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Abstract. This note concerns a nonlinear ill-posedness of the Prandtl equation and an invalidity
of asymptotic boundary-layer expansions of incompressible fluid flows near a solid boundary. Our
analysis is built upon recent remarkable linear ill-posedness results established by Gérard-Varet
and Dormy [2], and an analysis in Guo and Tice [5]. We show that the asymptotic boundary-layer
expansion is not valid for non-monotonic shear layer flows in Sobolev spaces. We also introduce
a notion of Weak Lipschitz well-posedness and prove that the nonlinear Prandtl equation is not
well-posed in this sense near non-stationary and non-monotonic shear flows. On the other hand,
we are able to verify that Oleinik’s monotonic solutions are well-posed.
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1. Introduction

One of classical problems in fluid dynamics is the vanishing viscosity limit of Navier-Stokes
solutions near a solid boundary. To describe the problem, let us consider the two-dimensional
incompressible Navier-Stokes equations:

(1.1)
∂t

(

uν

vν

)

+ (uν∂x + vν∂y)

(

uν

vν

)

+∇pν = ν∆

(

uν

vν

)

∂xu
ν + ∂yv

ν = 0.

Here, (x, y) ∈ T×R+ and (uν , vν) ∈ R×R are the tangential and normal components of the velocity,
respectively, corresponding to the boundary y = 0. We impose the no-slip boundary conditions:
(uν , vν)|y=0 = 0. A natural question is how one relates solutions of the Navier-Stokes equations to

those of the Euler equations (i.e., equations (1.1) with ν = 0) with boundary condition v0|y=0 = 0
in the zero viscosity limit? Formally, one may expect an asymptotic description as follows:

(1.2)

(

uν

vν

)

(t, x, y) =

(

u0

v0

)

(t, x, y) +

(

up√
νvp

)

(t, x, y/
√
ν)

Date: Last updated: October 23, 2010.
This work is grown out of the previous joint work with David Gérard-Varet [3], and the second author greatly

thanks him for many fruitful discussions. Y. Guo’s research is supported in part by DMS-0530862 and a Chinese
NSF grant.

1



2 Y. GUO, T. NGUYEN

where (u0, v0) solves the Euler equation and (up, vp) is the boundary layer correction that describes
the transition near the boundary from zero velocity uν of the Navier-Stokes flow to the potentially
nonzero velocity u0 of the Euler flow and thus plays a significant role in the thin layer with order
O(

√
ν). We may also express the pressure pν as

pν(t, x, y) = p0(t, x, y) + pp(t, x,
y√
ν
).

We then can formally plug these formal Ansatz into (1.1) and derive the boundary layer equations
for (up, vp) at the leading order in

√
ν. For our convenience, we denote Y = y/

√
ν and define

u(t, x, Y ) := u0(t, x, 0) + up(t, x, Y ),

v(t, x, Y ) := ∂yv
0(t, x, 0)Y + vp(t, x, Y ).

The boundary layer or Prandtl equation for (u, v) then reads:

(1.3)























∂tu+ u∂xu+ v∂Y u− ∂2
Y u+ ∂xP = 0, Y > 0,
∂xu+ ∂Y v = 0, Y > 0,

u|t=0 = u0(x, y)
u|Y=0 = v|Y=0 = 0,

limY→+∞ u = U(t, x),

where U = u0(t, x, 0) and P = P (t, x) are the normal velocity and pressure describing the Euler
flow just outside the boundary layer, and satisfy the Bernoulli equation

∂tU + U∂xU + ∂xP = 0.

This formal idea was proposed by Ludwig Prandtl [7] in 1904 to describe the fluid flows near the
boundary. Mathematically, we are interested in the following two problems:

• well-posedness of the Prandtl equation (1.3);
• rigorous justification of the asymptotic boundary layer expansion.

Sammartino and Caflisch [8] resolved these issues in an analytic setting where the initial data and
the outer Euler flow are assumed to be analytic functions. Oleinik [6] established the existence
and uniqueness of the Cauchy problem (1.3) in a monotonic setting where the initial and boundary
data are assumed to be monotonic in y along the boundary-layer profile. For further mathematical
results, see the review paper [1]. In this paper, we address the above issues in a Sobolev setting.
Our work is based on a recent result of Gérard-Varet and Dormy [2] where they established ill-
posedness for the Cauchy problem of the linearized Prandtl equation around non-monotonic shear
flows.

