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We propose and analyse a new finite-element method for convection—diffusion problems based on the
combination of a mixed method for the elliptic and a discontinuous Galerkin (DG) method for the hyper-
bolic part of the problem. The two methods are made compatible via hybridization and the combination
of both is appropriate for the solution of intermediate convection—diffusion problems. By construction,
the discrete solutions obtained for the limiting subproblems coincide with the ones obtained by the mixed
method for the elliptic and the DG method for the limiting hyperbolic problem. We present a new type
of analysis that explicitly takes into account the Lagrange multipliers introduced by hybridization. The
use of adequate energy norms allows us to treat the purely diffusive, the convection-dominated and the
hyperbolic regimes in a unified manner. In numerical tests we illustrate the efficiency of our approach
and make a comparison with results obtained using other methods for convection—diffusion problems.

Keywords convection—diffusion; upwind; finite-element method; discontinuous Galerkin methods; mixed
methods; hybridization.

1. Introduction
In this paper we consider stationary convection—diffusion problems of the form

div(—eVu+ pu)y = f inQ,

au (1.1)
u=gp ONndLp, —ea— 4+ frvu=gn ONoLn,
Vv

where is a bounded open domain &, for d = 2, 3, with boundanpQ = 6Qp U 8Qy consisting
of a Dirichlet and a Neumann pat,is a non-negative function angt 2 — RY is a d-dimensional
vector field.

Similar problems arise in many applications, for example, in the modelling of contaminant transport,
in electrohydrodynamics or macroscopic models for semiconductor devices. A feature that makes the
numerical solution difficult is that convection often plays the dominant role. In the case of vanishing
diffusion, solutions of (1.1) will, in general, not be smooth, i.e., discontinuities are propagated along the
characteristic directiofi. Nonlinear problems may even lead to discontinuities or blow up in afinite time
when starting from smooth initial data. So appropriate numerical schemes for the convection-dominated
regime have to be able to deal with almost discontinuous solutions in an accurate but stable manner.
Another property that is also desirable to be reflected on the discrete level is the conservation structure
inherent in the divergence form af.QL).
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Dueto the variety of applications, there has been significant interest in the design and analysis of
numerical schemes for convection-dominated problems. Much work has been devoted to devise accurate
and stable finite-difference and finite-volume methods for the solution of hyperbolic systems by means
of appropriate upwind techniques including flux or slope limiters in the nonlinear case.

A different approach to the stable solution of (almost) hyperbolic problems is offered by discontinu-
ous Galerkin (DG) methods, introduced originally for a linear hyperbolic equation in neutron transport
(Reed & Hill, 1973;LeSaint & Raviart 1974;Johnson & Pitikranta,1986). Starting from the 1970s,

DG methods have been investigated intensively and applied to the solution of various linear and non-
linear hyperbolic and convection-dominated elliptic problems with great succeBagdi & Rebay
(1997a,b) Aizinger et al. (2000) andCockburnet al. (2000) for an overview and further references).
Since in practical applications convection and diffusion phenomena may dominate in different parts
of the computational domain, several attempts have been made to also generalize DG methods t
elliptic problems Richter,1992;Odenet al.,1998;Houston & Sili, 2001), yielding numerical schemes

very similar to interior penalty methods studied much earhétsche,1971;Babuska & Zamal,1973;

Arnold, 1982). For further references on this topic and a unified analysis of several DG methods for
elliptic problems we refer té\rnold et al. (2002). For DG methods applied to convection—diffusion
problems we refer t€ockburn(1988),Baumann & Oder§1999),Castilloet al. (2002) andBuffa et al.

(2006) for a multiscale version. Two disadvantages of DG methods applied to problems with diffusion
are that, compared to a standard conforming discretization, the overall number of unknowns is increased
substantially and that the resulting linear systems are much less sparse.

Another very successful approach for the solution of convection-dominated problems is the stream-
line diffusion method (Hughes & Brook4979;Johnson & Saraneri986), where standard conform-
ing finite-element discretizations are stabilized by adding in a conforming way an appropriate amount
of artificial diffusion in the streamline direction. This method is easy to implement and yields stable
discretizations in many situations, but may lead to unphysically large layers near discontinuities and
boundaries. For a comparison of high-order DG and streamline diffusion methods we ndfarsion
et al. (2000). For an appropriate treatment of boundary layers via Nitsche’s meth&deseal & Sten-
berg (1995). In contrast to DG methods, the streamline diffusion method does not yield conservative
discretizations.

Here we follow a different approach, namely, the combination of upwind techniques used in DG
methods for hyperbolic problems with conservative discretizations of mixed methods for elliptic prob-
lems. Other extensions of mixed finite-element methods to convection—diffusion problems were consid-
ered inChenet al. (1995) andDawson & Aizinger(1999).

In order to make the two different methods compatible we will utilize hybrid formulations for the
mixed and the DG methods. It is well knowArfiold & Brezzi, 1985;Brezzi & Fortin,1991;Cockburn
et al., 2009) that hybridization can be used for the efficient implementation of mixed finite elements
for elliptic problems. Also introducing the Lagrange multipliers in the DG methods allows us to couple
both methods naturally and yields a stable mixed hybrid DG method with the following properties.
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e Forp = 0the numerical solution coincides with that of a mixed methodAunfiold & Brezzi, 1985;
Brezzi & Fortin, 1991), and postprocessing techniques can be used to increase the accuracy of the
solution.

e Fore = 0 the solution coincides with that obtained by a DG method for hyperbolic problems
(LeSaint & Raviart1974;Johnson & Pitiranta, 1986).

e The intermediate convection—diffusion regime is treated automatically with no need to choose stabi-
lization parameters.
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For diffusion-dominated regions the stabilization can be omitted, yielding a scheme that was studied
numerically in one dimension iRarhoul & Mounim(2005). Our analysis in Sectigh2 also includes
this case.

A particular advantage of our method is that it is formulated and can be implemented element-wise,
i.e., it allows for static condensation: local degrees of freedom (dofs) can be eliminated on the element
level (seeBrezzi & Fortin 1991, Section V.1 or Sectidhfor details), yielding global systems for the
dofs on the mesh skeleton only. In this way, we can obtain global systems with less unknowns and
sparser stencils than that of other DG methods, at the price of a somewhat more demanding assembling
process. Further remarks and a comparison with the interior penalty are given in Se2tion

The relaxation of the coupling terms of DG methods has also been investigated recently by other
authors. InBuffa et al. (2006) a method was proposed that, after the elimination of local dofs, yields
a global system corresponding to that of a continuous Galerkin method (serixls al. (2008) for
similar ideas used for the construction of multilevel preconditioners). A further comparison with this
method is given in SectioB.2. The hybridization of several DG methods has already been proposed in
Cockburnet al. (2009), but without convergence analysis.

The outline of this article is as follows. In Secti@mwe review the hybrid formulation of the mixed
method for the Poisson equation and then introduce a hybrid version of the DG method for the hy-
perbolic subproblem. The scheme for the intermediate convection—diffusion regime then results from
a combination of the two methods for the limiting subproblems, and we show consistency and conser-
vation of all three methods under consideration. Se@ipnesents the main stability and boundedness
estimates for the corresponding bilinear forms and contaiaspaiori error analysis in the energy norm
with emphasis on the convection-dominated regime. Details on superconvergence results and postpro-
cessing for the diffusion-dominated case are presented in Sdctiresults of numerical tests, including
a comparsion with the streamline diffusion method, are presented in S&ction

2. Hybrid mixed DG methods for convection—diffusion problems

The aim of this section is to formulate the problem under consideration in detail and to fix the relevant
notation and some basic assumptions. By introducingliffesive fluxc = —eVu as a new variable,
we rewrite (1.1) in mixed form as follows:

c+eVu=0, diveg+pu)y=fFf inQ
Uu=gp 0néLp, -+ pru=gy ONAQN, (2.1)

which will be the starting point for our considerations. Here and belodenotes the outward unit
normal vector on the boundary of some domain. We refgtu@s theconvective flwand calle + fu

thetotal flux. The existence and uniqueness of a solution to (2.1) follow under standard assumptions on
the coefficients. For ease of presentation, let us make some simplifying assumptions.

2.1 Basic assumptions and notation

We assume tha@ is a polyhedral domain and thal2p = 00, i.e., 02N = @. Let T, bea shape

regular partition ofQ into simplicesT and let&, denotethe set of facet&. By the termfacetswe

denote interfaces between elements or to the boundary, i.e., faces or edges in three or two dimensions,
respectively. We assume that each elemeraind facetE are generated by an affine mdp or &g
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from a corresponding reference elemédhbr E, respectively. Witho7;, we denote the set of all ele-
ment boundarie8 T (with outward normab). Finally, by ys we denote the characteristic function of a
setS c Q.

