A NOTE ON THE PRANDTL LAYERS

YAN GUO, TOAN NGUYEN

ABSTRACT. This note concerns a nonlinear ill-posedness of the Prandtl equation and an invalidity
of asymptotic boundary-layer expansions of incompressible fluid flows near a solid boundary. Our
analysis is built upon recent remarkable linear ill-posedness results established by Gérard-Varet
and Dormy [2], and an analysis in Guo and Tice [5]. We show that the asymptotic boundary-layer
expansion is not valid for non-monotonic shear layer flows in Sobolev spaces. We also introduce
a notion of Weak Lipschitz well-posedness and prove that the nonlinear Prandtl equation is not
well-posed in this sense near non-stationary and non-monotonic shear flows. On the other hand,
we are able to verify that Oleinik’s monotonic solutions are well-posed.
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1. INTRODUCTION

One of classical problems in fluid dynamics is the vanishing viscosity limit of Navier-Stokes
solutions near a solid boundary. To describe the problem, let us consider the two-dimensional
incompressible Navier-Stokes equations:

uY 5 5 u? y u?
(11) O <v”> + (u”0y + 0" 0y) <v”> + Vp¥ =vA <v”>
Ozu” + 9yv” = 0.

Here, (z,y) € TxR4 and (u”,v”) € RxR are the tangential and normal components of the velocity,
respectively, corresponding to the boundary y = 0. We impose the no-slip boundary conditions:
(u”,v” )|y:0 = 0. A natural question is how one relates solutions of the Navier-Stokes equations to
those of the Euler equations (i.e., equations (1.1) with v = 0) with boundary condition v°|,—g = 0
in the zero viscosity limit? Formally, one may expect an asymptotic description as follows:

(1.2 (1) o= (1) o+ () i)
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where (u’,v?) solves the Euler equation and (up,vp) is the boundary layer correction that describes

the transition near the boundary from zero velocity u” of the Navier-Stokes flow to the potentially
nonzero velocity u® of the Euler flow and thus plays a significant role in the thin layer with order
O(y/v). We may also express the pressure p” as
Y
Ytz y) = pO(t, 2, y) + pylt, z, —=).
Pt @, y) = p (t, 2, y) + py( ﬁ)

We then can formally plug these formal Ansatz into (1.1) and derive the boundary layer equations
for (up,vp) at the leading order in /v. For our convenience, we denote Y = y//v and define

u(t,z,Y) =l (t,2,0) + up(t, 2,Y),
v(t,z,Y) := 90 (t, x,0)Y + v,(t, 2, Y).
The boundary layer or Prandtl equation for (u,v) then reads:

8tu+u8xu+v€)yu—8)2/u+8xP = 0, Y>0,
8xu+3y’v - 07 Y>07

(13) U’t:O = U()(.Z', y)
uly=0 =vly=0 = 0,
limy ,1ou = U(t,x),

where U = u’(t,z,0) and P = P(t,z) are the normal velocity and pressure describing the Euler
flow just outside the boundary layer, and satisfy the Bernoulli equation

U+ U0, U+ 0, P =0.

This formal idea was proposed by Ludwig Prandtl [7] in 1904 to describe the fluid flows near the
boundary. Mathematically, we are interested in the following two problems:

e well-posedness of the Prandtl equation (1.3);
e rigorous justification of the asymptotic boundary layer expansion.

Sammartino and Caflisch [8] resolved these issues in an analytic setting where the initial data and
the outer Euler flow are assumed to be analytic functions. Oleinik [6] established the existence
and uniqueness of the Cauchy problem (1.3) in a monotonic setting where the initial and boundary
data are assumed to be monotonic in y along the boundary-layer profile. For further mathematical
results, see the review paper [1]. In this paper, we address the above issues in a Sobolev setting.
Our work is based on a recent result of Gérard-Varet and Dormy [2] where they established ill-
posedness for the Cauchy problem of the linearized Prandtl equation around non-monotonic shear
flows.

In what follows, we shall work with the Euler flow which is constant on the boundary, that is,
U = const. Also, by a shear flow to the Prandtl, we always mean that a special solution to (1.3)
has a form of (ug,0) with us = us(t,Y). Thus, us solves the heat equation:

O, = 0%2u Y >0
1.4 Y %S )
( ) { us|t=0 = U87
with initial shear layer U, and with the same boundary conditions at ¥ = 0 and ¥ = 400 as in
(1.3).
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We shall work on the standard Sobolev spaces L? and H™, m > 0, with usual norms:

1/2 m i i
Jullz | = (/T ) wPdrdy)"” and g, =Y 3 1050ullz.
| -

k=0i+j=k
For initial data, we will often take them to be in a weighted H" Sobolev spaces. For instance, we
say up € e Y H zy if eYug € H -y and has a finite norm, for some a > 0 (see, for example, [2, 3]
where this type of weighted spaces is used for initial data). We occasionally drop the subscripts
z,Y in H ;’?Y when no confusion is possible, and write H" to refer to the weighted space eV H ;’fy.

To state our results precisely, we introduce the following definition of well-posedness; here, we
say that u belongs to U + X, for some functional space, to mean that u — U € X.