In what follows, we shall work with the Euler flow which is constant on the boundary, that is,
U ≡ const. Also, by a shear flow to the Prandtl, we always mean that a special solution to (1.3)
has a form of (us, 0) with us = us(t, Y ). Thus, us solves the heat equation:

(1.4)

{

∂tus = ∂2
Y us, Y > 0,

us|t=0 = Us,

with initial shear layer Us, and with the same boundary conditions at Y = 0 and Y = +∞ as in
(1.3).
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We shall work on the standard Sobolev spaces L2 and Hm, m ≥ 0, with usual norms:

‖u‖L2
x,Y

:=
(

∫

T×R+

|u|2dxdY
)1/2

and ‖u‖Hm
x,Y

:=

m
∑

k=0

∑

i+j=k

‖∂i
x∂

j
Y u‖L2 .

For initial data, we will often take them to be in a weighted Hm Sobolev spaces. For instance, we
say u0 ∈ e−αY Hm

x,Y if eαY u0 ∈ Hm
x,Y and has a finite norm, for some α > 0 (see, for example, [2, 3]

where this type of weighted spaces is used for initial data). We occasionally drop the subscripts
x, Y in Hm

x,Y when no confusion is possible, and write Hm
α to refer to the weighted space e−αY Hm

x,Y .

To state our results precisely, we introduce the following definition of well-posedness; here, we
say that u belongs to U + X , for some functional space, to mean that u− U ∈ X .

Definition 1.1 (Weak Lipschitz well-posedness). For a given Euler flow u0, denote U(t, x) =
u0(t, x, 0). We say the Cauchy problem (1.3) is locally Weak Lipschitz well-posed if for some integers
m ≥ 1, there exists a T > 0, a continuous function C(·, ·), δ0 > 0, and α > 0, such that for
any initial data u10, u

2
0 in U + e−αY Hm

x,Y (T × R+) and ‖eαY (u10 − u20)‖Hm
x,Y

≤ δ0, there are unique

distributional solutions u1, u2 of (1.3) in U+L∞(]0, T [;H1
x,Y (T×R+)) with initial data uj|t=0 = uj0,

j = 1, 2, and there holds

(1.5)

sup
0≤t≤T

‖u1(t)− u2(t)‖H1
x,Y

≤ C(‖eαY [u10 − U ]‖Hm
x,Y

, ‖eαY [u20 − U ]‖Hm
x,Y

)‖eαY [u10 − u20]‖Hm
x,Y

.

We note that when we choose u2 ≡ 0 in the above definition, we obtain an estimate for solutions
in the H1

x,Y space. We call such a Lipschitz well-posedness Weak because we allow the initial data
to be in Hm

x,Y for sufficiently large m.

Our first main result then reads

Theorem 1.2 (No Lipschitz continuity of the flow). The Cauchy problem (1.3) is not locally Weak
Lipschitz well-posed in the sense of Definition 1.1.

Our result is an improvement of a recent result obtained by D. Gérard-Varet and the second
author [3] without additional sources in the Prandtl equation. In Section 5, we will show that in
the monotonic framework of Oleinik (see Assumption (O) in Section 5), the Cauchy problem (1.3)
is well-posed in the sense of Definition 1.1. The key idea is to use the Crocco transformation to
obtain certain energy estimates for ∂xu. We note that as shown in [2], the ill-posedness in the
non-monotonic case is due to high-frequency in x and the lack of control on ∂xu in the original
coordinates in (1.3).

Finally, regarding the validity of the asymptotic boundary layer expansion, we ask whether one
can write

(1.6)

(

uν

vν

)

(t, x, y) =

(

u0 − u0|y=0

0

)

(y) +

(

us
0

)

(t,
y√
ν
) + (

√
ν)γ

(

ũν√
νṽν

)