Regarding the coefficients, we assume for simplicity that= 0 and thate > 0 is constant on
elementsT € 7p. Furthermore, the vector fieldl is assumed to be piecewise constant with continuous
normal components across element interfaces, which implies that-i®. Moreover, such a vector
field # induces a natural splitting of element boundaries into inflow and outflow parts, i.e., we define the
outflow boundang T := {x € 4T: fv > 0}andaT™ = T \ 8T°". The unions of the element inflow
and outflow boundaries will be denoted bf," anda7,°", respectively, and, similarly, the symbols
002" ando Q2" areused for the inflow and outflow regions, respectively of the boundary

For our analysis we will utilize the broken Sobolev spaces

HS(Th) :={u:ue H3(T), VT eTn}, s=0,

andfor functionsu € HS*1(7) we defineVu € [H3(7h)]¢ to be the piecewise gradient. In a natural
manner, we define the inner products

u, )T ::/Tuv dx and (u,0)7 = Z(u,v)T,

TeTh

with the obvious maodifications for vector-valued functions. The norm induced by the volume inte-
grals(, -)7;, is denoted byjul|7, := ,/(u, u)7,, and for piecewise constantwe definea(u, v)7, =

> 1 (au,v)T anda|lull7, := /a?(u, u)7,. Norms and seminorms on the broken Sobolev spBic¢3r)
will be denoted by - |Is 7, and| - |s ;..
For the element interfaces we consider the function spaces
L2(&n) = {u: u € L%(E), VE € &)
and
L2(07h) == {v:v € L2@T), VT € T}

Notethat functions in_?(67y) aredouble valued on element interfaces and may be considered as traces
of element-wise defined functions. Moreover, we can identify L?(Ep) with a functiono € L2(87n)

by duplicating the values at element interfaces, and so in this def(g®) c L2(07h). Foru,v e
L2(67n) we denote integrals over element interfaces by
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(A, pyot = /T uds and (4, pw)ory, = Z(Lﬂ)an
0 T

andthe corresponding norms are denoteddlyy, := ,/(u, U)s7;,. Again, we writea (U, v),7;, with the
meaning>_,t (au, v)sT.

Let us now turn to the formulation of appropriate finite-element spaces. We start from piecewise
polynomials on the reference elements and define the finite-element spaces via appropriate mappings
(cf. Brenner & Scott2002). ByPk('f) and Pk(é) we denote the sets of all polynomials of order at
mostk on the reference elements, and®¥i(T) := Px(T) @ x - P«(T) we denote the Raviart-Thomas
(~Nedelec) element (cRaviart & Thomas1977; Nedelec,1980; Brezzi & Fortin, 1991). Here the
symbol @ is used to denote the union of two vector spaces. For our finite-element methods we will
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utilize the following function spaces:

Zhi= e [La(@]% thit = —— ¢4fo¢T,reRnaj]

detdt,

= {vh € L2(Q): oplt = b 0 &7, 5 € P(T)},
= {un € La(En): ulg = it o D", u = 00n0RQ, i € Pu(E)}.

For convenience, we will sometimes use the notalign:= X x Vh x Mp. Since we assumed that our
elementsT are generated by affine magps, the finite-element spaces could be defined equivalently
as the appropriate polynomial spaces on the mapped triangléréelzi & Fortin,1991). This would,
however, complicate a generalization to nonaffine elements.

Let us now turn to the formulation of the finite-element methods. We will start by recalling the hybrid
mixed formulation for the elliptic subprobleng (= 0) and then introduce a hybrid version for the DG
method for the hyperbolic subproblem £ 0). The scheme for the intermediate convection—diffusion
problem then results by simply adding up the bilinear and linear forms of the limiting subproblems.

2.2 Diffusion
For p = 0 equation (2.1) reduces to the mixed form of the Dirichlet problem
c=—€Vu, dive=f inQ, u=0 onoQ, (2.2)

and the corresponding (dual) mixed variational problem reads
1
Z(a, 7)1, — (U, divt)g, =0 vVt e H(div, Q),

dive, v)7, = (f,0)7, Vo e LA(Q).

While a conforming discretization of(2) allows us to also easily obtain conservation on the discrete
level, it also has some disadvantages: the resulting linear system is a saddle-point problem and involves
considerably more dofs than a standard (printit}conformingdiscretization of 2.2). Both difficulties

can be overcome by hybridization (&rnold & Brezzi, 1985;Brezzi & Fortin,1991;Cockburnet al.,

2009). Let us briefly sketch the main ideas: instead of requiring the discrete fluxes tdlgdiin ),

one can use completely discontinuous piecewise polynomial ansatz functions and ensure the continu-
ity of the normal fluxes over element interfaces by adding appropriate constraints. The corresponding
discretized variational problem reads

1
Z(Uh,fh)ﬁ (Un, divzh) 7, + (Ah, Thy)o, =0 Vn € Zh,

(diven, on) 7, = (f,0)7, Von € Vh,
(o, un)em, =0 Y un € Mh.

Note that the choice of finite-element spaces allows us to eliminate the dual and primal variables on
the element level, yielding a global (positive definite) system for the Lagrange multipliers only. The
global system has an optimal sparsity pattern and information on the Lagrange multipliers can be used
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furtherto obtain better reconstructions by local postprocessing. We reférrtold & Brezzi (1985),
Brezzi & Fortin (1991) andStenberg(1991) for further discussion of these issues and come back to
postprocessing later in Sectidn

After integration by parts, we arrive at the following hybrid mixed finite-element method.

METHOD 2.1 (Diffusion) Find(oh, Un, An) € Zh x Vi x Mp suchthat

Bp(oh, Un, Ah; Th, 0h, 1th) = Fp(th, vh, ih) (2.3)
for all 7, € Xy, vn € Vh andup € My, whereBp andFp aredefined by

Bb(oh, Uh, Ah; Th, Oh, fh)

1
= Z(Uh, th) T, + (VUn, th) 7, + (Ah — Un, h)a7 + (0h, Von) T, + (ohv, uh —on)err,  (2.4)

and
Fo(zh, vh, un) == —(f, on)7;. (2.5)

We only mention that the case= 0 on some elemenfE can be allowed in principle. For these
elements the terné(ah, 7h)T justhas to be interpreted ag|T = 0.

REMARK 2.2 Let X := [HL(Th)]9, V := HL(Th) and M = {u € L2(&y): ¢ = 0onoQ}, and let

W = X x V x M denote the continuous analogueWd,. The above bilinear form is then defined

for all (o, u, A; th, oh, un) € W & Wh x Wh. This property will be used below to show consistency

of the method and to obtain Galerkin orthogonality. Using appropriate lifting operatdré(7,) —

2h, the terms involving integrals over the boundary can be replaced by volume integrals, for example,
(Ah — Un, thv)aT, = (L(Ah — Un), 7h)7;, @nd in this way Metho@.1 can be well defined oWy @

W) x Wh & W). Suchextensiongre used, for example, Perugia & Scbtzau(2002) andHoustonet

al. (2007) for thehp-error analysis of DG methods under minimal regularity assumptions.

Method?2.1is algebraically equivalent to the conformiiily x Py discretizatiorof the dual mixed
formulation of (2.2) and can be seen as a pure implementation trick. Below we will analyse Method
2.1in a somewhat nonstandard way, including the gradient of the primal variable and the Lagrange
multipliers explicitly in the energy norm. This kind of analysis is quite close to that of DG methods for
elliptic problems and allows us to investigate the mixed method together with the DG method for the ¢
hyperbolic subproblem in a uniform framework.

2.3 Convection
By settinge = 0in (2.1), we arrive at the limiting hyperbolic problem
div(fu) = f in Q, u=0 onaQ™M. (2.6)

Multiplying (2.6) by a test function € H(7p), and adding upwind stabilization, we obtain the DG
method for hyperbolic problem&geed & Hill, 1973;LeSaint & Raviart 1974;Johnson & Pitkranta,
1986)

(@iv(Bu), v)7;, + (Br(UT —w), )57 = (f,0)7;,
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whereut := u|,7+ denoteshe upwind value an@* is the upwind element, i.e., the element attached
to E wherefv = g - vt > 0. To incorporate the boundary condition we define= 0 ono Q™. After
integration by parts and noting that= u* on 6 T°", we obtain that

(u, Vo), — (Bvut, D)a/];]in — (pvu, D)aﬁout =—(f,0)7.

In order to make the DG method compatible with the hybrid mixed method formulated in the S2&tion
let us introduce the upwind value as a new variable- ut, and let us define the symbol

., EcoTh,

A/u} =
tA/u) {u, E coTou

forall T e 7y. Note thatt = {//u} = u™ onboth sides oE, and so{1/u} is just a new characterization
of the upwind value. After discretization, we now arrive at the following hybrid version of the DG
method.

METHOD 2.3 (Convection) Findup, An) € Vi x My, suchthat

Bc(Un, An; on, #n) = Fc(oh, fh) (2.7)
for all (vn, tn) € Vh x My with
Bc(Un, Ah; oh, #n) = (Un, SVon) 7, + (Bv{Ah/Un}, h — vh)aTs (2.8)
and
Fc(on, un) = —(f,0)7. (2.9)

By construction, Metho@.3is algebraically equivalent to the classical DG method. This can easily
be seen by testing withy, = yg, which yields thatln, = up™ onthe element interfaces. All terms
of the bilinear form are again defined element-wise, which allows us to use static condensation on the
element level. Moreover, as in the case of pure diffusion, the bilinear f¢manbe extended onto
W @ Wh x Wh, which then allows us to derive consistency and use Galerkin orthogonality arguments.
On facetskE wherefv = 0, the Lagrange multiplier is not uniquely defined, and welset0 there.

2.4 Convection—diffusion regime
Let us now return to the original convection—diffusion problem and consider the system
c+eVu=0, dive+puy="Ff inQ, u=0 onoQ. (2.10)

Since we used the same spaces for the discretization of the elliptic and hyperbolic subproblems, the two
hybrid methods can be coupled in a very natural way by simply adding up their bilinear and linear forms.
This yields the following hybrid mixed DG method for the intermediate convection—diffusion regime.