Definition 1.1 (Weak Lipschitz well-posedness). For a given Euler flow u°, denote U(t,z) =
u®(t,z,0). We say the Cauchy problem (1.3) is locally Weak Lipschitz well-posed if for some integers
m > 1, there exists a T > 0, a continuous function C(-,-), dg > 0, and a > 0, such that for
any initial data ud,u? in U + e=2Y 2y (T x Ry) and e (ud — ug)lem,, < 8o, there are unique

distributional solutions ui,us of (1.3) in U+ L>(]0,T[; H:ay(’]I' xR4)) with initial data ujl—o = u%,
7 =1,2, and there holds

sup [[ur(t) — uz(V)lpp1
(15) 0st=T |
< O fuh — Ulllarg, 1 s — Ulllar, e i — wdlllarr, -

We note that when we choose us = 0 in the above definition, we obtain an estimate for solutions
in the H ;’Y space. We call such a Lipschitz well-posedness Weak because we allow the initial data
to be in H", for sufficiently large m.

Our first main result then reads

Theorem 1.2 (No Lipschitz continuity of the flow). The Cauchy problem (1.3) is not locally Weak
Lipschitz well-posed in the sense of Definition 1.1.

Our result is an improvement of a recent result obtained by D. Gérard-Varet and the second
author [3] without additional sources in the Prandtl equation. In Section 5, we will show that in
the monotonic framework of Oleinik (see Assumption (O) in Section 5), the Cauchy problem (1.3)
is well-posed in the sense of Definition 1.1. The key idea is to use the Crocco transformation to
obtain certain energy estimates for d,u. We note that as shown in [2], the ill-posedness in the
non-monotonic case is due to high-frequency in x and the lack of control on d,u in the original
coordinates in (1.3).

Finally, regarding the validity of the asymptotic boundary layer expansion, we ask whether one
can write

SV

o () e = (5 ) () 62+ o (i) (e )

and

Yit,z,y) = (Vr)'pY azi
Ptz y) = (V) (¢, ’\/5)’

for shear flows us and for some v > 0, where (u’(y),0)! is the Euler flow. Our second main result
asserts that this is false in general, for all v > 0.
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Theorem 1.3 (No asymptotic expansions). For arbitrary v > 0,m > 0,7 > 0, and any large n,
there exist a shear flow us,, which has a non-degenerate critical point, and initial data ug,vy €
em ry (T x Ry) with

e (ug, of) ey, <1
such that if the expansion (1.6) with (4", 0")li=0 = (uf,vy) is valid in LOO([O,T];H;Y(T x Ry))
and p¥ € L*([0,e0]; LfE’Y(']I‘ x R4)), then there must hold

sup [[@(t)]2 > n.
0<t<T s

We note that in Grenier’s result [4] on invalidity of asymptotic expansions, he allows the initial
perturbation data to be arbitrarily small of size v and shows that in a very short time of size
V7 log(1/v), the solution u grows rapidly to O(v'/4) in L. Our result is weaker in capturing how
badly the solution grows, but strengthens his result in the sense that the expansion is invalid in
order O(v7), for any v > 0. Furthermore, the blow-up norm in [4] is H! in the original variable y,
whereas our result concerns the norm in the stretched variable Y = y/+/v.

2. LINEAR ILL-POSEDNESS

In this section, we recall the previous linear ill-posedness results obtained by Gérard-Varet and
Dormy [2] that will be used to prove our nonlinear illposedness. For notational simplicity, we define
the linearized Prandtl operator £, around a shear flow wug:

Y
Lou:= —832/u + usOpu + vy usg, v = —/ Oyudy’.
0

With our notation, the nonlinear Prandtl equation (1.3) in the perturbation variable @ := u — us
then reads (dropping the titles):

{ ou—+ Lsu = —udzu— viyu, Y >0,

2.1
( ) U’t:O = Uo,

with zero boundary conditions at Y =0 and Y = oo.
Removing the nonlinear term in (2.1), we call the resulting equation as the linearized Prandtl
equation around the shear flow wug:
(2.2) Ou+ Lsu = 0, Ul=0 = up.
Denote by T'(s,t) the linearized solution operator, that is,
T(s,t)up = u(t)

where u(t) is the solution to the linearized equation with u|;—s = up. The following ill-posedness
result is for the linearized equation (2.2).

Theorem 2.1 ([2]). There exists an initial shear layer Ug to (1.4) which has a non-degenerate
critical point such that for all eg > 0 and all m > 0, there holds

(2.3) sup  ||T'(s, 1) c(mm 22y = +00,
0<s<t<eg

where ||-|| g pm, 12y denotes the standard operator norm in the functional space L(HJ', L*) consisting
of linear operators from the weighted space H™ = e~*Y H™ to the usual L? space.
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Sketch of proof. In fact, the instability estimate (2.3) stated in [2] was from the weighted space H"
to another weighted space H&”/. From their construction, (2.3) remains true when the targeting
space is not weighted. We thus sketch their proof where it applies to the usual L? space as
stated. We recall that the main ingredient in the proof is their construction of approximate growing
solutions u® to (2.2) such that for all small £, u® solves
Ot + Lguf = My,
for arbitrary large M, where u® and r¢ satisfy:
ce®VE < us(t)|| 2 < CePVE [ 1S (1) || pm < CeTmeRNVE,

for all t in [0,T], m > 0, and for some 6y, c¢,C > 0.
The proof is then by contradiction. That is, we assume that ||T'(s, )| z(zm, 12) is bounded for all

