusion, solutions of (1.1) will, in general, not be smooth, i.e., discontinuities are propagated along the
characteristic directionβ. Nonlinear problems may even lead to discontinuities or blow up in a finite time
when starting from smooth initial data. So appropriate numerical schemes for the convection-dominated
regime have to be able to deal with almost discontinuous solutions in an accurate but stable manner.
Another property that is also desirable to be reflected on the discrete level is the conservation structure
inherent in the divergence form of (1.1).
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1207

Due to the variety of applications, there has been significant interest in the design and analysis of
numerical schemes for convection-dominated problems. Much work has been devoted to devise accurate
and stable finite-difference and finite-volume methods for the solution of hyperbolic systems by means
of appropriate upwind techniques including flux or slope limiters in the nonlinear case.

A different approach to the stable solution of (almost) hyperbolic problems is offered by discontinu-
ous Galerkin (DG) methods, introduced originally for a linear hyperbolic equation in neutron transport
(Reed & Hill, 1973;LeSaint & Raviart, 1974;Johnson & Pitk̈aranta,1986). Starting from the 1970s,
DG methods have been investigated intensively and applied to the solution of various linear and non-
linear hyperbolic and convection-dominated elliptic problems with great success (cf.Bassi & Rebay
(1997a,b),Aizinger et al. (2000) andCockburnet al. (2000) for an overview and further references).
Since in practical applications convection and diffusion phenomena may dominate in different parts
of the computational domain, several attempts have been made to also generalize DG methods to
elliptic problems (Richter,1992;Odenet al.,1998;Houston & S̈uli, 2001), yielding numerical schemes
very similar to interior penalty methods studied much earlier (Nitsche,1971;Babuska & Zĺamal,1973;
Arnold, 1982). For further references on this topic and a unified analysis of several DG methods for
elliptic problems we refer toArnold et al. (2002). For DG methods applied to convection–diffusion
problems we refer toCockburn(1988),Baumann & Oden(1999),Castilloet al. (2002) andBuffa et al.
(2006) for a multiscale version. Two disadvantages of DG methods applied to problems with diffusion
are that, compared to a standard conforming discretization, the overall number of unknowns is increased
substantially and that the resulting linear systems are much less sparse.

Another very successful approach for the solution of convection-dominated problems is the stream-
line diffusion method (Hughes & Brooks, 1979;Johnson & Saranen, 1986), where standard conform-
ing finite-element discretizations are stabilized by adding in a conforming way an appropriate amount
of artificial diffusion in the streamline direction. This method is easy to implement and yields stable
discretizations in many situations, but may lead to unphysically large layers near discontinuities and
boundaries. For a comparison of high-order DG and streamline diffusion methods we refer toHouston
et al. (2000). For an appropriate treatment of boundary layers via Nitsche’s method seeFreund & Sten-
berg(1995). In contrast to DG methods, the streamline diffusion method does not yield conservative
discretizations.

Here we follow a different approach, namely, the combination of upwind techniques used in DG
methods for hyperbolic problems with conservative discretizations of mixed methods for elliptic prob-
lems. Other extensions of mixed finite-element methods to convection–diffusion problems were consid-
ered inChenet al. (1995) andDawson & Aizinger(1999).

In order to make the two different methods compatible we will utilize hybrid formulations for the
mixed and the DG methods. It is well known (Arnold & Brezzi, 1985;Brezzi & Fortin,1991;Cockburn
et al., 2009) that hybridization can be used for the efficient implementation of mixed finite elements
for elliptic problems. Also introducing the Lagrange multipliers in the DG methods allows us to couple
both methods naturally and yields a stable mixed hybrid DG method with the following properties.

• Forβ ≡ 0 the numerical solution coincides with that of a mixed method (cf.Arnold & Brezzi, 1985;
Brezzi & Fortin,1991), and postprocessing techniques can be used to increase the accuracy of the
solution.

• For ε ≡ 0 the solution coincides with that obtained by a DG method for hyperbolic problems
(LeSaint & Raviart, 1974;Johnson & Pitk̈aranta,1986).

• The intermediate convection–diffusion regime is treated automatically with no need to choose stabi-
lization parameters.
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1208 H. EGGER AND J. SCḦOBERL

For diffusion-dominated regions the stabilization can be omitted, yielding a scheme that was studied
numerically in one dimension inFarhoul & Mounim(2005). Our analysis in Section4.2 also includes
this case.

A particular advantage of our method is that it is formulated and can be implemented element-wise,
i.e., it allows for static condensation: local degrees of freedom (dofs) can be eliminated on the element
level (seeBrezzi & Fortin, 1991, Section V.1 or Section5 for details), yielding global systems for the
dofs on the mesh skeleton only. In this way, we can obtain global systems with less unknowns and
sparser stencils than that of other DG methods, at the price of a somewhat more demanding assembling
process. Further remarks and a comparison with the interior penalty are given in Section5.2.

The relaxation of the coupling terms of DG methods has also been investigated recently by other
authors. InBuffa et al. (2006) a method was proposed that, after the elimination of local dofs, yields
a global system corresponding to that of a continuous Galerkin method (see alsoBrix et al. (2008) for
similar ideas used for the construction of multilevel preconditioners). A further comparison with this
method is given in Section5.2. The hybridization of several DG methods has already been proposed in
Cockburnet al. (2009), but without convergence analysis.

The outline of this article is as follows. In Section2 we review the hybrid formulation of the mixed
method for the Poisson equation and then introduce a hybrid version of the DG method for the hy-
perbolic subproblem. The scheme for the intermediate convection–diffusion regime then results from
a combination of the two methods for the limiting subproblems, and we show consistency and conser-
vation of all three methods under consideration. Section3 presents the main stability and boundedness
estimates for the corresponding bilinear forms and contains ana priori error analysis in the energy norm
with emphasis on the convection-dominated regime. Details on superconvergence results and postpro-
cessing for the diffusion-dominated case are presented in Section4. Results of numerical tests, including
a comparsion with the streamline diffusion method, are presented in Section5.

2. Hybrid mixed DG methods for convection–diffusion problems

The aim of this section is to formulate the problem under consideration in detail and to fix the relevant
notation and some basic assumptions. By introducing thediffusive fluxσ = −ε∇u as a new variable,
we rewrite (1.1) in mixed form as follows:

σ + ε∇u = 0, div(σ + βu) = f in Ω

u = gD on ∂ΩD, −ε ∂u
∂ν + βνu = gN on ∂ΩN, (2.1)

which will be the starting point for our considerations. Here and belowν denotes the outward unit
normal vector on the boundary of some domain. We refer toβu as theconvective fluxand callσ + βu
thetotal flux. The existence and uniqueness of a solution to (2.1) follow under standard assumptions on
the coefficients. For ease of presentation, let us make some simplifying assumptions.

2.1 Basic assumptions and notation

We assume thatΩ is a polyhedral domain and that∂ΩD = ∂Ω, i.e., ∂ΩN = ∅. Let Th be a shape
regular partition ofΩ into simplicesT and letEh denotethe set of facetsE. By the termfacetswe
denote interfaces between elements or to the boundary, i.e., faces or edges in three or two dimensions,
respectively. We assume that each elementT and facetE are generated by an affine mapΦT or ΦE
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1209

from a corresponding reference elementT̂ or Ê, respectively. With∂Th we denote the set of all ele-
ment boundaries∂T (with outward normalν). Finally, byχS we denote the characteristic function of a
setS ⊂ Ω.

Regarding the coefficients, we assume for simplicity thatgD = 0 and thatε > 0 is constant on
elementsT ∈ Th. Furthermore, the vector fieldβ is assumed to be piecewise constant with continuous
normal components across element interfaces, which implies that divβ = 0. Moreover, such a vector
field β induces a natural splitting of element boundaries into inflow and outflow parts, i.e., we define the
outflow boundary∂Tout := {x ∈ ∂T : βν > 0} and∂T in = T \ ∂Tout. The unions of the element inflow
and outflow boundaries will be denoted by∂T in

h and∂T out
h , respectively, and, similarly, the symbols

∂Ω in and∂Ωout areused for the inflow and outflow regions, respectively of the boundary∂Ω.
For our analysis we will utilize the broken Sobolev spaces

Hs(Th) := {u: u ∈ Hs(T), ∀ T ∈ Th}, s> 0,

andfor functionsu ∈ Hs+1(Th) we define∇u ∈ [Hs(Th)]d to be the piecewise gradient. In a natural
manner, we define the inner products

(u, v)T :=
∫

T
uv dx and (u, v)Th :=

∑

T∈Th

(u, v)T ,

with the obvious modifications for vector-valued functions. The norm induced by the volume inte-
grals(∙, ∙)Th is denoted by‖u‖Th :=

√
(u, u)Th , and for piecewise constantα we defineα(u, v)Th :=

∑
T (αu, v)T andα‖u‖Th :=

√
α2(u, u)Th . Norms and seminorms on the broken Sobolev spacesHs(Th)

will be denoted by‖ ∙ ‖s,Th and| ∙ |s,Th .
For the element interfaces we consider the function spaces

L2(Eh) := {μ: μ ∈ L2(E), ∀ E ∈ Eh}

and

L2(∂Th) := {v: v ∈ L2(∂T), ∀ T ∈ Th}.