METHOD 2.4 (Convection—diffusion) Findon, un, An) € (Zh, Vh, Mp) suchthat

B(on, Un, Ah; Th, 0h, fth) = F(0h, Un, Ah) (2.11)
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forall zn € Zh, vn € Vy andup € Mp, whereB3 andF are defined by

1
B(oh, Un, 4h; Th, Dh, 4h) :Zz(o'h, th) 7, + (VUn, Th)7;, + (Ah — Uh, ThY) a7y,

+ (oh + Bun, Von) 7, + (onv + fv{in/un}, unh —on)e7, (2.12)
and
F(th, vn) = —(f, on) 7. (2.13)

By testing withun, = yg for E € &, we obtain thatbhve + Sve{in/un} is continuous across
element interfaces. Heng= denoteshe unit normal vector oe with fixed orientation. Thusy and
onve + Bve{in/un} have unique values on the element interfaces and can be considered as discrete
traces foru and the total fluxe + Su.

2.5 Consistency and conservation

Before we turn to a detailed analysis of the finite-element Metf2oi2.3and2.4, let us summarize

two important properties that follow almost directly from the corresponding properties of the mixed and
the DG methods for limiting subproblems. For the sake of completeness, we sketch the proofs in the
present framework.

PrRoOPOSITION 2.5 (Consistency) Method2.1, 2.3 and 2.4 are consistent. That is, let denote the
solution of the problems2(2), 2.6) and 2.10), respectively, and defime= —¢Vu andi1 = u. Then
the corresponding variational equatio2s3), (2.7) and (2.11) hold #y, up and A arereplaced by,
uandi.

Proof. We first consider Metho@.1. Letu denote the solution 0f2(2) and make the substitutions as
mentioned in the proposition. Then we obtain by testing the bilinear #smith (zp, 0, 0) that

BD(—GVU, u, u; zh, Oa 0)

= —(VUu, th) 7, + (VU, th) 7, — (U= U, thv)aTinee — (U, ThY)oQ

= —(U, thv)se = 0.
Next we test with(0, v, 0) andintegrate by parts to recover
BD(_EVU, u, u; 0; Uh, O) = —(le(—eVU), Uh)ﬁ = _( f; Dh)7—|:]5

whichfollows sinceu is the solution of 2.2). Finally, testing with0, 0, u«) we obtain that

au
Bp(—€Vu,u,u; 0,0, un) = <—€—»ﬂh> =0,

whichholds since div(Fu) = f e L2 impliesthate Vu e H (div; 2) and thus the normal fluxe 2 is
continuousacross element interfaces. Note that, at this point, we formally require some extra regularity,
for exampleu € H1(Q) N H32+(Ty) or6 = —eVu € LS(Q) for somes > 2, in order to ensure

that the momentge 24, 1) arewell defined forun € My (cf. Brezzi & Fortin, 1991). As already
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mentionedn Remark2.2, this extra regularity assumption can be dropped by appropriately extending
Bp. In summary, we have shown that Methdd is consistent.

Next consider Metho@.3 and letu denote the solution 0f2(6). Substitutingu for up and Ay in
(2.7)—(2.9)and testing with(vp, 0), we obtain after integration by parts that

Be(u, u; vh, 0) = (div(Bu), vn) 75, — (Bvu, vh),oin = —(f, on) 7.

Now test with(0, un). Then we have

Be(u, u; 0, un) = (Bvu, pn)ery, =0

sinceu and up, aresingle valued an@v appears two times with different signs for each element inter-
face. Thus we have proven consistency of MetA@l

Finally, Method2.4is consistent as it is the sum of two consistent methods. O

While consistency is a key ingredient for the derivatioragiriori error estimates, conservation is a
property of the discrete methods that is desired for physical reasons since it inhibits unphysical increase
of mass or total charge. This is particularly important for time-dependent problems. If a finite-element
scheme allows us to test with piecewise-constant functions, then conservation can be shown to hold
locally (for each element) as well as globally as long as the discrete fluxes are single valued on element
interfaces.

PROPOSITION2.6 (Conservation) Method®.1,2.3and2.4are locally and globally conservative.

Proof. Let us first show the local conservation of Methhd by testing (2.3) with(0, yT, 0). This yields
—(f, )1 = Bp(Un, 4n, 0n; 0, x1,0) = —(onv, L)ot,

thatis, the total flux over an element boundary equals the sum of internal sources, and hence the method
is locally conservative. By testing wittd, 0, yg) for someE e &,, we obtain continuity of the normal
fluxesonv acrosselement interfaces, and so the scheme is also globally conservative. Now consider
Method2.3. Testing with(yT, 0), we get

(fa 1)T = BC(Uh, iha XT>» 0) = (ﬁviha 1)6Tin + (ﬁvuhn 1)5TOUta

andso the total flux over the element boundaries equals the sum of internal sources and fluxes over
the boundary of the domain. Note that{in/un} definesa unique flux on element interfaces. Now let
E € &, suchthatE = 0T N oTY. By testing with(0, y&), we obtain that

0= Be(un, 4n; 0, xg) = (vitn/Un}, 1)srou + (Bviin/un}, 1)srin
= (fvun, L)srou + (Bvin, 1)6Ti2n,

andso the total outflow over a facet on one element balances the inflow over the same facet on the
neighbouring element.
Finally, Method2.4is conservative as it is the sum of two conservative methods. O

3. A priori error analysis

As already mentioned previously, our analysis of the hybrid methods under consideration is inspired
by that of DG methodsJphnson & Pitkranta, 1986;Arnold et al.,2002). In particular, we will utilize
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similar mesh-dependent energy norms for proving the stability and boundedness of the bilinear and

linear forms. We will show the stability of Methdi1in the norm

1 € 172
Iz, v, o = (;nrn% + el VollF, + 14 = uléﬁ) : (3.1)

andthe stability of Metho®.3will be analysed with respect to the norm

n
1Bl

Hereby |£| and|fv| we understand appropriate boundsgandpgv, respectively, on single elements or
facets. Note that, for ~ hg (the crossover from the diffusion-dominated to the convection-dominated
regime), all terms in (3.1) and (3.2) scale uniformly with respeet, t6 andh. For proving the bound-
edness of the bilinear forms we require the following slightly different norms:

1/2
|||(u,z)|||c:=( ||,6'Vu||%—h+|ﬂv||z—u|§7—h) : (3.2)

h 1/2
Iz, v, )llp.x = (m(r, v, WIIE + ;|w|§ﬁ) (3.3)
and
Bl o 2\
(U, Dlic.. = (Tnunﬁ + |/fv||u/u}|a¢h) : (3.4)

Thesenorms scale again in the same manner with respeltt écand g as their counterpart8(1) and

(3.2), and therefore it can be shown easily that the additional terms do not disturb the approximation.

3.1 Pure diffusion—Method.1
Below we will require the following preparatory result.

LeEMmA 3.1 Leton € Vy andun € My begiven. Then there exists a unique solutiore 21, defined
element-wisdy the variational problems

(, p)1 = (Yo, )TV p € [Pr-1(T)]C,
(Tv, Q)aT = (unh, a1 Vg € Px(0T).

Moreover, there exists a constant only depending on the shape of the elements such that

- 1/2
1zl <o (IVonl3, + hlenlZy ) (3.5)

holds.

Proof. The existence of a unique solutignfollows with standard arguments, and the norm estimate
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then follows by the usual scaling argument and the equivalence of norms on finite-dimensional spaces

(cf. Brezzi & Fortin(1991) for details). O
Since the estimate (3.5) uses an inverse inequality, the corgtal@pendson the shapes of the
elements. Lemma&.1 now allows us to construct a suitable test function for establishing the following

stability estimate.
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PrRoOPOSITION3.2 (Stability) There exists a positive constantthatis independent of the mesh size
such that the estimate

sup Bp(oh, Uh, Ah; Th, Dh, fh)
(th,0h,1h) l(zh, vh, un)lio

holdsfor all (on, Un, Ah) € Zh X Vh x M.

> cplll(on, Un, An)llp (3.6)

Proof. Let us start with testing the bilinear forra.4) with (o1, —un, —4n), which yields

1 2
Bo(on, Un, Zn: on, —vh, —4n) =_llonl7;

Now let 7 be defined as in Lemntalwith up, replacedoy ﬁ(/lh — up) andVoy, replacedoy € Vuy, so
that

1/2
2
- €
1zl < ci (Fuh — unl3y +ez||Vuh||ZTh) (3.7)

holdswith a constant; thatis independent of the mesh sizeFory > 0 we then obtain

Bp(oh, Uh, 4n; y 7, 0,0)

1 3 s
=y Z(Uha 7)7, + 7 (Vun, T)75 + 7 (Ah — Un, T)a7;

1 2 72 ~12 2 € 2
> —o-llonl, — S 1705, +7 (envunl, + Flin = unl?7;)

1 2 ciy? 2 € 2
P —leﬂhllfrh + (V o (EIIVUhIITh + ﬁMh - Uhlafrh> )

wherewe have used (3.7) for the last estimate. The assertion of the proposition now follows by choosing
y = 1/c; andcombining the estimates for the two choices of test functions. O

REMARK 3.3 The constantp in (3.6) depends on the constat of (3.5) and thus on an inverse
inequality. To make the dependence on the polynomial ddgeglicit let us slightly change the def-
inition of 7 by requiring thattv = h=1k?(4, — up) anddefine the energy norm bijon, un, Anll3 =
||ah||?rh + ||Vuh||§rh + h= k2| ah — uh|§Th. Then one can show that the ellipticity estimate holds with
cp = Epk~Sfors > 1/2andép isindependent df. Therefore we will observe suboptimality of the error
estimates with respect to the polynomial degtrellote that the scaling of the jump teriis, — un|s7;,

is the same as the one used in the-error analysis of DG methods (dPerugia & Scbtzau,2002;
Houstonet al.,2007).

After using Galerkin orthogonality in the analysis below, we will need the boundednéd%s o
thelarger spacéV & Wh x Wh.