0 <s <t <egg, for some g9 > 0 and some m > 0. We then introduce u(t) := T(0,t)u®(0), and
v = u — uf, where u® is the growing solution defined above. The function v then satisfies
(2.4) o+ Lgv = —eMr,, V|t=o =0,

and thus obeys the standard Duhamel representation

v(t) = —EM/O T(s,t)re(s)ds.

Thus, thanks to the bound on the T'(s,¢) and the remainder ¢, we get that
t 0gt
()| < CeM / e (8) | g (5)ds < CMa—m
0

Also, from the definition of u(t), we have
lu(®)lz2 = IT(0,)u* (0)| 2 < Clle™ u(0)|lgm < Ce™™

Combining these estimates together with the lower bound on u®(t), we deduce

0ot

Ce™™ = Ju®llgz = @Bl — @)z = (e — CMHETm) ek,
This then yields a contradiction for small enough e, M large, and t = K|ln¢|/c with a sufficiently
large K. The theorem is therefore proved. O

Next, we also recall the following uniqueness result for the linearized equation.

Proposition 2.2. ([3]) Let us = us(t,y) be a smooth shear flow satisfying

sup (sup\us\ +/ ylﬁyuslzdy) < +o0.
>0 \y>0 0

Letu € L>(]0, T[; L*(T x R4)) and dyu € L2(0,T x T xRy) be a solution to the linearized equation
of (2.2) around the shear flow, with u|i—g = 0. Then, u=0.

Proof. For sake of completeness, we recall here the proof in [3]. Let w € L>®(]0,T[; L?(T x R,))
and dyw € L*(0,T x T x Ry) be a solution to the linearized equation of (2.2) around the shear
flow, with w|;—9 = 0. Let us define w(t,y), k € Z, the Fourier transform of w(t,x,y) in x variable.
We observe that for each k, w; solves

Oy, + ikusy, — 1kOyus fé’ Wi (y')dy' — a;wk = 0
(2.5) wg(t,0) =

[an)}
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Taking the standard inner product of the equation (2.5) against the complex conjugate of wy
and using the standard Cauchy—Schwarz inequality to the term fé’ wydy’, we obtain

1 R R o R o R R
Ol agm, + 10, ulEace,y < W [ feallinPdy + 81 [ 10ly il 2ge.

o
< 1K (sup lul + [ wl0ulPdy) linlage,
Y 0
Applying the Gronwall lemma into the last inequality yields

ok ()] 2 ) < Ce“H by (0) ]| 2 e )

for some constant C. Thus, wy(t) = 0 for each k € Z since w;(0) = 0. That is, w = 0, and the
proposition is proved. O

3. NO ASYMPTOTIC BOUNDARY LAYER EXPANSIONS

In this section, we will disprove the nonlinear asymptotic boundary-layer expansion. Our proof
is based on the linear ill-posedness result, Theorem 2.1. Let us; be the shear flow in Theorem 2.1
such that (2.3) holds. Thus, we have that for a fixed ¢g > 0,m > 0, and any large n, there are
Sn,tp with 0 < s, <'t,, < ep and a sequence of g such that
(3.1) €Y Ul grm+1 = 1 and [uf (tn)||r2 > 2n

with u7 (t) being the solution to the linearized equation (2.2) with uf (s,) = ug.

Now, let ugy be some shear flow (later on, we choose it as a translation of the above us). We are
then interested in validity of the first order expansion (as compared to (1.2)):

32 () e = (70 )+ () 2+ v (o) € ) 9o,
and

Pt y) = (Vo) (e, \%x v>0,

where we will take the initial data for such a expansion to be

y
(3.3) (ag™, o5") == (uf,vy), with o := —/ Opuldy’.
0

We note that since u} is normalized, (Gig",7y") belongs to e~ H™ with a finite norm of size

independent of n.

We now prove Theorem 1.3 by contradiction. That is, we assume that expansion (3.2) is valid
in the Sobolev spaces. That is, for any initial data uaf,0§ € H™(T x R4), m > 0, there is a
g9 > 0 such that there holds the expansion for ¢ € [0,&0] with @,7% € L°([0,e0]; H'(T x Ry)),
(@, 9")|i=0 = (W4, 4), and p* € L>([0,e0]; L*(T x Ry)). We let (@, %) and § be the weak limits of
(@,9") and p* in L>(]0,e0]; HY(T x R, )) and in L>°([0, go]; L*(T x R,)), respectively, as v — 0.