Notethat functions inL2(∂Th) aredouble valued on element interfaces and may be considered as traces
of element-wise defined functions. Moreover, we can identifyμ ∈ L2(Eh) with a functionv ∈ L2(∂Th)
by duplicating the values at element interfaces, and so in this senseL2(Eh) ⊂ L2(∂Th). For u, v ∈
L2(∂Th) wedenote integrals over element interfaces by

〈λ,μ〉∂T :=
∫

∂T
λμ ds and 〈λ,μ〉∂Th :=

∑

T

〈λ,μ〉∂T ,

andthe corresponding norms are denoted by|u|∂Th :=
√

〈u, u〉∂Th . Again, we writeα〈u, v〉∂Th with the
meaning

∑
∂T 〈αu, v〉∂T .

Let us now turn to the formulation of appropriate finite-element spaces. We start from piecewise
polynomials on the reference elements and define the finite-element spaces via appropriate mappings
(cf. Brenner & Scott, 2002). ByPk(T̂) andPk(Ê) we denote the sets of all polynomials of order at
mostk on the reference elements, and byRTk(T̂) := Pk(T̂)⊕ Ex ∙Pk(T̂) wedenote the Raviart–Thomas
(–Nedelec) element (cf.Raviart & Thomas,1977; Nedelec,1980; Brezzi & Fortin, 1991). Here the
symbol⊕ is used to denote the union of two vector spaces. For our finite-element methods we will
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1210 H. EGGER AND J. SCḦOBERL

utilize the following function spaces:

Σh :=
{
τh ∈ [L2(Ω)]d: τh|T =

1

detΦ′
T

Φ ′
T τ̂ ◦ Φ−1

T , τ̂ ∈ RTk(T̂)

}
,

Vh := {vh ∈ L2(Ω): vh|T = v̂ ◦ Φ−1
T , v̂ ∈ Pk(T̂)},

Mh := {μh ∈ L2(Eh): μ|E = μ̂ ◦ Φ−1
E , μ = 0 on∂Ω, μ̂ ∈ Pk(Ê)}.

For convenience, we will sometimes use the notationWh := Σh ×Vh ×Mh. Since we assumed that our
elementsT are generated by affine mapsΦT , the finite-element spaces could be defined equivalently
as the appropriate polynomial spaces on the mapped triangles (cf.Brezzi & Fortin,1991). This would,
however, complicate a generalization to nonaffine elements.

Let us now turn to the formulation of the finite-element methods. We will start by recalling the hybrid
mixed formulation for the elliptic subproblem (β ≡ 0) and then introduce a hybrid version for the DG
method for the hyperbolic subproblem (ε≡ 0). The scheme for the intermediate convection–diffusion
problem then results by simply adding up the bilinear and linear forms of the limiting subproblems.

2.2 Diffusion

Forβ ≡ 0 equation (2.1) reduces to the mixed form of the Dirichlet problem

σ = −ε∇u, divσ = f in Ω, u = 0 on∂Ω, (2.2)

and the corresponding (dual) mixed variational problem reads

1

ε
(σ, τ )Th − (u, divτ)Th = 0 ∀ τ ∈ H(div,Ω),

(divσ, v)Th = ( f, v)Th ∀ v ∈ L2(Ω).

While a conforming discretization of (2.2) allows us to also easily obtain conservation on the discrete
level, it also has some disadvantages: the resulting linear system is a saddle-point problem and involves
considerably more dofs than a standard (primal)H1-conformingdiscretization of (2.2). Both difficulties
can be overcome by hybridization (cf.Arnold & Brezzi, 1985;Brezzi & Fortin,1991;Cockburnet al.,
2009). Let us briefly sketch the main ideas: instead of requiring the discrete fluxes to be inH(div,Ω),
one can use completely discontinuous piecewise polynomial ansatz functions and ensure the continu-
ity of the normal fluxes over element interfaces by adding appropriate constraints. The corresponding
discretized variational problem reads

1

ε
(σh, τh)Th − (uh, divτh)Th + 〈λh, τhν〉∂Th = 0 ∀ τh ∈ Σh,

(divσh, vh)Th = ( f, v)Th ∀ vh ∈ Vh,

〈σhν, μh〉∂Th = 0 ∀ μh ∈Mh.

Note that the choice of finite-element spaces allows us to eliminate the dual and primal variables on
the element level, yielding a global (positive definite) system for the Lagrange multipliers only. The
global system has an optimal sparsity pattern and information on the Lagrange multipliers can be used
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1211

further to obtain better reconstructions by local postprocessing. We refer toArnold & Brezzi (1985),
Brezzi & Fortin (1991) andStenberg(1991) for further discussion of these issues and come back to
postprocessing later in Section4.

After integration by parts, we arrive at the following hybrid mixed finite-element method.

METHOD 2.1 (Diffusion) Find(σh, uh, λh) ∈ Σh × Vh ×Mh suchthat

BD(σh, uh, λh; τh, vh, μh) = FD(τh, vh, μh) (2.3)

for all τh ∈ Σh, vh ∈ Vh andμh ∈Mh, whereBD andFD aredefined by

BD(σh, uh, λh; τh, vh, μh)

:=
1

ε
(σh, τh)Th + (∇uh, τh)Th + 〈λh − uh, τhν〉∂Th + (σh, ∇vh)Th + 〈σhν, μh − vh〉∂Th (2.4)

and

FD(τh, vh, μh) := −( f, vh)Th . (2.5)

We only mention that the caseε = 0 on some elementsT can be allowed in principle. For these
elements the term1

ε (σh, τh)T just has to be interpreted asσh|T ≡ 0.

REMARK 2.2 Let Σ := [H1(Th)]d, V := H1(Th) andM := {μ ∈ L2(Eh): μ = 0 on ∂Ω}, and let
W := Σ × V ×M denote the continuous analogue toWh. The above bilinear form is then defined
for all (σ, u, λ; τh, vh, μh) ∈ W ⊕Wh ×Wh. This property will be used below to show consistency
of the method and to obtain Galerkin orthogonality. Using appropriate lifting operatorsL: L2(Th) →
Σh, the terms involving integrals over the boundary can be replaced by volume integrals, for example,
〈λh − uh, τhν〉∂Th = (L(λh − uh), τh)Th , and in this way Method2.1 can be well defined on(Wh ⊕
W) × (Wh ⊕W). Suchextensionsare used, for example, inPerugia & Scḧotzau(2002) andHoustonet
al. (2007) for thehp-error analysis of DG methods under minimal regularity assumptions.

Method2.1is algebraically equivalent to the conformingRTk ×Pk discretizationof the dual mixed
formulation of (2.2) and can be seen as a pure implementation trick. Below we will analyse Method
2.1 in a somewhat nonstandard way, including the gradient of the primal variable and the Lagrange
multipliers explicitly in the energy norm. This kind of analysis is quite close to that of DG methods for
elliptic problems and allows us to investigate the mixed method together with the DG method for the
hyperbolic subproblem in a uniform framework.

2.3 Convection

By settingε ≡ 0 in (2.1), we arrive at the limiting hyperbolic problem

div(βu) = f in Ω, u = 0 on∂Ω in. (2.6)

Multiplying (2.6) by a test functionv ∈ H1(Th), and adding upwind stabilization, we obtain the DG
method for hyperbolic problems (Reed & Hill, 1973;LeSaint & Raviart, 1974;Johnson & Pitk̈aranta,
1986)

(div(βu), v)Th + 〈βν(u+ − u), v〉∂T in
h

= ( f, v)Th,
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1212 H. EGGER AND J. SCḦOBERL

whereu+ := u|∂T+ denotesthe upwind value andT+ is the upwind element, i.e., the element attached
to E whereβν = β ∙ νT > 0. To incorporate the boundary condition we defineu+ = 0 on ∂Ω in. After
integration by parts and noting thatu = u+ on ∂Tout, we obtain that

(u, β∇v)Th − 〈βνu+, v〉∂T in
h

− 〈βνu, v〉∂T out
h

= −( f, v)Th .

In order to make the DG method compatible with the hybrid mixed method formulated in the Section2.2
let us introduce the upwind value as a new variableλ := u+, and let us define the symbol

{λ/u} :=

{
λ, E ⊂ ∂T in,

u, E ⊂ ∂Tout,

for all T ∈ Th. Note thatλ = {λ/u} = u+ onboth sides ofE, and so{λ/u} is just a new characterization
of the upwind value. After discretization, we now arrive at the following hybrid version of the DG
method.

METHOD 2.3 (Convection) Find(uh, λh) ∈ Vh ×Mh suchthat

BC(uh, λh; vh, μh) = FC(vh, μh) (2.7)

for all (vh, μh) ∈ Vh ×Mh with

BC(uh, λh; vh, μh) := (uh, β∇vh)Th + 〈βν{λh/uh}, μh − vh〉∂Th (2.8)

and

FC(vh, μh) := −( f, v)Th . (2.9)

By construction, Method2.3 is algebraically equivalent to the classical DG method. This can easily
be seen by testing withμh = χE, which yields thatλh = uh

+ on the element interfaces. All terms
of the bilinear form are again defined element-wise, which allows us to use static condensation on the
element level. Moreover, as in the case of pure diffusion, the bilinear formBC canbe extended onto
W ⊕Wh ×Wh, which then allows us to derive consistency and use Galerkin orthogonality arguments.
On facetsE whereβν = 0, the Lagrange multiplier is not uniquely defined, and we setλ = 0 there.