(t, x,
y√
ν
),

and
pν(t, x, y) = (

√
ν)γ p̃ν(t, x,

y√
ν
),

for shear flows us and for some γ > 0, where (u0(y), 0)t is the Euler flow. Our second main result
asserts that this is false in general, for all γ > 0.
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Theorem 1.3 (No asymptotic expansions). For arbitrary γ > 0,m ≥ 0, T > 0, and any large n,
there exist a shear flow usn , which has a non-degenerate critical point, and initial data un0 , v

n
0 ∈

e−αY Hm
x,Y (T× R+) with

‖eαY (un0 , vn0 )‖Hm
x,Y

≤ 1

such that if the expansion (1.6) with (ũν , ṽν)|t=0 = (un0 , v
n
0 ) is valid in L∞([0, T ];H1

x,Y (T × R+))

and p̃ν ∈ L∞([0, ε0];L
2
x,Y (T× R+)), then there must hold

sup
0≤t≤T

‖ũν(t)‖L2
x,Y

≥ n.

We note that in Grenier’s result [4] on invalidity of asymptotic expansions, he allows the initial
perturbation data to be arbitrarily small of size νn and shows that in a very short time of size√
ν log(1/ν), the solution u grows rapidly to O(ν1/4) in L∞. Our result is weaker in capturing how

badly the solution grows, but strengthens his result in the sense that the expansion is invalid in
order O(νγ), for any γ > 0. Furthermore, the blow-up norm in [4] is H1 in the original variable y,
whereas our result concerns the norm in the stretched variable Y = y/

√
ν.

2. Linear ill-posedness

In this section, we recall the previous linear ill-posedness results obtained by Gérard-Varet and
Dormy [2] that will be used to prove our nonlinear illposedness. For notational simplicity, we define
the linearized Prandtl operator Ls around a shear flow us:

Lsu := −∂2
Y u+ us∂xu+ v∂Y us, v = −

∫ Y

0
∂xudy

′.

With our notation, the nonlinear Prandtl equation (1.3) in the perturbation variable ũ := u − us
then reads (dropping the titles):

(2.1)

{

∂tu+ Lsu = −u∂xu− v∂Y u, Y > 0,
u|t=0 = u0,

with zero boundary conditions at Y = 0 and Y = ∞.

Removing the nonlinear term in (2.1), we call the resulting equation as the linearized Prandtl
equation around the shear flow us:

(2.2) ∂tu+ Lsu = 0, u|t=0 = u0.

Denote by T (s, t) the linearized solution operator, that is,

T (s, t)u0 := u(t)

where u(t) is the solution to the linearized equation with u|t=s = u0. The following ill-posedness
result is for the linearized equation (2.2).

Theorem 2.1 ([2]). There exists an initial shear layer Us to (1.4) which has a non-degenerate
critical point such that for all ε0 > 0 and all m ≥ 0, there holds

(2.3) sup
0≤s≤t≤ε0

‖T (s, t)‖L(Hm
α ,L2) = +∞,

where ‖·‖L(Hm
α ,L2) denotes the standard operator norm in the functional space L(Hm

α , L2) consisting

of linear operators from the weighted space Hm
α = e−αY Hm to the usual L2 space.
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Sketch of proof. In fact, the instability estimate (2.3) stated in [2] was from the weighted space Hm
α

to another weighted space Hm′

α . From their construction, (2.3) remains true when the targeting
space is not weighted. We thus sketch their proof where it applies to the usual L2 space as
stated. We recall that the main ingredient in the proof is their construction of approximate growing
solutions uε to (2.2) such that for all small ε, uε solves

∂tu
ε + Lsu

ε = εMrε,

for arbitrary large M , where uε and rε satisfy:

ceθ0t/
√
ε ≤ ‖uε(t)‖L2 ≤ Ceθ0t/

√
ε, ‖eαY rε(t)‖Hm ≤ Cε−meθ0t/

√
ε,

for all t in [0, T ], m ≥ 0, and for some θ0, c, C > 0.
The proof is then by contradiction. That is, we assume that ‖T (s, t)‖L(Hm

w ,L2) is bounded for all
0 ≤ s ≤ t ≤ ε0, for some ε0 > 0 and some m ≥ 0. We then introduce u(t) := T (0, t)uε(0), and
v = u− uε, where uε is the growing solution defined above. The function v then satisfies

(2.4) ∂tv + Lsv = −εMrε, v|t=0 = 0,

and thus obeys the standard Duhamel representation

v(t) = −εM
∫ t

0
T (s, t)rε(s) ds.

Thus, thanks to the bound on the T (s, t) and the remainder rε, we get that

‖v(t)‖L2 ≤ CεM
∫ t

0
‖eyrε(s)‖Hm(s)ds ≤ C εM+ 1

2
−m e

θ0t√
ε .