ProPOSITION 3.4 (Boundedness) There exists a const@ptthatis independent oh such that the
estimate

|Bp(a, U, 4; th, vh, un)| < Copll(e, U, Hllp,«ll(zh, oh, un)lio (3.8)
holdsfor all (o, u, 1) € W @& Wy, and(zh, vh, in) € Wh.
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Proof. We only consider the terri. — u, zhv),7;, in detail. Using the Cauchy—Schwarz and a discrete
trace inequalityzhv|st < \/LH llzh T, we obtain|{A —u, thv)st| < \thl'l —Ula7; lInllT. The result then
follows by standard estimates for the remaining terms and summing up over all elements. [

The above discrete trace inequality cannot be used for the term invatvirginces € W ® Wh.
Thereforean additional term appears in the nojffm||ip, ..

3.2 Pure convection—Metho?l 3

Since Metho®.3is equivalent to the DG method for hyperbolic problems, our analysis is carried out in
a similar manner to that presentedlishnson & Pitiranta(1986).

PROPOSITION3.5(Stability) There exists a constary thatis independent of the mesh sizsuch that
the estimate

Bc(Un, An; on, 1h)

= ccll(un, An)llic (3.9)
(vh>1h) l(h, un)lic
holdsfor all (up, 4n) € Vh x M.
Proof. We start by choosing test functiong = —up and 4, = —2p. Since divg = 0, we have

(un, BVuUp)T = %(ﬁvuh, Un)sT oneach element, and thus
Bc(un, 4h; —Un, —4n)
= —%(ﬂvuh, Un)oTy, + (Bv{An/Un}, Un)aTy, — (Bv{An/Un}, in)aT,
=D+ @+ = ().

Recallthat A, equalsd ono R, and let us rearrange the terms (1)—(3) in the following way:

1 1 , 1 5
1) = —§<ﬂvuh, Un)oTr, = §|5V||Uh|a7;in - §|,3V||Uh|57?]out,
(2) = (Bv{in/un}, Un)or, = Iﬂvlluhlgﬁom = |Av1{Zn, Un)s7in,

(3) = —(Bv{n/un}, An)os, = 1BVII2nIZ 70 — 1BVI(n, Un) oo

Now let T; and T, denotetwo elements sharing the facet= aTg“t N aT‘Z”. Sincely, is single valued
on E by definition, we havelmmgur = /1h|0-|—i2n, which means that we can shift the terms only involving

the Lagrange multiplier between neighbouring elements. Summing up, we obtain that

1 2
() = S1BvIlin = unlr,.

Let us now include a second term in the stability estimate by testing the bilinear formowita
7 W?l'b)vuh for somey > 0, which yields
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(Un, BV(BVU)) T, + %; (Bv{in/Un}, BVUn)oT,

rh

Bc(un, An; on, 0) = “ 1Bl

yh

yh 2
= —||fVun[% +
PVl + g

7] (Bv(Zh = Un), BVUn)o7in

h
>cp (mnﬂwhn%—h — 1Bv]lAn — uh|57—h) .

For the last estimate we used Young’s inequality and a discrete trace inequality. The result now follows
by choosingy = 4—1C and combining the estimates for the two different test functions. Note that, by
inverse inequalities and due to our scaling gfwith h/| ], it follows that ||| (vn, O)lllc < Clll(un, O)lic

with a constan€ that is independent of the mesh size. O

PrRoPOSITION 3.6 (Boundedness) There exists a consi@ptthatis independent oh such that the
estimate

|Bc(u, 4; vn, n)l < Celll(u, Dlic,«ll@n, un)lic (3.10)

holdsforallu € V @ Vh, A € M @ My and(vn, un) € Va x Mhp.

Proof. The assertion follows directly from the definition of the norms and the Cauchy—Schwarz
inequality. O

3.3 Convection—diffusion—Methai4

Due to the structure of Methdl4as the combination of Metho@s1and2.3, the stability and bounded-
ness of the bilinear forn2(12) follow almost directly from the corresponding properties of the bilinear
forms for the limiting subproblems. The appropriate norms for the analysis of M@thade given by

ll(@h, U, A0l = (l(oh, Un, 20113 + (1 (Un, An)112)Y2 (3.11)
and
(e, u, Vil = (o, u, VB, + i, HIE )2, (3.12)

i.e.,they are just assembled from the norms used for the analysis of the elliptic and hyperbolic subprob-
lems. Note that all terms in the norm scale appropriately. For example, in the diffusion-dominated case
(I181h < €) the terms coming from the convective part can be absorbed by the terms stemming from the
stability of the diffusion part. Let us now state the propertie af detail.

PROPOSITION3.7 (Stability) There exists a positive constagtnotdepending on the mesh siaesuch
that
B(oh, Un, Ah; Th, h, ih)

sup > cglll(on, Un, An)ll (3.13)
(th,0h>1h) l(zh, vh, un)ll

holds for all(on, Un, An) € Zh x Vh x Mhp.

Proof. We will show the inf—sup stability by testing with the functions used in the previous stability
estimates, i.ezh = on + a7, 0n = —Un + %ﬁVuh andun = —4n. In view of Propositions3.2 and
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3.5,it only remains to estimate the additional term coming from the test funqzt@fﬁVuh insertedn
the diffusion bilinear form, namely,

h h
Bp0 (ah, Un, Zh; 0,y — B VU, 0) (ah, V(BVUn)) + 7 —(onv, BVUn)

121 " 18l 11

VL‘Tl(dWUh . fVun) = —y mllleUhllllﬁVUhll

= —Cy (—||0h|| + €[[Vunll ) —cy [I(oh. un, An)lI3.

Thisterm can be absorbed by the stability estimate for the diffusion problem as lgngsaosen to
be sufficiently small. Note that does not depend dm, ¢ or 3, i.e., the stability constarg doesnot
depend on these parameters. |

The boundedness of the bilinear form follows directly by combining the two results for the limiting
subproblems.

COROLLARY 3.8(Boundedness) There exists a cons@@sithatis independent of the mesh sizasuch
that

|B(o, u, A; th, vh, un)| < Calll(a, u, Ml (zh, vh, n)ll (3.14)
holds for all(c, u, 1) € W & Wh and(zh, vh, th) € Wh.

Asa lastingredient for deriving theepriori error estimates, we have to establish some approximation
properties of our finite-dimensional spaces with respect to the norms under consideration.

3.4 Interpolation operators and approximation properties

Let us start by introducing appropriate interpolation operators and then recall some basic interpolation

error estimates. FoF e 7?1, E e &, andfunctionsu € L2(T) andA € L2(E) we define the local 2-
prOJecuonsHk u andH A by

(U—=TIIJu,on)T =0 VYop e P(T)
and
(2 — I, pn)e =0 Y up € Pe(E),

respectrely. These interpolation operators satisfy the following error estimate8fefiner & Scott,
2002).

LEMMA 3.9 Let 17kT andeE bedefined as above. Then the estimates

lu— 7] ullt < Ch|ulsT, 0<s<k+1,
IV(u— I u)llt < Ch¥|ulssaT, 0<s<k,
lu— 17 ullot + [lu — Mgullat < Ch Y 2Julsya 7, 0<s <Kk,

hold with a constan€ that is independent df.
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The corresponding interpolation operators for functionsjigrand&y, aredefined element-wise and
are denoted by the same symbols.
For the flux functiors we utilize the Raviart—-Thomas interpolant defined by

(0 = IITo, p)T =0 ¥ppe[Pea(M]Y,
((O‘—HETO')V,,Uh)EZO VuneP(E), EcCoT.

In order to make moments ofv to be well defined on single faceEs one has to require some extra
regularity, for examples € H(div, T) N LS(T) for somes > 2 ore € H1/2+¢(T) (cf. Brezzi& Fortin,
1991). Under such an assumption, the following interpolation error estimatesBraez{ & Fortin,
1991;Toselli & Widlund, 2005).

LEMMA 3.10 Let 71X bedefined as above. Then the estimates
lo — I8 It + 02 — IT owllor < Ch%lolsT, 12 <s<k+1,
Idiv(e — 177 o)t < Ché|dive s, 1<s<k+1,

hold with a constanC that is independent df.

Applying these results element-wise, we immediately obtain the following interpolation error esti-
mates for the mesh-dependent norms used above.

PROPOSITION3.11 Letu € H1(Q) N H32+ (7)) andsets := —eVu. Then
e — I8 o, u— 1 u, 2 — IITW)|Ip.. < ChSVelulsy17, 1/2 <s<Kk, (3.15)
andfor u € H1(Q) we have
= 1y, 2 = I8 Wllc.. < ChHY2/Blulsa 7, 0<s <K, (3.16)

with constant$ not depending on or h. The same estimates hold if thenorms are replaced by their
counterparts without.

REMARK 3.12 The estimates of Propositid111hold with obvious modifications if the smoothness
or the polynomial degrek varies locally. We assume uniform polynomial degree and smoothness only
for ease of notation here.

The interpolation error estimat8.@5) is suboptimal regarding the approximation capabilities of the
flux interpolant. In fact, by Lemma.10, one can obtain

1
—llo =8| < ChSelulsy17, forl/2 <s< k41,

Je

and so the best possible ratéls ! insteadof h* asfor || - [Ip in (3.15). We will use this fact in Section
4 to derive superconvergence results for the primal variagle

3.5 Anpriori error estimates

The error of the finite-element approximation can be decomposed into an approximation error and a

discrete error. Leton, Un, An) denotethe discrete solution of(11), and let be the solution 0fZ.10)
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anddefines := —eVu. Then we have
(e — on,u—un,u—An)ll

<o = I8, u— I u,u — DEW|| + I(TIF 6 — on, IT] u — un, IIFu— )|l (3.17)

Using the stability and boundedness of the bilinear form and applying Galerkin orthogonality, the second

term can now also be estimated by the interpolation error.
PROPOSITION 3.13 Let (on, Un, An) € Wh denotethe solution of (2.11), and lat € H(Q) N

H3/2+¢(Ty,) bethe solution of the convection—diffusion proble®10). Then there exists a constant

C that is independent of the mesh skzsuch that the estimate

I(IET (=€ Vu) = on, IT] U — un, IIEU — An)ll < ChS(Ve + hY2/18D)uls 1.7
holdsfor 1/2 < s < k.