2.4 Convection–diffusion regime

Let us now return to the original convection–diffusion problem and consider the system

σ + ε∇u = 0, div(σ + βu) = f in Ω, u = 0 on∂Ω. (2.10)

Since we used the same spaces for the discretization of the elliptic and hyperbolic subproblems, the two
hybrid methods can be coupled in a very natural way by simply adding up their bilinear and linear forms.
This yields the following hybrid mixed DG method for the intermediate convection–diffusion regime.

METHOD 2.4 (Convection–diffusion) Find(σh, uh, λh) ∈ (Σh,Vh,Mh) suchthat

B(σh, uh, λh; τh, vh, μh) = F(σh, uh, λh) (2.11)
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1213

for all τh ∈ Σh, vh ∈ Vh andμh ∈Mh, whereB andF are defined by

B(σh, uh, λh; τh, vh, μh) :=
1

ε
(σh, τh)Th + (∇uh, τh)Th + 〈λh − uh, τhν〉∂Th

+ (σh + βuh, ∇vh)Th + 〈σhν + βν{λh/uh}, μh − vh〉∂Th (2.12)

and

F(τh, vh) := −( f, vh)Th . (2.13)

By testing withμh = χE for E ∈ Eh, we obtain thatσhνE + βνE{λh/uh} is continuous across
element interfaces. HereνE denotesthe unit normal vector onE with fixed orientation. Thusλh and
σhνE + βνE{λh/uh} have unique values on the element interfaces and can be considered as discrete
traces foru and the total fluxσ + βu.

2.5 Consistency and conservation

Before we turn to a detailed analysis of the finite-element Methods2.1,2.3 and2.4, let us summarize
two important properties that follow almost directly from the corresponding properties of the mixed and
the DG methods for limiting subproblems. For the sake of completeness, we sketch the proofs in the
present framework.

PROPOSITION 2.5 (Consistency) Methods2.1, 2.3 and 2.4 are consistent. That is, letu denote the
solution of the problems (2.2), (2.6) and (2.10), respectively, and defineσ = −ε∇u andλ = u. Then
the corresponding variational equations (2.3), (2.7) and (2.11) hold ifσh, uh andλh arereplaced byσ ,
u andλ.

Proof. We first consider Method2.1. Letu denote the solution of (2.2) and make the substitutions as
mentioned in the proposition. Then we obtain by testing the bilinear formBD with (τh, 0,0) that

BD(−ε∇u, u, u; τh, 0,0)

= −(∇u, τh)Th + (∇u, τh)Th − 〈u − u, τhν〉∂Th\∂Ω − 〈u, τhν〉∂Ω

= −〈u, τhν〉∂Ω = 0.

Next we test with(0, vh, 0) andintegrate by parts to recover

BD(−ε∇u, u, u; 0,vh, 0) = −(div(−ε∇u), vh)Th = −( f, vh)Th,

which follows sinceu is the solution of (2.2). Finally, testing with(0,0, μh) weobtain that

BD(−ε∇u, u, u; 0,0,μh) =
〈
−ε

∂u

∂n
, μh

〉

∂Th

= 0,

whichholds since div(ε∇u) = f ∈ L2 impliesthatε∇u ∈ H(div; Ω) and thus the normal flux−ε ∂u
∂n is

continuousacross element interfaces. Note that, at this point, we formally require some extra regularity,
for example,u ∈ H1(Ω) ∩ H3/2+ε(Th) or σ = −ε∇u ∈ Ls(Ω) for somes > 2, in order to ensure
that the moments

〈
ε ∂u

∂n , μh
〉

are well defined forμh ∈ Mh (cf. Brezzi & Fortin, 1991). As already
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1214 H. EGGER AND J. SCḦOBERL

mentionedin Remark2.2, this extra regularity assumption can be dropped by appropriately extending
BD. In summary, we have shown that Method2.1 is consistent.

Next consider Method2.3 and letu denote the solution of (2.6). Substitutingu for uh andλh in
(2.7)–(2.9)and testing with(vh, 0), we obtain after integration by parts that

BC(u, u; vh, 0) = (div(βu), vh)Th − 〈βνu, vh〉∂Ω in = −( f, vh)Th .

Now test with(0, μh). Then we have

BC(u, u; 0,μh) = 〈βνu, μh〉∂Th = 0

sinceu andμh aresingle valued andβν appears two times with different signs for each element inter-
face. Thus we have proven consistency of Method2.3.

Finally, Method2.4 is consistent as it is the sum of two consistent methods. �
While consistency is a key ingredient for the derivation ofa priori error estimates, conservation is a

property of the discrete methods that is desired for physical reasons since it inhibits unphysical increase
of mass or total charge. This is particularly important for time-dependent problems. If a finite-element
scheme allows us to test with piecewise-constant functions, then conservation can be shown to hold
locally (for each element) as well as globally as long as the discrete fluxes are single valued on element
interfaces.

PROPOSITION2.6 (Conservation) Methods2.1,2.3and2.4are locally and globally conservative.

Proof. Let us first show the local conservation of Method2.1by testing (2.3) with(0, χT , 0). This yields

−( f, 1)T = BD(uh, λh, σh; 0,χT , 0) = −〈σhν, 1〉∂T ,

thatis, the total flux over an element boundary equals the sum of internal sources, and hence the method
is locally conservative. By testing with(0,0, χE) for someE ∈ Eh, we obtain continuity of the normal
fluxesσhν acrosselement interfaces, and so the scheme is also globally conservative. Now consider
Method2.3. Testing with(χT , 0), we get

( f, 1)T = BC(uh, λh; χT , 0) = 〈βνλh, 1〉∂T in + 〈βνuh, 1〉∂Tout,

andso the total flux over the element boundaries equals the sum of internal sources and fluxes over
the boundary of the domain. Note thatβν{λh/uh} definesa unique flux on element interfaces. Now let
E ∈ Eh suchthat E = ∂Tout

1 ∩ ∂T in
2 . By testing with(0, χE), we obtain that

0 = BC(uh, λh; 0,χE) = 〈βν{λh/uh}, 1〉∂Tout
1

+ 〈βν{λh/uh}, 1〉∂T in
2

= 〈βνuh, 1〉∂Tout
1

+ 〈βνλh, 1〉∂T in
2
,

andso the total outflow over a facet on one element balances the inflow over the same facet on the
neighbouring element.

Finally, Method2.4 is conservative as it is the sum of two conservative methods. �

3. A priori error analysis

As already mentioned previously, our analysis of the hybrid methods under consideration is inspired
by that of DG methods (Johnson & Pitk̈aranta,1986;Arnold et al.,2002). In particular, we will utilize
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1215

similar mesh-dependent energy norms for proving the stability and boundedness of the bilinear and
linear forms. We will show the stability of Method2.1 in the norm

‖|(τ, v, μ)|‖D :=
(

1

ε
‖τ‖2
Th

+ ε‖∇v‖2
Th

+
ε

h
|λ − u|2∂Th

)1/2

, (3.1)

andthe stability of Method2.3will be analysed with respect to the norm

‖|(u, λ)|‖C :=
(

h

|β|
‖β∇u‖2

Th
+ |βν||λ − u|2∂Th

)1/2

. (3.2)

Hereby |β| and|βν| we understand appropriate bounds forβ andβν, respectively, on single elements or
facets. Note that, forε ∼ hβ (the crossover from the diffusion-dominated to the convection-dominated
regime), all terms in (3.1) and (3.2) scale uniformly with respect toε, β andh. For proving the bound-
edness of the bilinear forms we require the following slightly different norms:

‖|(τ, v, μ)|‖D,∗ :=
(

‖|(τ, v, μ)|‖2
D +

h

ε
|τν|2∂Th

)1/2

(3.3)

and

‖|(u, λ)|‖C,∗ :=
(

|β|

h
‖u‖2
Th

+ |βν||{λ/u}|2∂Th

)1/2

. (3.4)

Thesenorms scale again in the same manner with respect toh, ε andβ as their counterparts (3.1) and
(3.2), and therefore it can be shown easily that the additional terms do not disturb the approximation.

3.1 Pure diffusion—Method2.1

Below we will require the following preparatory result.

LEMMA 3.1 Let vh ∈ Vh andμh ∈Mh begiven. Then there exists a unique solutionτ̃ ∈ Σh defined
element-wiseby the variational problems

(τ̃ , p)T = (∇vh, p)T ∀ p ∈ [Pk−1(T)]d,

〈τ̃ ν, q〉∂T = 〈μh, q〉∂T ∀ q ∈ Pk(∂T).

Moreover, there exists a constantcI only depending on the shape of the elements such that

‖τ̃‖Th 6 cI

(
‖∇vh‖2

Th
+ h|μh|2∂Th

)1/2
(3.5)

holds.

Proof. The existence of a unique solutionτ̃ follows with standard arguments, and the norm estimate
then follows by the usual scaling argument and the equivalence of norms on finite-dimensional spaces
(cf. Brezzi & Fortin(1991) for details). �

Since the estimate (3.5) uses an inverse inequality, the constantcI dependson the shapes of the
elements. Lemma3.1 now allows us to construct a suitable test function for establishing the following
stability estimate.
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1216 H. EGGER AND J. SCḦOBERL

PROPOSITION3.2 (Stability) There exists a positive constantcD thatis independent of the mesh sizeh
such that the estimate

sup
(τh,vh,μh)

BD(σh, uh, λh; τh, vh, μh)

‖|(τh, vh, μh)|‖D
> cD‖|(σh, uh, λh)|‖D (3.6)

holdsfor all (σh, uh, λh) ∈ Σh × Vh ×Mh.