Hence, plugging these expansions into (1.1), we obtain
" + (u® — ul|y—o + us) 00" + 0 (VVO,u® + Oy us) + 0up” — 0% 0¥
= — (V) (@ 0,0 + 070y ") + vau” + voju’
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and
vO” + v(u® — u®ly—o + us + (VV)10") 00" + (V)T Oy Y + Oy ¥ = v202Y + vdEt”

We take v — 0 in these expressions. Since (%", 7”)(t) converges to (i, ) weakly in H', the nonlinear
terms (@¥ 0y + 0¥y )u” and (4”0, +©”dy )" have their weak limits in L', and thus disappear in the
limiting equations due to the factor of (y/v)?. Similar treatments hold for the linear terms. Note
that (u® —u°|,—0)(y) = y9,u’ = VvY d,u also vanishes in the limit. We thus obtain the following
equations for the limits in the sense of distribution:

Ol + 5040 + D0y us — 0% + Opp = 0,

oyp = 0
and the divergence-free condition for (u,v). From the second equation, p = p(t,z). Now, setting
Y = 400 in (3.4) and noting that (i, %) belong to the H! Sobolev space and us has a finite limit

as Y — 400, we must get 0,p = 0 in the distributional sense. That is, the next order in the
asymptotic expansion solves the linearized Prandtl equation:

(35) 8t'a+£5ﬂ = 0, @]tzo = Uug,

(3.4)

with zero boundary conditions at Y = 0 and Y = +o0, for arbitrary shear flow us = u4(¢,Y).

Now, for n and s,, being fixed as in (3.1), we consider the expansion (3.2) for us, = us(t + s,)
and initial data (a,",0;"") defined as in (3.3). Let (@”",7""™) be the corresponding solution in the
expansion in L>([0, eo]; H'(T xR, )) whose existence is guaranteed by the contradiction assumption.
Let (@™, 0™) be their limiting solutions when v — 0. As shown above, we then obtain the linearized

Prandtl equation for 4" with initial data wg:

ou" + Lg,u" = 0, Wm0 = ug.
Thus, if we define u"(t) := 4™ (t — s,), the above equation immediately yields
ou" + Lu™ = 0, Ui=s, = UgQ,
which, by uniqueness of the linear flow, yields u" = u7} on [sy,T] and
[a" (tn = sn)llz2 = [[u"(tn)ll 12 = 2n.

This implies that for small v, ||a"™" (¢, — s,)||2 > n. The proof of Theorem 1.3 is complete.

4. NONLINEAR ILL-POSEDNESS

Again, using the previous linear results, Theorem 2.1, we can prove Theorem 1.2 for the nonlinear
equation (1.3). We proceed by contradiction. That is, we assume that the Cauchy problem (1.3)
is (H™, H') locally Lipschitz well-posed for some m > 0 in the sense of Definition 1.1. Let C,dq, T
be the constants given in the definition. Let us be the fixed shear flow in Theorem 2.1 such that
(2.3) holds. By definition, (2.3) yields that for fixed €g > 0 and any large n, there are s,,,t, with
0 <s, <t, <ep and a sequence of u such that
(41) Heo‘yu{)‘HHm =1 and ”uz(tn)”LQ Z n
with u} (t) being the solution to the linearized equation (2.2) with u}(s,) = ug.
large.

We now fix n
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Next, define Ug’" = us(sy)+dug, with § a small parameter less than dp. Let v%" be the solution
to the nonlinear equation (1.3) with v%"|;—g = vg’". By the Lipschitz well-posedness applied to two

solutions v>™ and the shear flow wus, (t) := u,(t + s,,), we then obtain

ess sup [[v%"(t) — us(t + s) i < C8lleY uf|lgm = C,
te[0,T

for the constant C' as in the well-posedness definition, which is therefore independent of n. In
other words, the sequence u®" := (v°" —u,, ) is bounded in L>(0,7; H'(T x R)) uniformly with
respect to J, and moreover it solves

(4.2) Qud" + Lo, ud" = SNWO™),  u®"(0) = uf,

noting that L, is the operator linearized around the shear profile us, and NNV is the nonlinear term:
N(u‘;’") = —udm9,ud" — v¥"dyud". From the uniform bound on u®", we deduce that, up to a
subsequence,

" — ™ L0, T; HY(T x Ry)) weak* as 6 — 0.

We shall show that u™ solves the linearized equation (2.2) in the sense of distribution. To see this,
we only need to check with the nonlinear term. First, on any compact set K of R*, we obtain by
applying the standard Cauchy inequality and using the divergence-free condition:

Y 1/2
< [ oty < oy ([ joatnay)
0 R+

1/2
/ SO |dY da < O / / \u5’”\( / ]Z?xué’"lde) dY dz
Tx K TJK Rt

SCK(/T/K|U5’TL|2deQE)l/2</E/R+ |8xu5’n|2deaj)1/2

< CKHué’nH%p,

for some constant C'x depending on K. Now, from the divergence-free condition, we can rewrite
N(u®™) as

and

N(ué,n) — _ax(u5,n)2 o ay(ué,n,vé,n)

we have, for any smooth function ¢ that is compactly supported in K,

5‘ / N(u&")wxdy( < Crod / <|u6’"|2 + |u6’"v6’"|>d:ﬂdY
TxR4+ Tx K
< Cr g0l u™ |3 — 0,

as 6 — 0, thanks to the uniform bound on u®" in H'. Here, Ck .4 is some constant that depends
on K and W norm of ¢. Thus, the nonlinearity § N (u‘;’") converges to zero in the above sense
of distribution. This shows that by taking the limits of equation (4.2), u™ solves

ou" 4+ L u" =0, u"|i=0 = ug.