Also, from the definition of u(t), we have

‖u(t)‖L2 = ‖T (0, t)uε(0)‖L2 ≤ C‖eαY uε(0)‖Hm ≤ C ε−m.

Combining these estimates together with the lower bound on uε(t), we deduce

C ε−m ≥ ‖u(t)‖L2 ≥ ‖uε(t)‖L2 − ‖v(t)‖L2 ≥
(

c − C εM+ 1

2
−m

)

e
θ0t√

ε .

This then yields a contradiction for small enough ε, M large, and t = K| ln ε|√ε with a sufficiently
large K. The theorem is therefore proved. �

Next, we also recall the following uniqueness result for the linearized equation.

Proposition 2.2. ([3]) Let us = us(t, y) be a smooth shear flow satisfying

sup
t≥0

(

sup
y≥0

|us|+
∫ ∞

0
y|∂yus|2dy

)

< +∞.

Let u ∈ L∞(]0, T [;L2(T×R+)) and ∂yu ∈ L2(0, T ×T×R+) be a solution to the linearized equation
of (2.2) around the shear flow, with u|t=0 = 0. Then, u ≡ 0.

Proof. For sake of completeness, we recall here the proof in [3]. Let w ∈ L∞(]0, T [;L2(T × R+))
and ∂yw ∈ L2(0, T × T × R+) be a solution to the linearized equation of (2.2) around the shear
flow, with w|t=0 = 0. Let us define ŵk(t, y), k ∈ Z, the Fourier transform of w(t, x, y) in x variable.
We observe that for each k, ŵk solves

(2.5)







∂tŵk + ikusŵk − ik∂yus
∫ y
0 ŵk(y

′)dy′ − ∂2
y ŵk = 0

ŵk(t, 0) = 0
ŵk(0, y) = 0.



6 Y. GUO, T. NGUYEN

Taking the standard inner product of the equation (2.5) against the complex conjugate of ŵk

and using the standard Cauchy–Schwarz inequality to the term
∫ y
0 ŵkdy

′, we obtain

1

2
∂t‖ŵk‖2L2(R+) + ‖∂yŵk‖2L2(R+) ≤ |k|

∫ ∞

0
|us||ŵk|2dy + |k|

∫ ∞

0
|∂yus|y1/2|ŵk|‖ŵk‖L2(R+)dy

≤ |k|
(

sup
t,y

|us|+
∫ ∞

0
y|∂yus|2dy

)

‖ŵk‖2L2(R+).

Applying the Gronwall lemma into the last inequality yields

‖ŵk(t)‖L2(R+) ≤ CeC|k|t‖ŵk(0)‖L2(R+),

for some constant C. Thus, ŵk(t) ≡ 0 for each k ∈ Z since ŵk(0) ≡ 0. That is, w ≡ 0, and the
proposition is proved. �

3. No asymptotic boundary layer expansions

In this section, we will disprove the nonlinear asymptotic boundary-layer expansion. Our proof
is based on the linear ill-posedness result, Theorem 2.1. Let us be the shear flow in Theorem 2.1
such that (2.3) holds. Thus, we have that for a fixed ε0 > 0,m ≥ 0, and any large n, there are
sn, tn with 0 ≤ sn ≤ tn ≤ ε0 and a sequence of un0 such that

(3.1) ‖eαY un0‖Hm+1 = 1 and ‖unL(tn)‖L2 ≥ 2n

with unL(t) being the solution to the linearized equation (2.2) with unL(sn) = un0 .

Now, let us′ be some shear flow (later on, we choose it as a translation of the above us). We are
then interested in validity of the first order expansion (as compared to (1.2)):

(3.2)

(

uν

vν

)

(t, x, y) =

(

u0 − u0|y=0

0

)

(y) +

(

us′
0

)

(t,
y√
ν
) + (

√
ν)γ

(

ũν√
νṽν

)

(t, x,
y√
ν
), γ > 0,

and

pν(t, x, y) = (
√
ν)γ p̃ν(t, x,

y√
ν
), γ > 0,

where we will take the initial data for such a expansion to be

(3.3) (ũν,n0 , ṽν,n0 ) := (un0 , v
n
0 ), with vn0 := −

∫ y

0
∂xu

n
0dy

′.