Proof. Let us start with testing the bilinear form (2.4) with(σh, −uh, −λh), which yields

BD(σh, uh, λh; σh, −vh, −μh) =
1

ε
‖σh‖2

Th
.

Now let τ̃ be defined as in Lemma3.1with μh replacedby ε
h (λh − uh) and∇vh replacedby ε∇uh, so

that

‖τ̃‖Th 6 cI

(
ε2

h
|λh − uh|2∂Th

+ ε2‖∇uh‖
2
Th

)1/2

(3.7)

holdswith a constantcI thatis independent of the mesh sizeh. Forγ > 0 we then obtain

BD(σh, uh, λh; γ τ̃ , 0,0)

= γ
1

ε
(σh, τ̃ )Th + γ (∇uh, τ̃ )Th + γ 〈λh − uh, τ̃ 〉∂Th

> −
1

2ε
‖σh‖2

Th
−

γ 2

2ε
‖τ̃‖2
Th

+ γ
(
ε‖∇uh‖2

Th
+

ε

h
|λh − uh|2∂Th

)

> −
1

2ε
‖σh‖2

Th
+

(

γ −
cI γ

2

2

)
(
ε‖∇uh‖2

Th
+

ε

h
|λh − uh|2∂Th

)
,

wherewe have used (3.7) for the last estimate. The assertion of the proposition now follows by choosing
γ = 1/cI andcombining the estimates for the two choices of test functions. �

REMARK 3.3 The constantcD in (3.6) depends on the constantcI of (3.5) and thus on an inverse
inequality. To make the dependence on the polynomial degreek explicit let us slightly change the def-
inition of τ̃ by requiring thatτ̃ ν = h−1k2(λh − uh) anddefine the energy norm by‖|σh, uh, λh|‖2

D :=
‖σh‖2

Th
+ ‖∇uh‖2

Th
+ h−1k2|λh − uh|2∂Th

. Then one can show that the ellipticity estimate holds with

cD = c̃Dk−s for s > 1/2andc̃D is independent ofk. Therefore we will observe suboptimality of the error
estimates with respect to the polynomial degreek. Note that the scaling of the jump terms|λh − uh|∂Th

is the same as the one used in thehp-error analysis of DG methods (cf.Perugia & Scḧotzau,2002;
Houstonet al.,2007).

After using Galerkin orthogonality in the analysis below, we will need the boundedness ofBD on
thelarger spaceW ⊕Wh ×Wh.

PROPOSITION 3.4 (Boundedness) There exists a constantCD that is independent ofh such that the
estimate

|BD(σ, u, λ; τh, vh, μh)| 6 CD‖|(σ, u, λ)|‖D,∗‖|(τh, vh, μh)|‖D (3.8)

holdsfor all (σ, u, λ) ∈W ⊕Wh and(τh, vh, μh) ∈Wh.
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1217

Proof. We only consider the term〈λ − u, τhν〉∂Th in detail. Using the Cauchy–Schwarz and a discrete
trace inequality|τhν|∂T 6 c√

h
‖τh‖T , we obtain|〈λ−u, τhν〉∂T | 6 c√

h
|λ−u|∂Th‖τh‖T . The result then

follows by standard estimates for the remaining terms and summing up over all elements. �
The above discrete trace inequality cannot be used for the term involvingσν sinceσ ∈ W ⊗Wh.

Thereforean additional term appears in the norm‖| ∙ |‖D,∗.

3.2 Pure convection—Method2.3

Since Method2.3is equivalent to the DG method for hyperbolic problems, our analysis is carried out in
a similar manner to that presented inJohnson & Pitk̈aranta(1986).

PROPOSITION3.5(Stability) There exists a constantcC thatis independent of the mesh sizeh such that
the estimate

sup
(vh,μh)

BC(uh, λh; vh, μh)

‖|(vh, μh)|‖C
> cC‖|(uh, λh)|‖C (3.9)

holdsfor all (uh, λh) ∈ Vh ×Mh.

Proof. We start by choosing test functionsvh = −uh and μh = −λh. Since divβ = 0, we have
(uh, β∇uh)T = 1

2〈βνuh, uh〉∂T oneach element, and thus

BC(uh, λh;−uh, −λh)

= −
1

2
〈βνuh, uh〉∂Th + 〈βν{λh/uh}, uh〉∂Th − 〈βν{λh/uh}, λh〉∂Th

= (1) + (2) + (3) = (∗).

Recallthatλh equals0 on∂Ω, and let us rearrange the terms (1)–(3) in the following way:

(1) = −
1

2
〈βνuh, uh〉∂Th =

1

2
|βν||uh|

2
∂T in

h
−

1

2
|βν||uh|2

∂T out
h

,

(2) = 〈βν{λh/uh}, uh〉∂Th = |βν||uh|2
∂T out

h
− |βν|〈λh, uh〉∂T in

h
,

(3) = −〈βν{λh/uh}, λh〉∂Th = |βν||λh|2
∂T in

h
− |βν|〈λh, uh〉∂T out

h
.

Now let T1 andT2 denotetwo elements sharing the facetE = ∂Tout
1 ∩ ∂T in

2 . Sinceλh is single valued
on E by definition, we haveλh|∂Tout

1
= λh|∂T in

2
, which means that we can shift the terms only involving

the Lagrange multiplier between neighbouring elements. Summing up, we obtain that

(∗) =
1

2
|βν||λh − uh|2∂Th

.

Let us now include a second term in the stability estimate by testing the bilinear form withvh =
−γ h

|β|β∇uh for someγ > 0, which yields
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1218 H. EGGER AND J. SCḦOBERL

BC(uh, λh; vh, 0) = −
γ h

|β|
(uh, β∇(β∇uh))Th +

γ h

|β|
〈βν{λh/uh}, β∇uh〉∂Th

=
γ h

|β|
‖β∇uh‖2

Th
+

γ h

|β|
〈βν(λh − uh), β∇uh〉∂T in

h

> cγ

(
h

|β|
‖β∇uh‖

2
Th

− |βν||λh − uh|2∂Th

)
.

For the last estimate we used Young’s inequality and a discrete trace inequality. The result now follows
by choosingγ = 1

4c andcombining the estimates for the two different test functions. Note that, by
inverse inequalities and due to our scaling ofvh with h/|β|, it follows that‖|(vh, 0)|‖C 6 C‖|(uh, 0)|‖C
with a constantC that is independent of the mesh size. �

PROPOSITION 3.6 (Boundedness) There exists a constantCC that is independent ofh such that the
estimate

|BC(u, λ; vh, μh)| 6 CC‖|(u, λ)|‖C,∗‖|(vh, μh)|‖C (3.10)

holdsfor all u ∈ V ⊕ Vh, λ ∈M⊕Mh and(vh, μh) ∈ Vh ×Mh.

Proof. The assertion follows directly from the definition of the norms and the Cauchy–Schwarz
inequality. �

3.3 Convection–diffusion—Method2.4

Due to the structure of Method2.4as the combination of Methods2.1and2.3, the stability and bounded-
ness of the bilinear form (2.12) follow almost directly from the corresponding properties of the bilinear
forms for the limiting subproblems. The appropriate norms for the analysis of Method2.4are given by

‖|(σh, uh, λh)|‖ = (‖|(σh, uh, λh)|‖2
D + ‖|(uh, λh)|‖2

C)1/2 (3.11)

and

‖|(σ, u, λ)|‖∗ = (‖|(σ, u, λ)|‖2
D,∗ + ‖|(u, λ)|‖2

C,∗)
1/2, (3.12)

i.e., they are just assembled from the norms used for the analysis of the elliptic and hyperbolic subprob-
lems. Note that all terms in the norm scale appropriately. For example, in the diffusion-dominated case
(|β|h 6 ε) the terms coming from the convective part can be absorbed by the terms stemming from the
stability of the diffusion part. Let us now state the properties ofB in detail.

PROPOSITION3.7(Stability) There exists a positive constantcB notdepending on the mesh sizeh such
that

sup
(τh,vh,μh)

B(σh, uh, λh; τh, vh, μh)

‖|(τh, vh, μh)|‖
> cB‖|(σh, uh, λh)|‖ (3.13)

holds for all(σh, uh, λh) ∈ Σh × Vh ×Mh.

Proof. We will show the inf–sup stability by testing with the functions used in the previous stability
estimates, i.e.,τh = σh + ατ̃ , vh = −uh + γ h

|β|β∇uh andμh = −λh. In view of Propositions3.2and
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1219

3.5,it only remains to estimate the additional term coming from the test functionγ h
|β|β∇uh insertedin

the diffusion bilinear form, namely,

BD0

(
σh, uh, λh; 0,γ

h

|β|
β∇uh, 0

)
= −γ

h

|β|
(σh, ∇(β∇uh)) + γ

h

|β|
〈σhν, β∇uh〉

= γ
h

|β|
(divσh, β∇uh) > −γ

h

|β|
‖divσh‖‖β∇uh‖

> −cγ

(
1

ε
‖σh‖2 + ε‖∇uh‖

2
)
> −cγ ‖|(σh, uh, λh)|‖

2
D.

This term can be absorbed by the stability estimate for the diffusion problem as long asγ is chosen to
be sufficiently small. Note thatγ does not depend onh, ε or β, i.e., the stability constantcB doesnot
depend on these parameters. �

The boundedness of the bilinear form follows directly by combining the two results for the limiting
subproblems.