By shifting the time ¢ to t — s, re-labeling @"(t) := u"(t — s,), and noting that by definition
Ls, (t) = Ls(t + sn), one has

Q™ + Lo = 0, |y, = ull,

=Sn
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that is, u™ solves the linearized equation (2.2) around the shear flow us. By uniqueness of the linear
flow (recalled in Proposition 2.2), 4" = u} on [sy,T]. This therefore leads to a contradiction due
to (4.1) and the fact that the bound for u®™ yields a uniform bound for u™ and thus for 4":
n < lup(tn)llrz = [[a" ()2 < sup (@ (@)[lm < C,
te€(sn,T|

for arbitrarily large n. This completes the proof of Theorem 1.2.

5. WELL-POSEDNESS OF THE OLEINIK’S SOLUTIONS

In this section, we check that the Oleinik solutions to the Prandtl equation (1.3) are well-posed in
the sense of Definition 1.1. Here, since now we only deal with the Prandtl equation, we shall write
(z,y) to refer (z,Y) in (1.3), and use both 9 and subscripts whenever it is convenient to denote
corresponding derivatives. To fit into the monotonic framework studied by Oleinik, we make the
following assumption on the initial data and outer Euler flow:

(O) Assume that U(t,z) is a smooth positive function and 9,U, 0;U/U are bounded; the initial
data ug(z,y) is an increasing function in y with ug(z,0) = 0 and ug(z,y) — U(0,z) as y — oo, and
furthermore, for some positive constants 6y, Cy,

ayuO (‘7:7 y)
07 .’L’) - U()(.Z', y)
We also assume that all functions 9y,ug, Oug, 0,0yug are bounded, and so are the ratios 8§u0 /Oyug
and 8§’u08yu0/8§u0.

< Co.

(5.1) by < ot

We now apply the Crocco change of variables:

. u(t,z,y)
t t th =
(7$7y)H(7x777)7 W1 ”7 U(t,x) )
and the Crocco unknown function:
Oyu(t,x,y)
t =
w( ) ;U? ,’7) U(t, x)

The Prandtl equation (1.3) then yields

ow + nUdyw — Adyw — Bw = w2agw, 0<n<l,zeT
(5.2) (wdyw + 05U + AU/ U)|yeo = 0,
U)|17:1 = 07

with initial conditions: w|—g = wo = dyuo/U. Here,

A= (n2—1)8xU+(n—l)&t—U, B = —n@xU—at—U.
U U
To see how the boundary conditions are imposed, one notes that 7 = 0 and 1 = 1 correspond to
the values at y = 0 and y = +o0, respectively. At y = +o0, it is clear that w = dyu = 0 since u
approaches to U(t,z) as y — 400, while by using the imposed conditions on u and v at y = 0, we

obtain from the equation (1.3) that
0=0pu— 0, P = dyw + 0,U + 0,U/U = wdyw + 0,U + 8,U/U.
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Theorem 5.1. ([6]) Assume (O). Then there exists a T > 0 such that the problems (5.2) and (1.3)
have a unique solution w and u on their respective domains, and there hold

for all (t,x,n) € [0,T] x T x (0,1), and
oyu(t,z,y) —9 u(t,r,y) "y
4 < Y < < Y < ] I« 1Y
S e ) B TG M

for all (t,z,y) € [0,T] x T x Ry, for some positive constants 01,0. In addition, weak derivatives
Oyu, Oz, (%(%u,(‘);u, Z?Z’u are bounded functions in [0,T] x T x R..

Proof. In fact, the authors in [6, Section 4.1, Chapter 4] established the theorem in the case
x € [0, X] with zero boundary conditions at x = 0. Their analysis is based on the line method to
discretize the t and x variables and to solve a set of second order differential equations in variable 7.
It is straightforward to check that these lines of analysis work as well in the periodic case xz € T with
minor changes in the choice of boundary conditions. We thus omit to repeat the proof here. g

Using the estimates in Theorem 5.1, we are able to prove that

Theorem 5.2. The Cauchy problem (1.3) under the assumption (O) is well-posed in the sense of
Definition 1.1, with some constant o and some continuous function C(-,-) appeared in the Weak
Lipschitz estimate (1.5) that depend on 6y, Cy in our assumption (O).

In the proof, we need the following lemma.

Lemma 5.3. Under the same assumptions as in Theorem 5.1, we obtain

(5.5) I(t)<CI0), 0<t<T,
with
w1z — wor?  |wi — wol?
I(t ::/ + t,x,n)dzxdn|, VO < B <3,
0= [ ot a sy ) o ndadn 4

for arbitrary two solutions wi,wy to (5.2).