Proof. Let us defines = —eVu andi = u. By an application of the stability estimatg.§), Galerkin
orthogonality and the boundedne8s3) of the bilinear form, we obtain that

RT T E
cell(1 " o — on, I, U —Uun, I, u — Ap)|l

< sup BUIFG = on, IT{ U — un, IIgU — An; th, oh, #0)/ (7, o, )l
(h,vn, ith)

= sup BUIFo —o, ] u—u, IIEU — U; th, oh, 1)/ Il (th, o1, 0l
(Th,0h, /h)

< CallUIT e — o, 1T u — u, ITgu — W)

Theassertion follows directly from (3.15). O
The complete error estimate can now be derived by combirdrig{ and Propositio8.11.

THEOREM 3.14(Energy norm estimate) L&by, un, An) bethe finite-element solution of Methdtl4,
and letu € H1(Q) N H32+¢(Ty,) denotethe solution of 2.10) ands := —e Vu. Then

(6 = oh, U= Un, u— An)ll < ChS(/€ + hY2/18D ulst 1.7

holdsfor 1/2 < s < k with a constanC that is independent of the mesh size

In the convection-dominated case the error estimate coincides with the well-known error estimates

for the DG and the streamline diffusion method for hyperbolic problemsi@inson & Pitiranta,
1986;Johnson & Saranen986).

COROLLARY 3.15 Lete < |f|h on each element, and let the conditions of TheoBebd hold. Then
the estimate

(e = on, u—un, u—2n)ll < Ch*2/1B]1uls 1,75
holdsfor 1/2 < s < k with a constanC that is independent of the parameteyg andh.

This estimate holds, in particular, for the limiting hyperbolic problem=(&), in which caser =

oh =0and||(z, v, Wl = l(v, ©)|lc, and so Metho@.4 collapses to Method.3, i.e., the DG method

for hyperbolic problems.

9702 ‘0T BNBnY Uo AislBAIUN umolg e /Bio'sfeulnolpioixoeulewl//:dny wouy papeojumoq


http://imajna.oxfordjournals.org/

1222 H. EGGER AND J. SCH®BERL
By analogy with standard error estimates for mixed methods for the Poisson problem, we obtain the
following convergence result in the diffusion-dominated regime.

COROLLARY 3.16 Lete > |f|h and let the conditions of Theore®14hold. Then the estimate
(6 = oh, U—Un, 2 = An)ll < ChVelulsy1 7,

holdsfor 1/2 < s < k with a constaniC that is independent of, f and h. Moreover, we have
(- o~ k- -

Clearly, this estimate also holds for Meth@dl in the case of pure diffusion. Let us remark once
again that all terms in the priori error estimates are defined locally, and so the smoothnesssradek
the polynomial degrek can vary locally, allowing foh p-adaptivity.

4. Superconvergence and postprocessing for diffusion-dominated problems

The best possible rate feﬁna — onll guaranteedy Theorem3.14and Corollary3.16is h¥, which
is one order suboptimal regarding the interpolation error estimate of LeBabfa It is well known,

however, that in the purely elliptic case the optimal taté! canbe obtained by a refined analysis, and

we will derive corresponding results below. Since we consider the case of dominating diffusion in this
section, we assume for ease of notation that 1 in what follow.

4.1 Refined analysis for pure diffusion

Although the estimate3(15) is optimal concerning the approximation error with respect to the norm
Il - llo, we can obtain better error estimates o= —Vu, i.e., we will show thatjc — on|| depends
only on the interpolation errgfe — H,BTJ |, and thus optimal convergence e canbe expected. We
refer toArnold & Brezzi (1985),Brezzi & Fortin(1991) andStenberg1991) for corresponding results

in the mixed framework.

PROPOSITION4.1 Let (o, Un, 4n) denotethe solution of 2.3) and let ands := —Vu be the solution
of problem @.2). Then

ll(oh — &, un — IT] U, An — ITEW)||Ip < Ch®|ulsy1 T (4.1)

holdsfor 1/2 < s < k + 1 with a constan€ that is independent df.

Proof. Let us first consider the following term:
BD(HETO' -0, HJU —-u, HEU — U; Th, Dh, Ah)
= (HkRTJ —0,Th) T, — (HkTu —u, diven)aTy, + (HkEu — U, thV)eTr,
+ (diVUITT o — o), on) 7, + (TIF 0 = o)v, un)a,
= (HkRTU — 0, Th)T;,

wherethe last equality follows from the definition of the interpolants. Then, in the same manner as in
the proof of Propositio3.13, we obtain that

RT T E RT
collZ1 o = on, I, U — Un, I, u = An)llo < 1] o — o,
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andthe statement follows by an application of the triangle inequality and the interpolation error estimate
(3.15). O

Note that, for the modified errod(1), the best possible rate nowhi§t, which is optimal in view
of the interpolation error estimates. As we show next, the estimatf{ﬂ[bu — Up) and(HkEu — An)
caneven be improved if we assume that the domairs convex (cf.Stenberd1991) for similar results
in the mixed framework).

PROPOSITION4.2 Let Q be convex andi € H1(Q) N H3/2%(Ty) bethe solution of (2.2). Moreover,
let u, denotethe discrete solution obtained by Meth®d.. Then the estimate

u , k=0,
|17l u — upllo < Chs*tt Uls+27, (4.2)
lulsi1.7, k>0,

holdsfor 1/2 < s < k+ 1 whenk > 0 and 0< s < 1 whenk = 0. If, in addition, f is piecewise
constant then

1179 u — unllo < Ch*ulsy1 7 (4.3)

alsoholds fork = 0.

Proof. Let¢ e Hol(Q) denote the solution of the Poisson equatiap = HkTu— up with homogeneous
Dirichlet conditions and let := V¢. Due to the convexity of?, we have

I¢llz.0 < cliTyu—unlo and ¢ — ITg ¢l < ch™ L2y 7Ty — uplo.
Usingthe definition ofy andz, we obtain that
I17J u = unll3 = (I1] u — up, divz) = (1] u — un, div(ITT"2)) = (6 — on, 177 2)
= (0 —on, I 2= V) — (div(c — on), ¢ — I1] $)
< llo = onllollZZTz = Vlio + lIdivie — an)llolig — 17 ¢llo.

Thefirst estimate now follows by Lemm2.10. If f is piecewise polynomial of orddsthen di e —
on) = 0, and so the last term in the above estimate vanishes and we conclude the second as&eértion.

4.2 The diffusion-dominated case

Let us now show that similar results still hold in the presence of convection as long as diffusion is
sufficiently dominating. In this case we can discretize the convective term without upwind stabilization,
and we therefore consider the following bilinear form instead?d)

BRY(Un, 2h; vh, tth) = (Un, BV0R) T, + (BV2h, fth — Oh)oTr - (4.4)

Sucha discretization for the convective part was previously investigated numerically but not analysed
in Farhoul & Mounim(2005) for a one-dimensional problem. There the authors conjectured that this

discretization already introduces some stabilization, which is not the case, as is clear from our analysis.
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Consistencynd conservation. Substituting the continuous solutiarfor uy andp in (4.4), we obtain
after integration by parts that

—(div(pu), vn) 7y, + (Bvu, un)ery, = —(div(pu), von) 1, = (=, on) 7,

andso the bilinear fornB('\:'U is consistent. The scheme is also conservative since thgfldx in (4.4)
is single valued on element interfaces. Moreover, we have

Be(Un, Ah; oh, fth) = BYY (Un, Zn; oh, #0) + 1V](Ah — Un, ith — vh)7RM, (4.5)

which clarifies what kind of upwind was used for the DG stabilizationZr8].

Stability. Testing the bilinear fornBXY with vn = —up andun = —2n, we obtain that
BRY(un, 2h; —Un, —4n) = —(Un, BVUR) T, — (BvAn, Zh — Un)oT;

1
= —§<ﬁvuh, Unh)a7s, — (Bvih, Ah — Un)aTs,

1 1
= SIBvIIun = Al 7 = S1AvIIUR = 0l rou.

Notethat, by adding the stabilization terjiv|ju, — /lh|§T0ut, the last term becomes strictly positive,
h

ie.,

Be(Un, n; —Un. =2n) = BE" (Un. Zn; —Un, —An) + 18v12n = Un|Z;-ou

1 2
= S1BvIlin = unl3r,

andwe recover the first part of the stability estimate of Proposi8idn
Following the approach for the convection-dominated case, we now consider the following method
for the diffusion-dominated regime (cf. als@rhoul & Mounim,2005).

METHOD 4.3 (No upwind) Find(on, Up, An) € Wh suchthat
BNY(an, un, An; th, vh, ) = F(on, fth) (4.6)

holdsfor all (zh, vh, h) € Wh, whereBNY := Bp + BRY.