COROLLARY 3.8(Boundedness) There exists a constantCB thatis independent of the mesh sizeh such
that

|B(σ, u, λ; τh, vh, μh)| 6 CB‖|(σ, u, λ)|‖∗‖|(τh, vh, μh)|‖ (3.14)

holds for all(σ, u, λ) ∈W ⊕Wh and(τh, vh, μh) ∈Wh.

Asa last ingredient for deriving thea priori error estimates, we have to establish some approximation
properties of our finite-dimensional spaces with respect to the norms under consideration.

3.4 Interpolation operators and approximation properties

Let us start by introducing appropriate interpolation operators and then recall some basic interpolation
error estimates. ForT ∈ Th, E ∈ Eh andfunctionsu ∈ L2(T) andλ ∈ L2(E) we define the localL2-
projectionsΠT

k u andΠ E
k λ by

(u − ΠT
k u, vh)T = 0 ∀ vh ∈ Pk(T)

and

(λ − Π E
k λ,μh)E = 0 ∀ μh ∈ Pk(E),

respectively. These interpolation operators satisfy the following error estimates (cf.Brenner & Scott,
2002).

LEMMA 3.9 Let ΠT
k andΠ E

k bedefined as above. Then the estimates

‖u − ΠT
k u‖T 6 Chs|u|s,T , 06 s6 k + 1,

‖∇(u − ΠT
k u)‖T 6 Chs|u|s+1,T , 06 s6 k,

‖u − ΠT
k u‖∂T + ‖u − Π E

k u‖∂T 6 Chs+1/2|u|s+1,T , 06 s6 k,

holdwith a constantC that is independent ofh.
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1220 H. EGGER AND J. SCḦOBERL

Thecorresponding interpolation operators for functions onTh andEh aredefined element-wise and
are denoted by the same symbols.

For the flux functionσ we utilize the Raviart–Thomas interpolant defined by

(σ − ΠRT
k σ, ph)T = 0 ∀ ph ∈ [Pk−1(T)]d,

((σ − ΠRT
k σ)ν, μh)E = 0 ∀ μh ∈ Pk(E), E ⊂ ∂T .

In order to make moments ofσν to be well defined on single facetsE, one has to require some extra
regularity, for example,σ ∈ H(div, T)∩ Ls(T) for somes > 2 orσ ∈ H1/2+ε(T) (cf. Brezzi& Fortin,
1991). Under such an assumption, the following interpolation error estimates hold (Brezzi & Fortin,
1991;Toselli & Widlund, 2005).

LEMMA 3.10 Let ΠRT
k bedefined as above. Then the estimates

‖σ − ΠRT
k σ‖T + h1/2‖(σ − ΠRT

k σ)ν‖∂T 6 Chs|σ |s,T , 1/2 < s6 k + 1,

‖div(σ − ΠRT
k σ)‖T 6 Chs|divσ |s,T , 16 s6 k + 1,

holdwith a constantC that is independent ofh.

Applying these results element-wise, we immediately obtain the following interpolation error esti-
mates for the mesh-dependent norms used above.

PROPOSITION3.11 Let u ∈ H1(Ω) ∩ H3/2+ε(Th) andsetσ := −ε∇u. Then

‖|(σ − ΠRT
k σ, u − ΠT

k u, λ − ΠRT
k u)|‖D,∗ 6 Chs√ε|u|s+1,Th, 1/2 < s6 k, (3.15)

andfor u ∈ H1(Ω) we have

‖|(u − ΠT
k u, λ − ΠRT

k u)|‖C,∗ 6 Chs+1/2
√

|β||u|s+1,Th, 06 s6 k, (3.16)

with constantsC not depending onu or h. The same estimates hold if the∗-norms are replaced by their
counterparts without∗.

REMARK 3.12 The estimates of Proposition3.11hold with obvious modifications if the smoothnesss
or the polynomial degreek varies locally. We assume uniform polynomial degree and smoothness only
for ease of notation here.

The interpolation error estimate (3.15) is suboptimal regarding the approximation capabilities of the
flux interpolant. In fact, by Lemma3.10, one can obtain

1
√

ε
‖σ − ΠRT

k σ‖ 6 Chs√ε|u|s+1,Th for 1/2 < s6 k + 1,

and so the best possible rate ishk+1 insteadof hk asfor ‖| ∙ |‖D in (3.15). We will use this fact in Section
4 to derive superconvergence results for the primal variableuh.

3.5 A priori error estimates

The error of the finite-element approximation can be decomposed into an approximation error and a
discrete error. Let(σh, uh, λh) denotethe discrete solution of (2.11), and letu be the solution of (2.10)
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1221

anddefineσ := −ε∇u. Then we have

‖|(σ − σh, u − uh, u − λh)|‖

6 ‖|(σ − ΠRT
k σ, u − ΠT

k u, u − Π E
k u)|‖ + ‖|(ΠRT

k σ − σh,ΠT
k u − uh,Π E

k u − λh)|‖. (3.17)

Using the stability and boundedness of the bilinear form and applying Galerkin orthogonality, the second
term can now also be estimated by the interpolation error.

PROPOSITION 3.13 Let (σh, uh, λh) ∈ Wh denotethe solution of (2.11), and letu ∈ H1(Ω) ∩
H3/2+ε(Th) be the solution of the convection–diffusion problem (2.10). Then there exists a constant
C that is independent of the mesh sizeh such that the estimate

‖|(ΠRT
k (−ε∇u) − σh,ΠT

k u − uh,Π E
k u − λh)|‖ 6 Chs(

√
ε + h1/2

√
|β|)|u|s+1,Th

holdsfor 1/2 < s6 k.

Proof. Let us defineσ = −ε∇u andλ = u. By an application of the stability estimate (3.6), Galerkin
orthogonality and the boundedness (3.8) of the bilinear form, we obtain that

cB‖|(ΠRT
k σ − σh,Π

T
k u − uh,Π E

k u − λh)|‖

6 sup
(τh,vh,μh)

B(ΠRT
k σ − σh,ΠT

k u − uh,Π E
k u − λh; τh, vh, μh)/‖|(τh, vh, μh)|‖

= sup
(τh,vh,μh)

B(ΠRT
k σ − σ,ΠT

k u − u,Π E
k u − u; τh, vh, μh)/‖|(τh, vh, μh)|‖

6 CB‖|(ΠRT
k σ − σ,ΠT

k u − u,Π E
k u − u)|‖∗.

Theassertion follows directly from (3.15). �
The complete error estimate can now be derived by combining (3.17) and Proposition3.11.

THEOREM 3.14(Energy norm estimate) Let(σh, uh, λh) bethe finite-element solution of Method2.4,
and letu ∈ H1(Ω) ∩ H3/2+ε(Th) denotethe solution of (2.10) andσ := −ε∇u. Then

‖|(σ − σh, u − uh, u − λh)|‖ 6 Chs(
√

ε + h1/2
√

|β|)|u|s+1,Th

holdsfor 1/2 < s6 k with a constantC that is independent of the mesh sizeh.

In the convection-dominated case the error estimate coincides with the well-known error estimates
for the DG and the streamline diffusion method for hyperbolic problems (cf.Johnson & Pitk̈aranta,
1986;Johnson & Saranen, 1986).

COROLLARY 3.15 Let ε 6 |β|h on each element, and let the conditions of Theorem3.14hold. Then
the estimate

‖|(σ − σh, u − uh, u − λh)|‖ 6 Chs+1/2
√

|β||u|s+1,Th

holdsfor 1/2 < s6 k with a constantC that is independent of the parametersε, β andh.

This estimate holds, in particular, for the limiting hyperbolic problem (ε≡ 0), in which caseσ =
σh ≡ 0 and‖|(τ, v, μ)|‖ = ‖|(v, μ)|‖C, and so Method2.4collapses to Method2.3, i.e., the DG method
for hyperbolic problems.
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1222 H. EGGER AND J. SCḦOBERL

By analogy with standard error estimates for mixed methods for the Poisson problem, we obtain the
following convergence result in the diffusion-dominated regime.

COROLLARY 3.16 Let ε > |β|h and let the conditions of Theorem3.14hold. Then the estimate

‖|(σ − σh, u − uh, λ − λh)|‖ 6 Chs√ε|u|s+1,Th

holds for 1/2 < s 6 k with a constantC that is independent ofε, β and h. Moreover, we have
‖| ∙ |‖D ∼ ‖| ∙ |‖.

Clearly, this estimate also holds for Method2.1 in the case of pure diffusion. Let us remark once
again that all terms in thea priori error estimates are defined locally, and so the smoothness indexs and
the polynomial degreek can vary locally, allowing forhp-adaptivity.

4. Superconvergence and postprocessing for diffusion-dominated problems

The best possible rate for1√
ε
‖σ − σh‖ guaranteedby Theorem3.14and Corollary3.16 is hk, which

is one order suboptimal regarding the interpolation error estimate of Lemma3.10. It is well known,
however, that in the purely elliptic case the optimal ratehk+1 canbe obtained by a refined analysis, and
we will derive corresponding results below. Since we consider the case of dominating diffusion in this
section, we assume for ease of notation thatε ≡ 1 in what follow.

4.1 Refined analysis for pure diffusion

Although the estimate (3.15) is optimal concerning the approximation error with respect to the norm
‖| ∙ |‖D, we can obtain better error estimates forσ = −∇u, i.e., we will show that‖σ − σh‖ depends
only on the interpolation error‖σ − ΠRT

k σ‖, and thus optimal convergence forσh canbe expected. We
refer toArnold & Brezzi (1985),Brezzi & Fortin(1991) andStenberg(1991) for corresponding results
in the mixed framework.