Proof of Lemma 5.3. We consider w1y, ws being solutions to (5.2). We first note that I(t) is well-
defined for § < 3 by the bounds in Theorem 5.1 that |w;| < C(1 —7) and |wj,| < C(1 —n). Let us
introduce ¢ = wy — we. Then, ¢ solves

¢t + Uy — Apy — B — (w1 + wa)Opwndp = widpp, 0<n<lzeT
(W1y + wayd)lp=0 = 0,
¢|77:1 = 07
for A, B being defined as in (5.2). In particular, we have |[A] < C(1 —n) and |B| < C. Multiplying
the equation by e *1¢/(1 — n)? and integrating it over T x (0, 1), we easily obtain

1d 1|2

e‘k"qﬁ
—— dxdn.
2dt Jryo) (1—=n)P Eh

dody = = [ [0, A0,~Bo(wrun)Ofwas it T
Tx(0,1) (1—mn)
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We treat each term on the right-hand side. Using the bounds on A, B and on wyj, O%wj, it is easy
to see that

kn@
‘ / [anbx — Agy — Bo + (w1 + w2)0, wggb] 7d:17d77‘
Tx (0,1 (
—k A2 —kn‘¢’2
< ¢ ol dxdn + C. dxdn,
/11‘><(0 y (11— )B‘ of Tx(0,1) (1 —n)P

for arbitrary small . For the last term, integration by parts yields

ek

e Fiy? T}
L omodedn = [ £ vy
/11‘><(0,1) (1—m)s ™™ Tx(0,1) (1 =) "
kn, 2

—kn
B e~ "y ded e wl d
/m,l) (G5 ) oo - /w oy (1 )2 PP

Again, by integration by parts, we have
—k —kn,,,2

e k2 1 e~ kN2 1 e "M
— O [ ——= dxd / 02 L) |¢|2dazd +—/ ) L) o2 da.
/11‘><(0,1) n((l— n)? >¢n¢ T3 Tx(0,1) n<(1—77)5)‘ | T Tx {1=0} n<(1—77)6)‘ |

Thanks to the bounds |w;| < C(1 —17), we have

—kn,,,2 —kn

H(p) < n

Collecting all boundary terms, we need to estimate

-k

1 e—knw% 2 w% —k ) e nw%
§AX{n:0} [—km|¢| +an<m)e 77|¢| _ mqbn@]dx

Note that at n = 0, w; # 0 and wy¢, = —wa,¢. Thus, by taking k sufficiently large in the above
expression, we can bound it by

. / ¢ de.
Tx{n=0}

Combining the above estimates and choosing e sufficiently small, with noting that |A] < C(1—n) <
Cwq, we thus obtain

d / e kg2 / e Mt
— dxdn + 7 |®n|"dzdn
dt Jrxo1y (1 —mn)° ! Tx(0,1) (1 — 77)ﬁ| o
e Fg|?

+/ w?|o|Pde < C 5 dxdn.
Tx {n=0} Tx(0,1) (1 —n)P

(5.6)
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To obtain estimates for ¢,, we take z-derivative of the equation for ¢ and integrate the resulting
equation over T x (0,1) against e ¢, /(1 —n)?. We arrive at
(5.7)

—kn 2
Ld / NGl g
2dt Joxo,1y (1—1)

— [ [WUGse Ut — Ay~ by Bat— B
Tx(0,1)

- ((wl + w2)8727w2)m¢ - (wl + ’LUQ)@%ZUQQZ% - w%‘ﬁmnn - 2w1w1m¢m7

Similarly as in deriving the estimate (5.6), integration by parts and the bounds on A, B, w; easily
yields

W2 Py + 201 W1 eida:dn
/11‘><(0,1)|: e H W] (1—mn)P

—kn,, 2 2 2 2
6.9 <-3 [ g vo [ LI g,
Tx(0,1)

2 (1-mn) <1  (1—mn)°

- / 87] [%] ¢$ﬁ¢xdxdn + / [w%¢xn + 2wlwlx¢n Gzdr.
Tx(0,1)  L(1—mn)P Tx {n=0}

Here, we note that there is a crucial factor of w? in front of the term |¢,|? thanks to the bounds:
wj ~ (1 —n) and |wj;| < C(1 —n). Again, applying integration by parts to the third term on the
right-hand side yields

k

e Fny?
— Oy | ———= | pundudad
/]TX(O,I) 77[(1 —W)B]¢ n? !
e Fyp?

1 / o[ € Mot 2 2
—5 [ Bl eldedn+ [0, [ ik loud
2 JTx(0,1) n[(l —77)5} Tx {1=0} n{(l —77)5}
where the last boundary term is clearly bounded by
k
—5/ w?|de|2da.
Tx{n=0}

We now estimate the boundary term in (5.8). We recall that at the boundary n = 0, we have
wlqbn = —ZUanb. Thus,

w%‘ﬁmn = wl(_w2n¢m - w2mn¢ - w1x¢n) = —w1 (w2n¢x + w2mn¢) + wlxw2n¢-
That is, the normal derivative ¢, on the boundary can always be eliminated to yield

[ (b + 2urwssy] sudo < © (191 + 2] do.
Tx{n=0} Tx{n=0}

The remaining terms on the right-hand side of (5.7) are again easily bounded by

il 1

C
Tx(0,1) (1 —mn)p

dxdn.
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Putting these estimates into (5.7), we have obtained