For the proof of stability of the bilinear fornBNY we require that the convection is sufficiently
small. A sufficient condition is given by

1Bv112n — unl37 < coll(on, un, Zn)lIB V¥ (on, Un, An) € Wh. 4.7)

REMARK 4.4 Recall that the stability constagt andthus the validity of condition (4.7) depend only on

the constant of an inverse inequality and thus on the shape of the elements. Moreover, since both norms
are defined element-wise, it is possible to decide for each element separately if stabilization should be
added or not. Clearly, (4.7) can be shown to holdisifn < cre is valid on each element, with the
constanty only depending on the shape of the individual elements.
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Using(4.7) as the characterization of dominating diffusion, we can now prove the following stability
result.

PrROPOSITION4.5 Let (4.7) be valid. Then the estimate

sup BN (an. un, Zn; h, o, sn) _ o
> =
(th,0h>Mh) ”l(Th, Oh, /‘h)mD 2

ll(oh, un, 2n)lI3 (4.8)

holdsfor all (o, un, 4n) € Wh with cp denotingthe stability constant of Propositidh?2.

Since the convective terms can be absorbed by the diffusion terms, the boundedness result of Corol-
lary 3.8 applies with|| - [« replacedoy ||| - llp, ). Using the stability estimatet(8), the followinga
priori error estimate is obtained in a similar manner as Propositibfor the purely elliptic case.

PrROPOSITION4.6 Let condition @.7) be valid andon, un, An) denotethe solution of Methodt.3.
Moreover, letu € H1(2) N H3/2%#(Ty,) denotethe solution of problem2.10) and se# := —Vu. Then

T E
ll(eh — o, un — Iy u, 2n — I, CU)lIp < Chojulsia 0

holdsfor all 1/2 < s < k + 1 with a constan€ that is independent df.

Proof. In view of Proposition4.1, we only have to ensure that the convective term does not disturb the
estimate. Following the proof of Propositidnl, i.e., testing with the same test functions as there, we
obtain the additional term

B (1] u — u, ITEU — u; on, un) = (1] U —u, BVon) 7, + (BvITEU — U), i — vp)ay, = 0

sincef Von € Px(T) oneach element anglv (un —vn) € Pk(E) for each facet. The result now follows
along the lines of the proof of Propositidnl. O

Propositiond.6 allows us to derive a superconvergence estimatﬁlﬂ?}u — Unll7;, asin the purely
elliptic case.

PROPOSITION4.7 Let Q be convex and be the solution 0fZ.10) with S satisfying (4.7). Moreover,
let up denotethe discrete solution of Metho#l3. Then

|u|S+2,7?19 k= 05

I u — upll7; < Chstt
lUlst1.77, k>0,
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holdsfor 1/2 < s < k+ 1 whenk > 0 and 0< s < 1 whenk = 0.

Proof. By means of Propositiod.6, the result follows in the same way as for Propositich O

Due to the lack of a condition dig — o1,) = 0, which is valid in the purely elliptic case, we cannot
obtain (4.3) here. So, in the lowest order case, superconvergence holds only under some additional
smoothness of the solutian

4.3 Postprocessing

The superconvergence results of the Sedli@tan now be utilized to construct better approximations
Un € Px+1(Tn) by local postprocessing. Here we follow an approach proposegtdayberg1991) for
the mixed discretization of the Poisson equati@r2) and construct our postprocessed solution from
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theapproximations of the primal and the dual variables. Alternative approaches based on the Lagrange

multipliers can be found ikrnold & Brezzi(1985) andBrezzi & Fortin(1991).
Let us defindip € Px+1(Tn) element-wisdy the variational problems

(Vup, Vo)1 = —(on, Vo)1 V0 € Pegr(T): (v, 1)1 =0,
(U, De = (un, DyT.
Thenthe following order optimal error estimate holds.

PrROPOSITION4.8 Let 2 be convex and denote the solution of (2.10) witk (7) being valid. Moreover,
let (on, Un, 4h) bethe solution of Method.3anduy, bedefined as above. Then

IV, — w7 < Ch¥ulsy1 7y
and
|u|S+2,7-hs k = 09

1
Iufy — ull7, < ChS*
Ulst177,, k>0,

forall 1/2 < s < k+ 1 with a constan€ that is independent of the mesh sfzd~ork = 0 the second
estimate holds for & s < 1.

Proof. Letlp € HY(Q) N Px,1(7h) denotethe finite-element solution of the standatd-conforming
finite-elementmethod applied to the solution 02.2). Then||V(u — Gn)ll7, < ChS|uls1 77, for 0 <
s < k+ 1. Moreover|ju — Gh] < Ch5+1|u|s+17h for 0 < s < k+ 1 since we assumed convexity Of
and f e L. Now definedy := (I — 71] ) (0 — uj). Then

IVonIF = (VI = 11g) (@ — Up), VoR)T = (V(bn = Up), Von)T
= (V(Gnh — u), Vop)T + (VU + onh, Vop)T
< IVonllr (VU = 0n)liT + llon + VulDT.
Summingup over all elements and using the estimategior Uy) andPropositiord.6yields
VU —=upllz < IVU=0n)l7 + 1V@@ = up)llz
= IV —=0n)li7 + IIVonli7,
< Ch¥|ulsy1, 75

which is already the first part of the result. In order to establish ltReestimatewe note that, by
Hgﬁh = 0, we obtain||onh||T < Ch|Vop| T viaan inverse inequality. Hence

lu—uflit < llu=Gnlit + 10n — upliT
< llu=anllt + I5nllT + 173 (@ — ui)liT
= [lu = Thlit + I8nliT + 1273 (Gn — Wt + 1113 (U — up) |7
Summingup over all elements, and using that
1175 (Gn — W)l < [l — ull7, < Ch¥ ™ ulsr 7,

andPropositiord.7, we conclude the2-estimate. O
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REMARK 4.9 In the purely elliptic casef{ = 0), with f piecewise constant, we can also obtain the
optimal estimateju — uj|| < h5+l|u|s+1;fh for the cas&k = 0 by using the estimatet(3) instead of
Propositiord.7.

5. Implementation and numerical tests

In Section5 we want to illustrate the theoretical results derived in the previous section by some numerical
tests. As a model problem, let us consider

—eAU+pBVu=f inQ:=(0,1)7

51
u=g onoQ, (1)

wheree and g are constant o®2. Since for the limiting hyperbolic problem our method is equivalent
to the DG method, we will compare our results mainly to those obtained by the streamline diffusion
method (Hughes & Brook4979;Johnson & Saraneti986;Johnson1987). We refer tédoustonet al.
(2000) for a detailed comparison bf»-versions of the streamline diffusion method with DG methods
for first-order hyperbolic problems.

The variational form of the streamline diffusion method is formally derived by usir@ Vo as a
test function in the variational formulation d.(l). Assuming thag) = 0 for simplicity, this yields the
following.

METHOD 5.1 (Streamline diffusion) Findi € H}(2) N H2(7n) suchthat

€(Vu, Vo)1, + (BVU,0) 7, + a[—e(Au, fVo) 7. + (FVU, fV0) T ]
= (f,0)7 +a(f, fV0).

In order to obtain stability of the method, the stabilization parameter has to be chosen appropriately, s
depending on the shape of the elements in the mesh. Typically, the stabilization parameter is of the orders
of h/| |, whereh is the local mesh size. For higher-order methods the polynomial degree also influences 3
the choice ofx (cf. Houstonet al., 2000). For our humerical tests below we use= 1 for problems
with dominating convection and we set= 0 if diffusion dominates.

/Bio'sfeulnolpiojxoeufew//:dny wouy papeojumoq
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5.1 Numerical tests

With the following examples we want to illustrate the performance of the hybrid mixed DG method
under the presence of boundary layers (Exan®p®, for discontinuous solutions and internal layers
(Example5.3), and for diffusion-dominated problems (Exampld). Throughout we will compare our
method using polynomials of ordkmwith the streamline diffusion method using polynomials of degree

k + 1. Thus, formally, the approximation properties of our finite-element spaces are one order less.
However, as our numerical results indicate, this affects the results only in the diffusion-dominated case,
where, according to our theory, we can increase the approximations by local postprocessing.

9T0Z ‘0T BNBnY U0 AlSIPAIUN

EXAMPLE 5.2 (Boundary layers) In the first example we get 0 and

= pily+ (@ —1)/A -/ + foll + (@ = 1)/ @ - )],
For e > 0 the exact solution td(1) is then given by

u(x, y) = [x + (" = 1)/@ - V)] - [y + (€2 — 1)/1 — 2],

i.e.,the solution has boundary layers at the top and right outflow boundaries.
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We sete = 0.01 andp = (2,1) and then solve the problem numerically for various mesh gizes
and polynomial degreds Tablel displays the errors of the numerical solutions obtained with Method
2.4and the streamline diffusion method.

Since the exact solution is essentially bilinear away from the boundary layers, one cannot expect to
gain much from further increasing the polynomial degree. As the problem gets more and more diffusion
dominated with decreasing mesh sizethe error of the hybrid mixed method decays with the rate
hk+1, which is the order of the best approximation error. While we showed that optimal rates hold if
stabilization is omitted in the diffusion-dominant case, the optibfakrror estimate for the stabilized
Method2.4is not yet covered by our theory.

Since in our example the location of boundary layers is determangdbori, one could, of course,
also use locally refined meshes (see Big.