PROPOSITION4.1 Let (σh, uh, λh) denotethe solution of (2.3) and letu andσ := −∇u be the solution
of problem (2.2). Then

‖|(σh − σ, uh − ΠT
k u, λh − Π E

k u)|‖D 6 Chs|u|s+1,Th (4.1)

holdsfor 1/2 < s6 k + 1 with a constantC that is independent ofh.

Proof. Let us first consider the following term:

BD(ΠRT
k σ − σ,ΠT

k u − u,Π E
k u − u; τh, vh, λh)

= (ΠRT
k σ − σ, τh)Th − (ΠT

k u − u, divτh)∂Th + 〈Π E
k u − u, τhν〉∂Th

+ (div(ΠRT
k σ − σ), vh)Th + 〈(ΠRT

k σ − σ)ν, μh〉∂Th

= (ΠRT
k σ − σ, τh)Th,

wherethe last equality follows from the definition of the interpolants. Then, in the same manner as in
the proof of Proposition3.13, we obtain that

cD‖|(ΠRT
k σ − σh,ΠT

k u − uh,Π E
k u − λh)|‖D 6 ‖ΠRT

k σ − σ‖Th,
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1223

andthe statement follows by an application of the triangle inequality and the interpolation error estimate
(3.15). �

Note that, for the modified error (4.1), the best possible rate now ishk+1, which is optimal in view
of the interpolation error estimates. As we show next, the estimates for(ΠT

k u − uh) and(Π E
k u − λh)

caneven be improved if we assume that the domainΩ is convex (cf.Stenberg(1991) for similar results
in the mixed framework).

PROPOSITION4.2 Let Ω be convex andu ∈ H1(Ω) ∩ H3/2+ε(Th) bethe solution of (2.2). Moreover,
let uh denotethe discrete solution obtained by Method2.1. Then the estimate

‖ΠT
k u − uh‖0 6 Chs+1

{
|u|s+2,Th, k = 0,

|u|s+1,Th, k > 0,
(4.2)

holdsfor 1/2 < s 6 k + 1 whenk > 0 and 06 s 6 1 whenk = 0. If, in addition, f is piecewise
constant then

‖ΠT
0 u − uh‖0 6 Chs+1|u|s+1,Th (4.3)

alsoholds fork = 0.

Proof. Let φ ∈ H1
0 (Ω) denote the solution of the Poisson equation1φ = ΠT

k u−uh with homogeneous
Dirichlet conditions and letz := ∇φ. Due to the convexity ofΩ, we have

‖φ‖2,Ω 6 c‖ΠT
k u − uh‖0 and ‖φ − ΠT

k φ‖ 6 chmin(k+1,2)‖ΠT
k u − uh‖0.

Usingthe definition ofφ andz, we obtain that

‖ΠT
k u − uh‖

2
0 = (ΠT

k u − uh, divz) = (ΠT
k u − uh, div(ΠRT

k z)) = (σ − σh,ΠRT
k z)

= (σ − σh,ΠRT
k z − ∇φ) − (div(σ − σh), φ − ΠT

k φ)

6 ‖σ − σh‖0‖Π
RT
k z − ∇φ‖0 + ‖div(σ − σh)‖0‖φ − ΠT

k φ‖0.

Thefirst estimate now follows by Lemma3.10. If f is piecewise polynomial of orderk then div(σ −
σh) ≡ 0, and so the last term in the above estimate vanishes and we conclude the second assertion.�

4.2 The diffusion-dominated case

Let us now show that similar results still hold in the presence of convection as long as diffusion is
sufficiently dominating. In this case we can discretize the convective term without upwind stabilization,
and we therefore consider the following bilinear form instead of (2.8):

BNU
C (uh, λh; vh, μh) := (uh, β∇vh)Th + 〈βνλh, μh − vh〉∂Th . (4.4)

Sucha discretization for the convective part was previously investigated numerically but not analysed
in Farhoul & Mounim(2005) for a one-dimensional problem. There the authors conjectured that this
discretization already introduces some stabilization, which is not the case, as is clear from our analysis.
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1224 H. EGGER AND J. SCḦOBERL

Consistencyand conservation. Substituting the continuous solutionu for uh andλh in (4.4), we obtain
after integration by parts that

−(div(βu), vh)Th + 〈βνu, μh〉∂Th = −(div(βu), vh)Th = (− f, vh)Th,

andso the bilinear formBNU
C is consistent. The scheme is also conservative since the fluxβνλh in (4.4)

is single valued on element interfaces. Moreover, we have

BC(uh, λh; vh, μh) = BNU
C (uh, λh; vh, μh) + |βν|〈λh − uh, μh − vh〉∂T out

h
, (4.5)

whichclarifies what kind of upwind was used for the DG stabilization in (2.8).

Stability. Testing the bilinear formBNU
C with vh = −uh andμh = −λh, we obtain that

BNU
C (uh, λh;−uh, −λh) = −(uh, β∇uh)Th − 〈βνλh, λh − uh〉∂Th

= −
1

2
〈βνuh, uh〉∂Th − 〈βνλh, λh − uh〉∂Th

=
1

2
|βν||uh − λh|2

∂T in
h

−
1

2
|βν||uh − λh|

2
∂T out

h
.

Note that, by adding the stabilization term|βν||uh − λh|2∂T out
h

, the last term becomes strictly positive,

i.e.,

BC(uh, λh;−uh, −λh) = BNU
C (uh, λh;−uh, −λh) + |βν||λh − uh|

2
∂T out

h

=
1

2
|βν||λh − uh|2∂Th

,

andwe recover the first part of the stability estimate of Proposition3.5.
Following the approach for the convection-dominated case, we now consider the following method

for the diffusion-dominated regime (cf. alsoFarhoul & Mounim,2005).

METHOD 4.3 (No upwind) Find(σh, uh, λh) ∈Wh suchthat

BNU(σh, uh, λh; τh, vh, μh) = F(vh, μh) (4.6)

holdsfor all (τh, vh, μh) ∈Wh, whereBNU := BD + BNU
C .

For the proof of stability of the bilinear formBNU we require that the convection is sufficiently
small. A sufficient condition is given by

|βν||λh − uh|
2
∂Th
6 cD‖|(σh, uh, λh)|‖2

D ∀ (σh, uh, λh) ∈Wh. (4.7)

REMARK 4.4 Recall that the stability constantcD andthus the validity of condition (4.7) depend only on
the constant of an inverse inequality and thus on the shape of the elements. Moreover, since both norms
are defined element-wise, it is possible to decide for each element separately if stabilization should be
added or not. Clearly, (4.7) can be shown to hold if|β|h 6 cTε is valid on each element, with the
constantcT only depending on the shape of the individual elements.
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1225

Using(4.7) as the characterization of dominating diffusion, we can now prove the following stability
result.

PROPOSITION4.5 Let (4.7) be valid. Then the estimate

sup
(τh,vh,μh)

BNU(σh, uh, λh; τh, vh, μh)

‖|(τh, vh, μh)|‖D
>

cD

2
‖|(σh, uh, λh)|‖

2
D (4.8)

holdsfor all (σh, uh, λh) ∈Wh with cD denotingthe stability constant of Proposition3.2.

Since the convective terms can be absorbed by the diffusion terms, the boundedness result of Corol-
lary 3.8 applies with‖| ∙ |‖(∗) replacedby ‖| ∙ |‖D,(∗). Using the stability estimate (4.8), the followinga
priori error estimate is obtained in a similar manner as Proposition4.1for the purely elliptic case.

PROPOSITION 4.6 Let condition (4.7) be valid and(σh, uh, λh) denotethe solution of Method4.3.
Moreover, letu ∈ H1(Ω)∩ H3/2+ε(Th) denotethe solution of problem (2.10) and setσ := −∇u. Then

‖|(σh − σ, uh − ΠT
k u, λh − Π E

k u)|‖D 6 Chs|u|s+1,Ω

holdsfor all 1/2 < s6 k + 1 with a constantC that is independent ofh.

Proof. In view of Proposition4.1, we only have to ensure that the convective term does not disturb the
estimate. Following the proof of Proposition4.1, i.e., testing with the same test functions as there, we
obtain the additional term

BNU
C (ΠT

k u − u,Π E
k u − u; vh, μh) = (ΠT

k u − u, β∇vh)Th + 〈βν(Π E
k u − u), μh − vh〉∂Th = 0

sinceβ∇vh ∈ Pk(T) oneach element andβν(μh − vh) ∈ Pk(E) for each facet. The result now follows
along the lines of the proof of Proposition4.1. �

Proposition4.6allows us to derive a superconvergence estimate for‖ΠT
k u − uh‖Th asin the purely

elliptic case.

PROPOSITION4.7 Let Ω be convex andu be the solution of (2.10) withβ satisfying (4.7). Moreover,
let uh denotethe discrete solution of Method4.3. Then

‖ΠT
k u − uh‖Th 6 Chs+1

{
|u|s+2,Th, k = 0,

|u|s+1,Th, k > 0,

holdsfor 1/2 < s6 k + 1 whenk > 0 and 06 s6 1 whenk = 0.

Proof. By means of Proposition4.6, the result follows in the same way as for Proposition4.2. �
Due to the lack of a condition div(σ − σh) ≡ 0, which is valid in the purely elliptic case, we cannot

obtain (4.3) here. So, in the lowest order case, superconvergence holds only under some additional
smoothness of the solutionu.