We note that since un0 is normalized, (ũν,n0 , ṽν,n0 ) belongs to e−αY Hm with a finite norm of size
independent of n.

We now prove Theorem 1.3 by contradiction. That is, we assume that expansion (3.2) is valid
in the Sobolev spaces. That is, for any initial data ũν0 , ṽ

ν
0 ∈ Hm(T × R+), m ≥ 0, there is a

ε0 > 0 such that there holds the expansion for t ∈ [0, ε0] with ũν , ṽν ∈ L∞([0, ε0];H
1(T × R+)),

(ũν , ṽν)|t=0 = (ũν0 , ṽ
ν
0 ), and p̃ν ∈ L∞([0, ε0];L

2(T×R+)). We let (ũ, ṽ) and p̃ be the weak limits of
(ũν , ṽν) and p̃ν in L∞([0, ε0];H

1(T× R+)) and in L∞([0, ε0];L
2(T× R+)), respectively, as ν → 0.

Hence, plugging these expansions into (1.1), we obtain

∂tũ
ν + (u0 − u0|y=0 + us)∂xũ

ν + ṽν(
√
ν∂yu

0 + ∂Y us) + ∂xp̃
ν − ∂2

Y ũ
ν

= −(
√
ν)γ(ũν∂xũ

ν + ṽν∂Y ũ
ν) + ν∂2

xũ
ν + ν∂2

yu
0
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and

ν∂tṽ
ν + ν(u0 − u0|y=0 + us + (

√
ν)γ ũν)∂xṽ

ν + (
√
ν)γ+2ṽν∂Y ṽ

ν + ∂Y p̃
ν = ν2∂2

xṽ
ν + ν∂2

Y ṽ
ν

We take ν → 0 in these expressions. Since (ũν , ṽν)(t) converges to (ũ, ṽ) weakly inH1, the nonlinear
terms (ũν∂x+ ṽν∂Y )ũ

ν and (ũν∂x+ ṽν∂Y )ṽ
ν have their weak limits in L1, and thus disappear in the

limiting equations due to the factor of (
√
ν)γ . Similar treatments hold for the linear terms. Note

that (u0 − u0|y=0)(y) = y∂yu
0 =

√
νY ∂yu

0 also vanishes in the limit. We thus obtain the following
equations for the limits in the sense of distribution:

(3.4)
∂tũ+ us∂xũ+ ṽ∂Y us − ∂2

Y ũ+ ∂xp̃ = 0,

∂Y p̃ = 0

and the divergence-free condition for (ũ, ṽ). From the second equation, p̃ = p̃(t, x). Now, setting
Y = +∞ in (3.4) and noting that (ũ, ṽ) belong to the H1 Sobolev space and us has a finite limit
as Y → +∞, we must get ∂xp̃ ≡ 0 in the distributional sense. That is, the next order in the
asymptotic expansion solves the linearized Prandtl equation:

(3.5) ∂tũ+ Lsũ = 0, ũ|t=0 = u0,

with zero boundary conditions at Y = 0 and Y = +∞, for arbitrary shear flow us = us(t, Y ).

Now, for n and sn being fixed as in (3.1), we consider the expansion (3.2) for usn = us(t + sn)
and initial data (ũν,n0 , ṽν,n0 ) defined as in (3.3). Let (ũν,n, ṽν,n) be the corresponding solution in the
expansion in L∞([0, ε0];H

1(T×R+)) whose existence is guaranteed by the contradiction assumption.
Let (ũn, ṽn) be their limiting solutions when ν → 0. As shown above, we then obtain the linearized
Prandtl equation for ũn with initial data un0 :

∂tũ
n + Lsnũ

n = 0, ũn|t=0 = un0 .

Thus, if we define un(t) := ũn(t− sn), the above equation immediately yields

∂tu
n + Lsu

n = 0, un|t=sn = un0 ,

which, by uniqueness of the linear flow, yields un ≡ unL on [sn, T ] and

‖ũn(tn − sn)‖L2 = ‖un(tn)‖L2 ≥ 2n.