ExamPLE 5.3 (Discontinuities and internal layers) For the second test case Wies@&andg = (2,1)

as before, and = 107%. So we are dealing with an (almost) hyperbolic problem. Additionally, we
introduce a discontinuity in the boundary conditions, i.e., weugbty) = H(y — 0.5) on the left
inflow boundary H (-) denotes the Heavyside function) and weset 0 on the remaining part of the
boundary. The exact solution fer= 0 (the boundary conditions at the outflow boundaries have to be

TABLE 1 L2-errors obtained for Exampl8.2 with e = 0.01and # = (2,1) on uniformly refined
meshes with mesh size h using polynomials of drtder

Streamline diffusion Mixed hybridDG
h k=1 Rate k=2 Rate k=3 Rate k=0 Rate k=1 Rate k=2 Rate
1.0000 0.227 0.223 0.215 0.162 0.082 0.07188

0.5000 0.199 0.19 0.177 0.33 0.160 0.42 0.089 0.87 0.064 0.35 0.02859 1.33
0.2500 0.142 0.48 0.114 0.64 0.097 0.72 0.070 0.33 0.029 1.14 0.00874 1.71
0.1250 0.089 0.68 0.059 0.94 0.048 1.01 0.044 0.66 0.011 1.41 0.00209 2.06
0.0625 0.050 0.81 0.025 1.22 0.017 1.48 0.025 0.81 0.003 1.71 0.00034 2.63
0.0313 0.027 0.89 0.009 1.47 0.004 2.06 0.013 0.92 0.001 1.91 0.00002

L P

Netgen 4.5 4 -

FIG. 1. Example5.2: exact solution and locally adapted mesh with 878 elements.
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TABLE 2 L2-errors of streamline diffusion(k) and hybrid mixed DG(k) method obtained for Example
5.3 with e = 107 andb = (2,1) on uniformly refined meshes with mesh size h and polynomial
degreek

Streamlinediffusion Mixed hybridDG
h k=1 Rate k=2 Rate k=3 Rate k=0 Rate k=1 Rate k=2 Rate
0.5000 0.408 0.300 0.275 0.299 0.182 0.133

0.2500 0.328 0.31 0.243 0.30 0.227 0.28 0.222 0.43 0.139 0.39 0.098 0.44
0.1250 0.245 042 0.186 0.39 0.174 0.38 0.181 0.29 0.109 0.34 0.080 0.28
0.0625 0.179 045 0.138 0.43 0.129 043 0.150 0.27 0.087 0.33 0.064 0.32
0.0313 0.131 0.45 0.101 0.45 0.094 0.45 0.112 0.42 0.069 0.34 0.05%

omittedin this case) is given by

1, y> 050+ x),
0, otherwise.

ux,y) = [
We use the solution of the purely hyperbolic problem for the calculation of the numerical errors of the
finite-element solutions in TabR Again, we solve on uniform meshes (not aligned to the discontinuity)
and compare the solutions obtained with Mett#d and the streamline upwind method for different
polynomial degrees.
Since the exact solution has a line discontinuity at 0.5(x + 1), one cannot expect to get better
convergence rates tha/2. Moreover, since the solution is piecewise constant, the quality of the recon-

/Bio'sfeulnolpiojxoeufew//:dny wouy papeojumoq

structions can only be improved slightly by increasing the polynomial degree. Although the streamline ;
diffusion method seems to provide better convergence rates, the actual reconstruction errors are smalleg
for the hybrid mixed method. In Fi@ we display the solutions obtained with the streamline diffusion c
and the hybrid mixed method. In both cases the crosswind diffusion is kept to a minimum, and so the 5
jump of the exact solution is captured within one element layer, although the mesh is not aligned with g
the streamline velocity. e

Let us now turn to a diffusion-dominated problem and illustrate the increase in accuracy obtained 2
by local postprocessing discussed in Sectich "g
ExamMPLE 5.4 (Diffusion dominated) Consider problerd.() with f = (2,1),¢ = 1 andf = 1. E
Moreover, seu = 0 at the boundary. We solve problem (5.1) with Methbd@ and compare the nu- g

merical results with those obtained by the streamline diffusion method. Since for the problem under

consideration we do not have an analytical solution, we use the conforming finite-element solution with

polynomial degree 8 as an approximation for the exact solution. The results of the numerical tests are
summarized in Tabl8.

Since in the diffusion-dominated case we omit stabilization, the streamline diffusion method co-
incides with the standard Galerkin method, and so we obtain oplifh@rror estimates. The results
obtained with the hybrid mixed method are also optimal with respect to the approximation properties
of the finite-element space. For improving the approximation for the hybrid mixed method in that case,
we can apply local postprocessing as discussed in SettioriTabled4 we list the results obtained after
postprocessing. For comparison, we also list tfebestapproximation errors for the corresponding
finite-element spaces.
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FiG. 2. Streamline diffusion(3) and hybrid mixed DG(2) solutions obtained on uniformly refined meshes with 512 elements. The
streamline diffusion method develops boundary layers at the outflow boundaries. Both methods capture the discontinuity within
one element layer.

TABLE 3 L2-errors of streamline diffusion(k) and hybrid mixed DG(k) method obtained for Example
53 withe = 1078 and # = (2,1) on uniformly refined meshes with mesh size h and polynomial
degreek

Streamline diffusion Mixed hybridDG
h k=1 Rate k=2 Rate k=0 Rate k=1 Rate
1.0000 0.040175 0.017043 0.022501 0.019833
0.5000 0.009128 2.14 0.002682 2.67 0.022382 0.01 0.004392 2.18
0.2500 0.005720 0.67 0.000423 2.66 0.010841 1.05 0.001747 1.33
0.1250 0.001652 1.79 0.000061 2.81 0.005441 0.99 0.000487 1.84
0.0625 0.000428 1.95 0.000008 2.87 0.002722 1.00 0.00012696

TABLE 4 L2-errors of postprocessed solution of the hybrid mixed(®G 1) method and the best
piecewise polynomial approximation of order k on uniform meshes with megh size

Streamline diffusion Mixed hybridDG
h k=1 Rate k=2 Rate k=0 Rate k=1 Rate
1.00000 0.022149 0.012169 0.018277 0.005064
0.50000 0.012273 0.85 0.001657 2.88 0.004356 2.07 0.001108 2.19
0.25000 0.004598 1.42 0.000323 2.36 0.001741 1.32 0.000185 2.58
0.12500 0.001329 1.79 0.000048 2.74 0.000487 1.84 0.000027 2.81
0.06250 0.000347 1.94 0.000007 2.82 0.000126 1.95 0.0000Q@487

Throughout our numerical experiments the error of the postprocessed solution was always close to
the best approximation error. Moreover, the hybrid mixed method with postprocessing always yielded
slightly more accurate results than the standard conforming finite-element method with the correspond-
ing polynomial degree.
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5.2 Comparison with other DG methods

After the numerical experiments, we would like to compare the hybrid mixed method with other variants
of DG methods, in particular, with the interior penalty methédnpld, 1982) and thenultiscale DG
method presented iBuffa et al. (2006). The latter method is somewhat similar to the hybrid mixed
method as it introduces new dofs at the skeleton and allows us to eliminate local dofs by the solution of
local subproblems.

For the interior penalty Galerkin methods all dofs are present in the global system. The assembling
of the element contributions requires only the dofs of one element, while the assembling of the coupling
terms requires the dofs of neighbouring elements. Hence the dofs of one element are coupled to those
of the neighbouring elements.

In the multiscale DG method the global dofs correspond to the trace (at the skeleton) of a continuous
finite-element function. A vertex dof couples with all dofs belonging to the skeleton of all elements
sharing that vertex, and dofs of one edge only couple to those belonging to the skeleton of the element
sharing that edge. This carries over to three-dimensional problems, where vertex dofs couple with all
dofs belonging to the skeleton of the vertex patch, and so on.

In the hybrid mixed method the global degrees belonging to one edge only couple with those of the
skeleton of the neighbouring element. In three dimensions the global dofs correspond to single faces,
and they couple only to those on the faces of the two neighbouring elements. The degrees of freedo
for the three methods using linear polynomials for the primal variable are depicted in Figure. 3.

For a comparison of the computational effort required for the different methods we summarize the
number of local and global dofs and the number of nonzero entries present in the global linear systemg
in Table5. For brevity, we only list the leading-order terms.

papeojumoq
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6u

FiG. 3. Dofs for the interior penalty method and the multiscale DG method with drder2, and the hybrid mixed method
with orderk = 1. The global dofs are marked wi#h and local dofs fou ands that can be eliminated by static condensation
are depicted inside the elements.The solutions obtained by the hybrid mixed method can be improved by one order through local’s;
postprocessing (cf. Sectiat).
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TABLE 5 Leading order of the number of dofs for the interior penalty
method, the multiscale DG method and the hybrid mixed method of lorder

Interior penalty Multiscale Hybrid med

Local element dofs — 1k? 3Kk2
Global element dofs k2 3k 3k
Global dofs 1Kk2ne) IKngy Skngj

Nonzero entries k*ne| LK2ng Lk2ng
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The elimination of the internal dofs makes the assembling process of the multiscale DG and the
hybrid mixed method more expensive than that of the interior penalty method. However, the coupling
is decreased considerably, and therefore the local assembling can be done in parallel more easily. The
global systems of the multiscale DG method and the hybrid mixed method involve less dofs and less
coupling than the one for the interior penalty method.

5.3 Concluding remarks

In this paper we proposed a new finite-element method for convection—diffusion problems based on a
mixed discretization for the elliptic part and a DG formulation for the convective part. The two meth-
ods are made compatible via hybridization, and the Lagrange multipliers play an essential role for the
stabilization of the method and throughout the analysis.

Like other DG methods, but in contrast to the streamline diffusion method, the presented scheme is
locally and globally conservative, which makes it a natural candidate for problems where conservation is
important, for example, for time-dependent problems. Moreover, the treatment of boundary conditions
is very natural and allows a seamless change from convection-dominated to purely hyperbolic regimes,
where the outflow boundary conditions just disappear in the numerical scheme. In the hyperbolic limit
our method corresponds to (a hybrid version of) the classical DG method and thus inherits the stabilizing
features of DG methods for hyperbolic problems.