4.3 Postprocessing

The superconvergence results of the Section4.2can now be utilized to construct better approximations
ũh ∈ Pk+1(Th) by local postprocessing. Here we follow an approach proposed byStenberg(1991) for
the mixed discretization of the Poisson equation (2.2) and construct our postprocessed solution from

 at B
row

n U
niversity on A

ugust 10, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


1226 H. EGGER AND J. SCḦOBERL

theapproximations of the primal and the dual variables. Alternative approaches based on the Lagrange
multipliers can be found inArnold & Brezzi (1985) andBrezzi & Fortin(1991).

Let us definẽuh ∈ Pk+1(Th) element-wiseby the variational problems

(∇u∗
h, ∇v)T = −(σh, ∇v)T ∀ v ∈ Pk+1(T): (v, 1)T = 0,

(u∗
h, 1)E = (uh, 1)T .

Thenthe following order optimal error estimate holds.

PROPOSITION4.8 LetΩ be convex andu denote the solution of (2.10) with (4.7) being valid. Moreover,
let (σh, uh, λh) bethe solution of Method4.3andu∗

h bedefined as above. Then

‖∇(u∗
h − u)‖Th 6 Chs|u|s+1,Th

and

‖u∗
h − u‖Th 6 Chs+1

{
|u|s+2,Th, k = 0,

|u|s+1,Th, k > 0,

for all 1/2 < s 6 k + 1 with a constantC that is independent of the mesh sizeh. Fork = 0 the second
estimate holds for 06 s6 1.

Proof. Let ũh ∈ H1(Ω) ∩ Pk+1(Th) denotethe finite-element solution of the standardH1-conforming
finite-elementmethod applied to the solution of (2.2). Then‖∇(u − ũh)‖Th 6 Chs|u|s+1,Th for 0 6
s6 k + 1. Moreover,‖u − ũh‖ 6 Chs+1|u|s+1,Th for 06 s6 k + 1 since we assumed convexity ofΩ
and f ∈ L2. Now defineṽh := (I − ΠT

0 )(ũh − u∗
h). Then

‖∇ṽh‖
2
T = (∇(I − ΠT

0 )(ũh − u∗
h), ∇ṽh)T = (∇(ũh − u∗

h), ∇ṽh)T

= (∇(ũh − u), ∇ṽh)T + (∇u + σh, ∇ṽh)T

6 ‖∇ṽh‖T (‖∇(u − ũh)‖T + ‖σh + ∇u‖)T .

Summingup over all elements and using the estimates for(u − ũh) andProposition4.6yields

‖∇(u − u∗
h)‖Th 6 ‖∇(u − ũh)‖Th + ‖∇(ũh − u∗

h)‖Th

= ‖∇(u − ũh)‖Th + ‖∇ ṽh‖Th

6 Chs|u|s+1,Th,

which is already the first part of the result. In order to establish theL2-estimatewe note that, by
ΠT

0 ṽh = 0, we obtain‖ṽh‖T 6 Ch‖∇ṽh‖T via an inverse inequality. Hence

‖u − u∗
h‖T 6 ‖u − ũh‖T + ‖ũh − u∗

h‖T

6 ‖u − ũh‖T + ‖ṽh‖T + ‖ΠT
0 (ũh − u∗

h)‖T

= ‖u − ũh‖T + ‖ṽh‖T + ‖ΠT
0 (ũh − u)‖T + ‖ΠT

0 (u − uh)‖T .

Summingup over all elements, and using that

‖ΠT
0 (ũh − u)‖Th 6 ‖ũh − u‖Th 6 Chs+1|u|s+1,Th

andProposition4.7, we conclude theL2-estimate. �
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1227

REMARK 4.9 In the purely elliptic case (β ≡ 0), with f piecewise constant, we can also obtain the
optimal estimate‖u − u∗

h‖ 6 hs+1|u|s+1,Th for the casek = 0 by using the estimate (4.3) instead of
Proposition4.7.

5. Implementation and numerical tests

In Section5we want to illustrate the theoretical results derived in the previous section by some numerical
tests. As a model problem, let us consider

−ε1u + β∇u = f in Ω := (0,1)2,

u = g on ∂Ω,
(5.1)

whereε andβ are constant onΩ. Since for the limiting hyperbolic problem our method is equivalent
to the DG method, we will compare our results mainly to those obtained by the streamline diffusion
method (Hughes & Brooks, 1979;Johnson & Saranen, 1986;Johnson,1987). We refer toHoustonet al.
(2000) for a detailed comparison ofhp-versions of the streamline diffusion method with DG methods
for first-order hyperbolic problems.

The variational form of the streamline diffusion method is formally derived by usingv + αβ∇v as a
test function in the variational formulation of (5.1). Assuming thatg = 0 for simplicity, this yields the
following.

METHOD 5.1 (Streamline diffusion) Findu ∈ H1
0 (Ω) ∩ H2(Th) suchthat

ε(∇u, ∇v)Th + (β∇u, v)Th + α[−ε(1u, β∇v)Th + (β∇u, β∇v)Th ]

= ( f, v)Th + α( f, β∇v).

In order to obtain stability of the method, the stabilization parameter has to be chosen appropriately,
depending on the shape of the elements in the mesh. Typically, the stabilization parameter is of the order
of h/|β|, whereh is the local mesh size. For higher-order methods the polynomial degree also influences
the choice ofα (cf. Houstonet al., 2000). For our numerical tests below we useα = 1 for problems
with dominating convection and we setα = 0 if diffusion dominates.

5.1 Numerical tests

With the following examples we want to illustrate the performance of the hybrid mixed DG method
under the presence of boundary layers (Example5.2), for discontinuous solutions and internal layers
(Example5.3), and for diffusion-dominated problems (Example5.4). Throughout we will compare our
method using polynomials of orderk with the streamline diffusion method using polynomials of degree
k + 1. Thus, formally, the approximation properties of our finite-element spaces are one order less.
However, as our numerical results indicate, this affects the results only in the diffusion-dominated case,
where, according to our theory, we can increase the approximations by local postprocessing.

EXAMPLE 5.2 (Boundary layers) In the first example we setg = 0 and

f = β1[ y + (eβ2y/ε − 1)/(1 − e1/ε)] + β2[1 + (eβ1x/ε − 1)/(1 − eβ1/ε)].

For ε > 0 the exact solution to (5.1) is then given by

u(x, y) = [x + (eβ1x/ε − 1)/(1 − eβ1/ε)] ∙ [ y + (eβ2y/ε − 1)/(1 − eβ2/ε)],

i.e., the solution has boundary layers at the top and right outflow boundaries.
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1228 H. EGGER AND J. SCḦOBERL

We setε = 0.01 andβ = (2,1) and then solve the problem numerically for various mesh sizesh
and polynomial degreesk. Table1 displays the errors of the numerical solutions obtained with Method
2.4and the streamline diffusion method.

Since the exact solution is essentially bilinear away from the boundary layers, one cannot expect to
gain much from further increasing the polynomial degree. As the problem gets more and more diffusion
dominated with decreasing mesh sizeh, the error of the hybrid mixed method decays with the rate
hk+1, which is the order of the best approximation error. While we showed that optimal rates hold if
stabilization is omitted in the diffusion-dominant case, the optimalL2-error estimate for the stabilized
Method2.4 is not yet covered by our theory.

Since in our example the location of boundary layers is determineda priori, one could, of course,
also use locally refined meshes (see Fig.1).

EXAMPLE 5.3 (Discontinuities and internal layers) For the second test case we setf = 0 andβ = (2,1)
as before, andε = 10−6. So we are dealing with an (almost) hyperbolic problem. Additionally, we
introduce a discontinuity in the boundary conditions, i.e., we setu(0, y) = H(y − 0.5) on the left
inflow boundary (H(∙) denotes the Heavyside function) and we setu = 0 on the remaining part of the
boundary. The exact solution forε = 0 (the boundary conditions at the outflow boundaries have to be

TABLE 1 L2-errors obtained for Example5.2 with ε = 0.01 and β = (2,1) on uniformly refined
meshes with mesh size h using polynomials of orderk

Streamline diffusion Mixed hybridDG

h k = 1 Rate k = 2 Rate k = 3 Rate k = 0 Rate k = 1 Rate k = 2 Rate
1.0000 0.227 0.223 0.215 0.162 0.082 0.07188
0.5000 0.199 0.19 0.177 0.33 0.160 0.42 0.089 0.87 0.064 0.35 0.02859 1.33
0.2500 0.142 0.48 0.114 0.64 0.097 0.72 0.070 0.33 0.029 1.14 0.00874 1.71
0.1250 0.089 0.68 0.059 0.94 0.048 1.01 0.044 0.66 0.011 1.41 0.00209 2.06
0.0625 0.050 0.81 0.025 1.22 0.017 1.48 0.025 0.81 0.003 1.71 0.00034 2.63
0.0313 0.027 0.89 0.009 1.47 0.004 2.06 0.013 0.92 0.001 1.91 0.000042.92

FIG. 1. Example5.2: exact solution and locally adapted mesh with 878 elements.
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HYBRID MIXED DG FINITE-ELEMENT METHOD 1229

TABLE 2 L2-errors of streamline diffusion(k) and hybrid mixed DG(k) method obtained for Example
5.3 with ε = 10−6 and b = (2,1) on uniformly refined meshes with mesh size h and polynomial
degreek

Streamlinediffusion Mixed hybridDG

h k = 1 Rate k = 2 Rate k = 3 Rate k = 0 Rate k = 1 Rate k = 2 Rate
0.5000 0.408 0.300 0.275 0.299 0.182 0.133
0.2500 0.328 0.31 0.243 0.30 0.227 0.28 0.222 0.43 0.139 0.39 0.098 0.44
0.1250 0.245 0.42 0.186 0.39 0.174 0.38 0.181 0.29 0.109 0.34 0.080 0.28
0.0625 0.179 0.45 0.138 0.43 0.129 0.43 0.150 0.27 0.087 0.33 0.064 0.32
0.0313 0.131 0.45 0.101 0.45 0.094 0.45 0.112 0.42 0.069 0.34 0.0500.35

omittedin this case) is given by

u(x, y) =

{
1, y > 0.5(1 + x),

0, otherwise.