(5.9)
D 2 2 24 12
dt Jrx) (1 —mn) Tx(0,1) (I-n) Tx {n=0}

Adding together this inequality with a large constant M times the inequality (5.6), we can get rid
of the boundary term and the term involving |¢,|? on the right-hand side of (5.9) and thus obtain

d / ey M9 + ¢ / iy M9 + ¢
5.10 4 i L I WY MG TE Y ek 2LIOE + Q2 o
(5.10) dt Jrx(0,1) (1 —mn)P (M) Tx(0,1) (1 —mn)P

The claimed estimate (5.5) thus immediately follows from (5.10) by the standard Gronwall inequal-
ity, and this completes the proof of Lemma 5.3. O

We are now ready to give

Proof of Theorem 5.2. We only need to check the Lipschitz estimate (1.5). Let U(t,z) be a fixed
Euler flow, and take ug; (x,y) and up2(x, y) be arbitrary smooth functions satisfying the assumption
(O). Let uy, ug be solutions to (1.3) and wy, ws the corresponding solutions to (5.2) constructed by
Theorem 5.1. Set 2 = u; —ug and h = vy — vy with v; being determined through the divergence-free
condition with u;. Then, z and h solve

y
(5.11) Opz + U102 + 205us + v10yz + hOyus = ajz, h=— / Opzdy’,
0
with z|y—o = 2|y=+00 = 0.

Multiplying the equation for z by e ¥z for some large k, taking integration over T x R, and
applying integration by parts, we obtain

1d
(5.12) |2|2dxdy + / [(kz + Opug)|2|? + Oyughz + \%zﬂda:dy = 0.

2dt Jrxr, TxR,

By the definition of h, we can estimate

Yy
| /MR Oyuzhzdady| = | /T Ol ~0)2( /0 Oy 2dy’ ) dedy|
+ +

<sup ([ 40, — U)dy) 2] [0
t7SC R+

for some a < 1/2, where || - || denotes the standard L? norm on T x R,. Thanks to bounds (5.4),
ug converges exponentially to U as y — oo and thus the integral fR+ yt/ 28y(u2 — U)dy is finite. In

addition, since the derivatives J,u;,0yu; are bounded, by taking k sufficiently large, the identity
(5.12) yields

(5.13) i/ |z|2dxdy—|—/ [|z|2+|zy|2]dxdy < COlz?.
dt Jrxr, TxR,
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We will next derive estimates for z,. For this, we take derivative with respect to y to the equation
for z and multiply the resulting equation by Jyz. With noting that z|,—o = 0 and zyy|y—o = 0
(obtained by setting y = 0 in (5.11)), easy computations yield

1d 1
2 d ]zy\zda:dy—F/ \zyy\zda;dy—k/ [iulax\zyP
TXR+ TXR+ TXR+

1
+ (1 + u2e) |2y + iy zazy + Usyhyzy + Useyzzy + vlﬁﬁy]zyﬁ + quyhzy} dxdy = 0.

Again, by using the boundedness of w;z, Ujzy, Ujyy, the divergence-free condition h, = —z,, and
similar estimates on the term involving h as above, we easily get

d
(5.14) | laPedy < C(112P + 1z + 2)?).

dt Jrxr, N

We note that by using the fact that the derivatives w;z, 4.y, ujyy are not only bounded, but also
decay exponentially in y, similar estimates as done above also yield

d

(5.15)
dt Jrxr,

Yz fdedy < C(J22+ 2P + 1l ]?), V=0,

Finally, we may wish to give similar estimates for z,. That is, taking xz-derivative to the equation
for z, testing the resulting equation by z., and using the boundary condition z;|y—¢ = 0, one may
get

d

—/ |zx|2dxdy+/ |2y | dzdy
dt Jrxr, TxR4

(5.16)
+ / [(ulx + ugx)]zIIQ + Uopp 22y + VigZa2zy + Uoyhazy + Usgyhzy|dedy = 0.
TxR4+

However, it is not at all immediate to estimate the term wug,h, 2, in the above identity to yield a
similar bound as in (5.14) since h has the same order as z, by its definition (see (5.11)).

Therefore, we shall derive estimates for z, through the equation (5.2) and the estimates on w
obtained in Lemma 5.3. First, we recall that u is defined through w by the relation (see, for

example, [6, Eq. (4.1.52)]):
u(t,z,y)/U(t,x) 1 ,
o
0

w(t,z,n')
Differentiating this identity with respect to x, we immediately obtain!