The hybrid mixed method allows a more natural treatment of elliptic operators than the DG methods.
In particular, the discretization of diffusion terms does not increase the stencil of the scheme. In contrast
to the streamline diffusion method and to several variants of DG methods, no tuning of a stabilization
parameter is needed. In the diffusion-dominated regime the numerical solutions can be further improved
by local postprocessing.

A particular advantage of our method from a computational point of view is that it is formulated
and can be implemented purely element-wise. This allows static condensation of the primal and flux
variables on the element level, and only the Lagrange multipliers appear in the global system. Thus
the presented hybrid mixed DG method has smaller stencils as well as fewer dofs than standard DG
methods, but still provides the same stability.

REFERENCES

AIZINGER, V., DAWSON, C. N., COCKBURN, B. & CASTILLO, P. (2000) Local discontinuous Galerkin method
for contaminant transporfdv. Water Resour24, 73-87.

ARNOLD, D. N. (1982) An interior penalty finite element method with discontinuous elem8ida J. Numer.
Anal., 19, 742-760.

ARNOLD, D. N. & BREzzI, F. (1985) Mixed and nonconforming finite element methods: implementation, post-
processing and error estimaté&th. Model. Numer. Anall9, 7-32.

ARNOLD, D. N., BRezzI, F., COCKBURN, B. & M ARINI, D. (2002) Unified analysis of discontinuous Galerkin
methods for elliptic problem$IAM J. Numer. Angl39, 1749-1779.

BABUSKA, |. & ZLAMAL, M. (1973) Nonconforming elements in the finite element method with pergigm J.
Numer. Anal. 10, 863-875.

Bassi, F. & REBAY, S. (1997a) A high-order accurate discontinuous finite element method for the numerical
solution of the compressible Navier—Stokes equatidn€omput. Phys131, 267-279.

Bassi, F. & REBAY, S. (1997b) High-order accurate discontinuous finite element solution of the 2D Euler equa-
tions.J. Comput. Phys138, 251-285.

9702 ‘0T BNBnY Uo AislBAIUN umolg e /Bio'sfeulnolpioixoeulewl//:dny wouy papeojumoq


http://imajna.oxfordjournals.org/

HYBRID MIXED DG FINITE-ELEMENT METHOD 1233

BAUMANN, C. E. & ODEN, J. T. (1999) A discontinuoulp finite element method for convection—diffusion
problems Comput. Methods Appl. Mech. Eng75, 311-341.

BRENNER, S. C. & ScoTT, L. R. (2002) The Mathematical Theory of Finite Element Methods. New York:
Springer.

BREzzI, F. & FORTIN, M. (1991)Mixed and Hybrid Finite Element Methods. New York: Springer.

BRrix, K., PINTO, M. C. & DAHMEN, W. (2008) A multilevel preconditioner for the interior penalty discontinuous
Galerkin methodSIAM J. Numer. Anal46, 2742-2768.

BUFFA, A., HUGHES, T. J. R. & SANGALLI, G. (2006) Analysis of a multiscale discontinuous Galerkin method
for convection—diffusion problem&IAM J. Numer. Anal44, 1420-1440.

CASTILLO, P., COCKBURN, B., ScHOTZAU, D. & ScHwaB, C. (2002) An optimal a priori error estimate for the
hp-version of the local discontinuous Galerkin method for convection—diffusion probMath. Comput.71,
455-478.

CHEN, Z., COCKBURN, B., JEROME, J. W. & SHU, C.-W. (1995) Mixed-RKDG finite element methods for the
2-D hydrodynamic model for semiconductor device simulatidoS| Des, 3, 145—-158.

COCKBURN, B. (1988) An introduction to the discontinuous Galerkin method for convection-dominated problems.
Advanced Numerical Approximation of Nonlinear Hyperbolic Equat{testures given at the 2nd Session of
the Centro Internazionale Matematico Estivo (C.1.M.E.) held in Cetraro, Italy, June 23-28, 1997) (B. Cockburn,
C. Johnson, C.-W. Shu, E. Tadmor eds). Berlin: Springer, pp. 151-268.

COCKBURN, B., GOPALAKRISHNAN, J. & LAZAROV, R. (2009) Unified hybridization of discontinuous Galerkin,
mixed and conforming Galerkin methods for second order elliptic probl&idd J. Numer. Anal47, 1319—
1365.

COCKBURN, B., KARNIADAKIS, G. E. & SHuU, C.-W. (eds) (2000pPiscontinuous Galerkin Methods: Theory,
Computation and Applications. Berlin: Springer.

DAwsON, C. N. & AIZINGER, V. (1999) Upwind-mixed methods for transport equatioBemput. Geosci.3,
93-110.

FARHOUL, M. & M OuNIM, A. S. (2005) A mixed-hybrid finite element method for convection—diffusion prob-
lems.Appl. Math. Comput171, 1037-1047.

FREUND, J. & STENBERG, R. (1995) On weakly imposed boundary conditions for second order problems.
Proceedings of the Ninth International Conference on Finite Elements in FigMisMorandi Cecchi,

K. Morgan, J. Periaux, B. A. Screfler & O. C. Zienkiewicz eds). Venice, Italy, pp. 327-336. Available at
http://math.tkk.fi~rstenber/Publications/Venice95.pdf

HousTOoN, P., SSHOTZAU, D. & WIHLER, T. P. (2007) Energy norm a posteriori error estimatioh pfadaptive
discontinuous Galerkin methods for elliptic probleriwkath. Model. Methods Appl. Scil7, 33-62.

HousToN, P., SSHWAB, C. & SULI, E. (2000) Stabilizedhp-finite element methods for first-order hyperbolic
problemsSIAM J. Numer. Anal37, 1618-1643.

HousTON, P. & SULI, E. (2001) Stabilizedhp-finite element approximation of partial differential equations with
nonnegative characteristic forf@omputing,66, 99-119.

HUGHES, T. J. R. & BROOKS, A. N. (1979) A multi-dimensional upwind scheme with no crosswind diffusion.
Finite Element Methods for Convection Dominated Flailis Hughes ed.). Applied Mechanics Division,
vol. 34. New York: American Society of Mechanical Engineers, pp. 19-35.

JoHNSON, C. (1987) Numerical Solution of Partial Differential Equations by the Finite Element Method
Cambridge: Cambridge University Press.

JOHNSON, C. & PITKARANTA, J. (1986) An analysis of the discontinuous Galerkin method for a scalar hyperbolic
equationMath. Comput.46, 1-26.

JoHNSON, C. & SARANEN, J. (1986) Streamline diffusion methods for the incompressible Euler and Navier—
Stokes equationddath. Comput.47, 1-18.

LESAINT, P. & RAVIART, P. A. (1974) On a finite element method for solving the neutron transport equa-
tion. Mathematical Aspects of Finite Elements in Partial Differential Equati@@sde Boor ed.). New York:
Academic Press, pp. 89-123.

9702 ‘0T BNBnY Uo AislBAIUN umolg e /Bio'sfeulnolpioixoeulewl//:dny wouy papeojumoq


http://imajna.oxfordjournals.org/

1234 H. EGGER AND J. SCWBERL

NEDELEC, J. C. (1980) Mixed finite elements ®3. Numer Math., 35, 315-341.

NITSCHE J. A. (1971)Uber ein Variationsprinzip zur ésung von Dirichlet-Problemen bei Verwendung von
Telraumen, die keinen Randbedingungen unterworfen gibd. Math. Semin. Univ. Hami36, 9-15.

ODEN, J. T., BABUSKA, |. & BAUMANN, C. (1998) A discontinuousp-FEM for diffusion problemsJ. Comput.
Phys.,146, 491-519.

PERUGIA, I. & ScHOTZAU, D. (2002) Anhp-analysis of the local discontinuous Galerkin method for diffusion
problems.J. Sci. Comput.17, 561-571.

RAVIART, P. A. & THOMAS, J. M. (1977) A mixed finite element method for second order elliptic probléfath-
ematical Aspects of the Finite Element Metlfo&alligani & E. Magenes eds). Lecture Notes in Mathematics,
vol. 606. Berlin: Springer, pp. 202—-315.

REED, W. H. & HILL, T. R. (1973) Triangular mesh methods for the neutron transport equatohnical Report
LA-UR-73-479. Los Alamos, NM: Los Alamos Scientific Laboratory.

RICHTER, G. R. (1992) The discontinuous Galerkin method with diffusidath. Comput.58, 631-643.

STENBERG, R. (1991) Postprocessing schemes for some mixed finite elenMatls. Model. Numer. Anal25,
151-168.

TOSELLI, A. & WIDLUND, O. (2005)Domain Decomposition Methods—Algorithms and TheBeylin: Springer.

9702 ‘0T BNBnY Uo AislBAIUN umolg e /Bio'sfeulnolpioixoeulewl//:dny wouy papeojumoq


http://imajna.oxfordjournals.org/

	Introduction
	Hybrid mixed DG methods for convection--diffusion problems
	Basic assumptions and notation
	Diffusion
	Convection
	Convection--diffusion regime
	Consistency and conservation

	A priori error analysis
	Pure diffusion---Method 2.1
	Pure convection---Method 2.3
	Convection--diffusion---Method 2.4
	Interpolation operators and approximation properties
	A priori error estimates

	Superconvergence and postprocessing for diffusion-dominated problems
	Refined analysis for pure diffusion
	The diffusion-dominated case
	Postprocessing

	Implementation and numerical tests
	Numerical tests
	Comparison with other DG methods
	Concluding remarks