We use the solution of the purely hyperbolic problem for the calculation of the numerical errors of the
finite-element solutions in Table2. Again, we solve on uniform meshes (not aligned to the discontinuity)
and compare the solutions obtained with Method2.4 and the streamline upwind method for different
polynomial degrees.

Since the exact solution has a line discontinuity aty = 0.5(x + 1), one cannot expect to get better
convergence rates thanh1/2. Moreover, since the solution is piecewise constant, the quality of the recon-
structions can only be improved slightly by increasing the polynomial degree. Although the streamline
diffusion method seems to provide better convergence rates, the actual reconstruction errors are smaller
for the hybrid mixed method. In Fig.2 we display the solutions obtained with the streamline diffusion
and the hybrid mixed method. In both cases the crosswind diffusion is kept to a minimum, and so the
jump of the exact solution is captured within one element layer, although the mesh is not aligned with
the streamline velocityβ.

Let us now turn to a diffusion-dominated problem and illustrate the increase in accuracy obtained
by local postprocessing discussed in Section4.3.

EXAMPLE 5.4 (Diffusion dominated) Consider problem (5.1) with β = (2,1), ε = 1 and f = 1.
Moreover, setu = 0 at the boundary. We solve problem (5.1) with Method4.3 and compare the nu-
merical results with those obtained by the streamline diffusion method. Since for the problem under
consideration we do not have an analytical solution, we use the conforming finite-element solution with
polynomial degree 8 as an approximation for the exact solution. The results of the numerical tests are
summarized in Table3.

Since in the diffusion-dominated case we omit stabilization, the streamline diffusion method co-
incides with the standard Galerkin method, and so we obtain optimalL2-error estimates. The results
obtained with the hybrid mixed method are also optimal with respect to the approximation properties
of the finite-element space. For improving the approximation for the hybrid mixed method in that case,
we can apply local postprocessing as discussed in Section4. In Table4 we list the results obtained after
postprocessing. For comparison, we also list theL2 bestapproximation errors for the corresponding
finite-element spaces.
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1230 H. EGGER AND J. SCḦOBERL

FIG. 2. Streamline diffusion(3) and hybrid mixed DG(2) solutions obtained on uniformly refined meshes with 512 elements. The
streamline diffusion method develops boundary layers at the outflow boundaries. Both methods capture the discontinuity within
one element layer.

TABLE 3 L2-errors of streamline diffusion(k) and hybrid mixed DG(k) method obtained for Example
5.3 with ε = 10−6 andβ = (2,1) on uniformly refined meshes with mesh size h and polynomial
degreek

Streamline diffusion Mixed hybridDG

h k = 1 Rate k = 2 Rate k = 0 Rate k = 1 Rate
1.0000 0.040175 0.017043 0.022501 0.019833
0.5000 0.009128 2.14 0.002682 2.67 0.022382 0.01 0.004392 2.18
0.2500 0.005720 0.67 0.000423 2.66 0.010841 1.05 0.001747 1.33
0.1250 0.001652 1.79 0.000061 2.81 0.005441 0.99 0.000487 1.84
0.0625 0.000428 1.95 0.000008 2.87 0.002722 1.00 0.0001261.96

TABLE 4 L2-errors of postprocessed solution of the hybrid mixed DG(k − 1) method and the best
piecewise polynomial approximation of order k on uniform meshes with mesh sizeh

Streamline diffusion Mixed hybridDG

h k = 1 Rate k = 2 Rate k = 0 Rate k = 1 Rate
1.00000 0.022149 0.012169 0.018277 0.005064
0.50000 0.012273 0.85 0.001657 2.88 0.004356 2.07 0.001108 2.19
0.25000 0.004598 1.42 0.000323 2.36 0.001741 1.32 0.000185 2.58
0.12500 0.001329 1.79 0.000048 2.74 0.000487 1.84 0.000027 2.81
0.06250 0.000347 1.94 0.000007 2.82 0.000126 1.95 0.0000042.87

Throughout our numerical experiments the error of the postprocessed solution was always close to
the best approximation error. Moreover, the hybrid mixed method with postprocessing always yielded
slightly more accurate results than the standard conforming finite-element method with the correspond-
ing polynomial degree.

 at B
row

n U
niversity on A

ugust 10, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


HYBRID MIXED DG FINITE-ELEMENT METHOD 1231

5.2 Comparison with other DG methods

After the numerical experiments, we would like to compare the hybrid mixed method with other variants
of DG methods, in particular, with the interior penalty method (Arnold, 1982) and themultiscale DG
method presented inBuffa et al. (2006). The latter method is somewhat similar to the hybrid mixed
method as it introduces new dofs at the skeleton and allows us to eliminate local dofs by the solution of
local subproblems.

For the interior penalty Galerkin methods all dofs are present in the global system. The assembling
of the element contributions requires only the dofs of one element, while the assembling of the coupling
terms requires the dofs of neighbouring elements. Hence the dofs of one element are coupled to those
of the neighbouring elements.

In the multiscale DG method the global dofs correspond to the trace (at the skeleton) of a continuous
finite-element function. A vertex dof couples with all dofs belonging to the skeleton of all elements
sharing that vertex, and dofs of one edge only couple to those belonging to the skeleton of the element
sharing that edge. This carries over to three-dimensional problems, where vertex dofs couple with all
dofs belonging to the skeleton of the vertex patch, and so on.

In the hybrid mixed method the global degrees belonging to one edge only couple with those of the
skeleton of the neighbouring element. In three dimensions the global dofs correspond to single faces,
and they couple only to those on the faces of the two neighbouring elements. The degrees of freedom
for the three methods using linear polynomials for the primal variable are depicted in Figure. 3.

For a comparison of the computational effort required for the different methods we summarize the
number of local and global dofs and the number of nonzero entries present in the global linear system
in Table5. For brevity, we only list the leading-order terms.

FIG. 3. Dofs for the interior penalty method and the multiscale DG method with orderk = 2, and the hybrid mixed method
with orderk = 1. The global dofs are marked with•, and local dofs foru andσ that can be eliminated by static condensation
are depicted inside the elements.The solutions obtained by the hybrid mixed method can be improved by one order through local
postprocessing (cf. Section4).

TABLE 5 Leading order of the number of dofs for the interior penalty
method, the multiscale DG method and the hybrid mixed method of orderk

Interior penalty Multiscale Hybrid mixed

Local element dofs — 1
2k2 3

2k2

Global element dofs 1
2k2 3k 3k

Global dofs 1
2k2nel

9
2knel

9
2knel

Nonzero entries k4nel
15
2 k2nel

15
2 k2nel
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The elimination of the internal dofs makes the assembling process of the multiscale DG and the
hybrid mixed method more expensive than that of the interior penalty method. However, the coupling
is decreased considerably, and therefore the local assembling can be done in parallel more easily. The
global systems of the multiscale DG method and the hybrid mixed method involve less dofs and less
coupling than the one for the interior penalty method.

5.3 Concluding remarks

In this paper we proposed a new finite-element method for convection–diffusion problems based on a
mixed discretization for the elliptic part and a DG formulation for the convective part. The two meth-
ods are made compatible via hybridization, and the Lagrange multipliers play an essential role for the
stabilization of the method and throughout the analysis.

Like other DG methods, but in contrast to the streamline diffusion method, the presented scheme is
locally and globally conservative, which makes it a natural candidate for problems where conservation is
important, for example, for time-dependent problems. Moreover, the treatment of boundary conditions
is very natural and allows a seamless change from convection-dominated to purely hyperbolic regimes,
where the outflow boundary conditions just disappear in the numerical scheme. In the hyperbolic limit
our method corresponds to (a hybrid version of) the classical DG method and thus inherits the stabilizing
features of DG methods for hyperbolic problems.

The hybrid mixed method allows a more natural treatment of elliptic operators than the DG methods.
In particular, the discretization of diffusion terms does not increase the stencil of the scheme. In contrast
to the streamline diffusion method and to several variants of DG methods, no tuning of a stabilization
parameter is needed. In the diffusion-dominated regime the numerical solutions can be further improved
by local postprocessing.

A particular advantage of our method from a computational point of view is that it is formulated
and can be implemented purely element-wise. This allows static condensation of the primal and flux
variables on the element level, and only the Lagrange multipliers appear in the global system. Thus
the presented hybrid mixed DG method has smaller stencils as well as fewer dofs than standard DG
methods, but still provides the same stability.
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Telräumen, die keinen Randbedingungen unterworfen sind.Abh. Math. Semin. Univ. Hamb., 36, 9–15.
ODEN, J. T., BABUSKA, I. & B AUMANN , C. (1998) A discontinuoushp-FEM for diffusion problems.J. Comput.

Phys.,146, 491–519.
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