(5.17) Uy —u—+wU/ — (t,x,n')dn,

for u and w being solutions to (1.3) and (5.2). We apply this expression to uq,w; and ug,ws,
respectively and derive an estimate for z, = w1, — uo,. In regions where uq > uo, it will appear to
be convenient to estimate z, as follows:

uz/U Wy , ,
ol C el + ot /0) — wata/O)] [ 25|t
(5.18) 2
u2/U wlx uz/U Wiy W2y / /
+ | (| ol | | = | .
ur /U w wy w3

uw/U w ’

IThere is an unfortunate typo in [6, Eq. (4.1.53)] where the integral in (5.17) was ot (t,x,n)dny'.
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Whereas in regions where u; < uo we estimate

ul/U
22l <CJe] + fon (1,2, 01 /0) - wﬂt$uﬁU|/) Wiz ¢ o of
(5.19) wi
u2/U w2x w /U Wig W2z / /
+!wz\‘/ (t,z,n) dn(ﬂ’wz!/ 5 —T(t,x,n)dn}-
u1 /U wh wy wy

From the definition w;(t, z,u;/U) = Oyu;(t,x,y), we have |wi(t,z,u1/U) — wa(t,x,uz/U)| = |2y].
Also, note that |wj;/wj| is uniformly bounded. We have

/“”Uy%@
0 w?
and
w2 /U u2/U |w,| |w,|
< < J J .
‘w]"/ ta;n dT]‘ C’w]"/ C(l—ul/U—i_l—UQ/U)‘ul u2‘.

Now, if u1 > ug, we use the estimate (5.18) and the fact that |w;| < C(1 —u;/U). We thus obtain

, , uj /U
(t,z,n)dn < C/ (—( (t,z,n')dn' = Cy,

|wi | |wi | |wi |
< <C.
1—U1/U 1—UQ/U_ 1—U1/U_
Similarly, if u1 < ug, we use (5.19) and replace wy by wo in the above inequality, leading to the
similar uniform bound. This explains our choice of expressions in (5.18)-(5.19). By combining

these estimates, the second and third terms in (5.18) when u; > ug and in (5.19) when u; < ug are
bounded by

Clzl + ylzyl)-

Finally, we give estimates for the last term in inequalities (5.18) and (5.19). Using the estimates
on w, wy, we have

Wiy Wy |wiy — wag| |wy — wa| ,
—r_Zl<c +C . v e (0,1),
wi  wj (1—7n)? (1—n')?

which together with the standard Holder inequality implies that

[l [ (- ) oy |
TxR4 w3

< Csup/ |Oyu;|* (1 — U—Uk)ﬁ_zdy
R4

t,x

|:|w1:v - w2m|2 |w1 - wz|2
Tx[0,1] (1—n)s (1—n)s

—201y_(3-8)0 w1y — wae[* | wr — wol? /

< C’s&p/ﬂhe 19¢(3-6) 2ydy/TX[0 . [ 1—7)? + a—7)° :|d:17d77

[|w1m - w2m|2 lwy — w2|

Tx[0,1] (L—n)P (L—n)P
for some 8 < 3 satisfying (3 — 3)f2 < 6.

<C }dd’

Thus, we have obtained

Wiy — ’wzx\2 \wl - w2\2
5.20 zx2gc[22+y22+/ [‘
( ) | HL2 | ”L2 | yHL2 Tx[0,1] (1_77)5 (1_77)6
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for some 8 < 3. Now, applying Lemma 5.3 into (5.20), we then have the following estimate:

_ 2 _ 2
(5.21)  |lzlFe < C[Hzﬂiz + lyzyll72 +/ [ Wiz — wae|® | |w1 — wy
T

x[0,1] [ (L —n)P (1 —mn)P

} 0, z, n)dxdn} :

Combining this with estimates (5.13), (5.14), and (5.15) and applying the standard Gronwall’s
inequality, we easily obtain

[\wlx - ’wzx\2 \wl - w2\2

(1—n)8 =L } (Ow,n)dwdn} :

65:22) 20 (0) < O Iz0lBs + lyzoylia + [
Tx[0,1]

where we have denoted zy = ug; — uge.

Note that [|yzoy||22 < [€¥20y[|22. It thus remains to express the last estimate in terms of initial
data up; and upz. We note that for n = u1(0,z,y)/U(t, x),

|wi — wa|(0,2z,71) < |wi(0,2,u1/U) — wa(0,z,uz/U)| + |wa(0, z,u1 /U) — wa2(0,x,us/U)|
< [0y (ur — u2)(0, 2, y)| + [Oqwalur — u2|(0, z,y).
In addition, for = u1(0,2,y)/U(t, x), assumptions on initial data (see (O)) gives (1—n)~! < Cef2Y

and |ny| = |Oyuo1/U| < C(1 — ug1/U). Thus, we can make change of variable n back to y and
estimate

2

w, —w _

/1r 0 1}ﬁ(o’x’n)dmn ¢ TxR P128(19, (uor — uon)* + |uor — uoal*) (z,y) dwdy
x10, XN

C||e(5—1)92y/2 (uo1 — up2) H?{l

IN

N

Similarly, we have
|wig — woe|(0,2,m) < 020y (uor — uo2)|(z,y) + Cl0x(uo1 — uo2)|(x,y),
and thus

’wlx _w2x’2 0 dedn < C (B-1)02y/2 2
———5 (0,2, n)dzdy < Clle (w01 — uo2) | 2-
Tx[0,] (1 —m)

Putting these into (5.22), we have obtained

(5.23) I(ur —u2) ()7 < Clle™ (uor — uoz) I,
for a = (8 — 1)03/2. Theorem 5.2 thus follows. O
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