This implies that for small ν, ‖ũn,ν(tn − sn)‖L2 ≥ n. The proof of Theorem 1.3 is complete.

4. Nonlinear ill-posedness

Again, using the previous linear results, Theorem 2.1, we can prove Theorem 1.2 for the nonlinear
equation (1.3). We proceed by contradiction. That is, we assume that the Cauchy problem (1.3)
is (Hm,H1) locally Lipschitz well-posed for some m ≥ 0 in the sense of Definition 1.1. Let C, δ0, T
be the constants given in the definition. Let us be the fixed shear flow in Theorem 2.1 such that
(2.3) holds. By definition, (2.3) yields that for fixed ε0 > 0 and any large n, there are sn, tn with
0 ≤ sn ≤ tn ≤ ε0 and a sequence of un0 such that

(4.1) ‖eαY un0‖Hm = 1 and ‖unL(tn)‖L2 ≥ n

with unL(t) being the solution to the linearized equation (2.2) with unL(sn) = un0 . We now fix n
large.
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Next, define vδ,n0 := us(sn)+ δun0 , with δ a small parameter less than δ0. Let v
δ,n be the solution

to the nonlinear equation (1.3) with vδ,n|t=0 = vδ,n0 . By the Lipschitz well-posedness applied to two
solutions vδ,n and the shear flow usn(t) := us(t+ sn), we then obtain

ess sup
t∈[0,T ]

‖vδ,n(t)− us(t+ sn)‖H1 ≤ C δ‖eαY un0‖Hm = C δ,

for the constant C as in the well-posedness definition, which is therefore independent of n. In
other words, the sequence uδ,n := 1

δ (v
δ,n−usn) is bounded in L∞(0, T ;H1(T×R+)) uniformly with

respect to δ, and moreover it solves

(4.2) ∂tu
δ,n + Lsnu

δ,n = δN(uδ,n), uδ,n(0) = un0 ,

noting that Lsn is the operator linearized around the shear profile usn and N is the nonlinear term:
N(uδ,n) := −uδ,n∂xu

δ,n − vδ,n∂Y u
δ,n. From the uniform bound on uδ,n, we deduce that, up to a

subsequence,

uδ,n → un L∞(0, T ;H1(T× R+)) weak
∗ as δ → 0.

We shall show that un solves the linearized equation (2.2) in the sense of distribution. To see this,
we only need to check with the nonlinear term. First, on any compact set K of R+, we obtain by
applying the standard Cauchy inequality and using the divergence-free condition:

|vδ,n| ≤
∫ Y

0
|∂xuδ,n|dY ′ ≤ CY 1/2

(

∫

R+

|∂xuδ,n|2dY
)1/2

,

and
∫

T×K
|uδ,nvδ,n|dY dx ≤ CK

∫

T

∫

K
|uδ,n|

(

∫

R+

|∂xuδ,n|2dY
)1/2

dY dx

≤ CK

(

∫

T

∫

K
|uδ,n|2dY dx

)1/2(
∫

T

∫

R+

|∂xuδ,n|2dY dx
)1/2

≤ CK‖uδ,n‖2H1 ,

for some constant CK depending on K. Now, from the divergence-free condition, we can rewrite
N(uδ,n) as

N(uδ,n) = −∂x(u
δ,n)2 − ∂Y (u

δ,nvδ,n)

we have, for any smooth function φ that is compactly supported in K,

δ
∣

∣

∣

∫

T×R+

N(uδ,n)φdxdy
∣

∣

∣
≤ CK,φδ

∫

T×K

(

|uδ,n|2 + |uδ,nvδ,n|
)

dxdY

≤ CK,φδ‖uδ,n‖2H1 −→ 0,

as δ → 0, thanks to the uniform bound on uδ,n in H1. Here, CK,φ is some constant that depends

on K and W 1,∞ norm of φ. Thus, the nonlinearity δN(uδ,n) converges to zero in the above sense
of distribution. This shows that by taking the limits of equation (4.2), un solves

∂tu
n + Lsnu

n = 0, un|t=0 = un0 .

By shifting the time t to t − sn, re-labeling ũn(t) := un(t − sn), and noting that by definition
Lsn(t) = Ls(t+ sn), one has

∂tũ
n + Lsũ

n = 0, ũn|t=sn = un0 ,
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that is, ũn solves the linearized equation (2.2) around the shear flow us. By uniqueness of the linear
flow (recalled in Proposition 2.2), ũn ≡ unL on [sn, T ]. This therefore leads to a contradiction due

to (4.1) and the fact that the bound for uδ,n yields a uniform bound for un and thus for ũn:

n ≤ ‖unL(tn)‖L2 = ‖ũn(tn)‖L2 ≤ sup
t∈[sn,T ]

‖ũn(t)‖H1 ≤ C,

for arbitrarily large n. This completes the proof of Theorem 1.2.

5. Well-posedness of the Oleinik’s solutions

In this section, we check that the Oleinik solutions to the Prandtl equation (1.3) are well-posed in
the sense of Definition 1.1. Here, since now we only deal with the Prandtl equation, we shall write
(x, y) to refer (x, Y ) in (1.3), and use both ∂ and subscripts whenever it is convenient to denote
corresponding derivatives. To fit into the monotonic framework studied by Oleinik, we make the
following assumption on the initial data and outer Euler flow:

(O) Assume that U(t, x) is a smooth positive function and ∂xU, ∂tU/U are bounded; the initial
data u0(x, y) is an increasing function in y with u0(x, 0) = 0 and u0(x, y) → U(0, x) as y → ∞, and
furthermore, for some positive constants θ0, C0,

(5.1) θ0 ≤ ∂yu0(x, y)

U(0, x) − u0(x, y)
≤ C0.

We also assume that all functions ∂yu0, ∂xu0, ∂x∂yu0 are bounded, and so are the ratios ∂2
yu0/∂yu0

and ∂3
yu0∂yu0/∂

2
yu0.

We now apply the Crocco change of variables:

(t, x, y) 7→ (t, x, η), with η :=
u(t, x, y)

U(t, x)
,

and the Crocco unknown function:

w(t, x, η) :=
∂yu(t, x, y)

U(t, x)
.

The Prandtl equation (1.3) then yields

(5.2)







∂tw + ηU∂xw −A∂ηw −Bw = w2∂2
ηw, 0 < η < 1, x ∈ T

(w∂ηw + ∂xU + ∂tU/U)|η=0 = 0,
w|η=1 = 0,

with initial conditions: w|t=0 = w0 = ∂yu0/U . Here,

A := (η2 − 1)∂xU + (η − 1)
∂tU

U
, B := −η∂xU − ∂tU

U
.

To see how the boundary conditions are imposed, one notes that η = 0 and η = 1 correspond to
the values at y = 0 and y = +∞, respectively. At y = +∞, it is clear that w = ∂yu = 0 since u
approaches to U(t, x) as y → +∞, while by using the imposed conditions on u and v at y = 0, we
obtain from the equation (1.3) that

0 = ∂2
yu− ∂xP = ∂yw + ∂xU + ∂tU/U = w∂ηw + ∂xU + ∂tU/U.
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Theorem 5.1. ([6]) Assume (O). Then there exists a T > 0 such that the problems (5.2) and (1.3)
have a unique solution w and u on their respective domains, and there hold

(5.3) θ1(1− η) ≤ w(t, x, η) ≤ θ2(1− η), |∂xw(t, x, η)| , |∂tw(t, x, η)| ≤ θ2(1− η)

for all (t, x, η) ∈ [0, T ]× T× (0, 1), and

(5.4) θ1 ≤ ∂yu(t, x, y)

U(t, x) − u(t, x, y)
≤ θ2, e−θ2y ≤ 1− u(t, x, y)

U(t, x)
≤ e−θ1y,

for all (t, x, y) ∈ [0, T ] × T × R+, for some positive constants θ1, θ2. In addition, weak derivatives
∂tu, ∂xu, ∂y∂xu, ∂

2
yu, ∂

3
yu are bounded functions in [0, T ]× T× R+.

Proof. In fact, the authors in [6, Section 4.1, Chapter 4] established the theorem in the case
x ∈ [0,X] with zero boundary conditions at x = 0. Their analysis is based on the line method to
discretize the t and x variables and to solve a set of second order differential equations in variable η.
It is straightforward to check that these lines of analysis work as well in the periodic case x ∈ T with
minor changes in the choice of boundary conditions. We thus omit to repeat the proof here. �

Using the estimates in Theorem 5.1, we are able to prove that

Theorem 5.2. The Cauchy problem (1.3) under the assumption (O) is well-posed in the sense of
Definition 1.1, with some constant α and some continuous function C(·, ·) appeared in the Weak
Lipschitz estimate (1.5) that depend on θ0, C0 in our assumption (O).

In the proof, we need the following lemma.

Lemma 5.3. Under the same assumptions as in Theorem 5.1, we obtain

(5.5) I(t) ≤ CI(0), 0 ≤ t ≤ T,

with

I(t) :=

∫

T×[0,1]

[ |w1x − w2x|2
(1− η)β

+
|w1 − w2|2
(1 − η)β

]

(t, x, η)dxdη
]

, ∀0 ≤ β < 3,

for arbitrary two solutions w1, w2 to (5.2).

Proof of Lemma 5.3. We consider w1, w2 being solutions to (5.2). We first note that I(t) is well-
defined for β < 3 by the bounds in Theorem 5.1 that |wj | ≤ C(1− η) and |wjx| ≤ C(1− η). Let us
introduce φ = w1 − w2. Then, φ solves







φt + ηUφx −Aφη −Bφ− (w1 + w2)∂
2
ηw2φ = w2

1∂
2
ηφ, 0 < η < 1, x ∈ T

(w1φη + w2ηφ)|η=0 = 0,
φ|η=1 = 0,

for A,B being defined as in (5.2). In particular, we have |A| ≤ C(1− η) and |B| ≤ C. Multiplying
the equation by e−kηφ/(1− η)β and integrating it over T× (0, 1), we easily obtain

1

2

d

dt

∫

T×(0,1)

e−kη|φ|2
(1− η)β

dxdη = −
∫

T×(0,1)

[

ηUφx−Aφη−Bφ−(w1+w2)∂
2
ηw2φ−w2

1φηη

] e−kηφ

(1− η)β
dxdη.
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We treat each term on the right-hand side. Using the bounds on A,B and on wj , ∂
2
ηwj, it is easy

to see that

∣

∣

∣

∫

T×(0,1)

[

ηUφx −Aφη −Bφ+ (w1 + w2)∂
2
ηw2φ

] e−kηφ

(1− η)β
dxdη

∣

∣

∣

≤ ǫ

∫

T×(0,1)

e−kηA2

(1− η)β
|φη |2dxdη +Cε

∫

T×(0,1)

e−kη|φ|2
(1− η)β

dxdη,

for arbitrary small ε. For the last term, integration by parts yields

∫

T×(0,1)

e−kηw2
1

(1− η)β
φηηφdxdη =−

∫

T×(0,1)

e−kηw2
1

(1− η)β
|φη |2dxdη

−
∫

T×(0,1)
∂η

( e−kηw2
1

(1− η)β

)

φηφdxdη −
∫

T×{η=0}

e−kηw2
1

(1− η)β
φηφdx.

Again, by integration by parts, we have

−
∫

T×(0,1)
∂η

( e−kηw2
1

(1− η)β

)

φηφdxdη =
1

2

∫

T×(0,1)
∂2
η

( e−kηw2
1

(1− η)β

)

|φ|2dxdη +
1

2

∫

T×{η=0}
∂η

( e−kηw2
1

(1− η)β

)

|φ|2dx.

Thanks to the bounds |wj | ≤ C(1− η), we have

∂2
η

( e−kηw2
1

(1− η)β

)

≤ C
e−kη

(1− η)β
.

Collecting all boundary terms, we need to estimate

1

2

∫

T×{η=0}

[

− k
e−kηw2

1

(1− η)β
|φ|2 + ∂η

( w2
1

(1− η)β

)

e−kη|φ|2 − e−kηw2
1

(1− η)β
φηφ

]

dx.

Note that at η = 0, w1 6= 0 and w1φη = −w2ηφ. Thus, by taking k sufficiently large in the above
expression, we can bound it by

−k

4

∫

T×{η=0}
w2
1|φ|2dx.

Combining the above estimates and choosing ε sufficiently small, with noting that |A| ≤ C(1−η) ≤
Cw1, we thus obtain

(5.6)

d

dt

∫

T×(0,1)

e−kη|φ|2
(1− η)β

dxdη +

∫

T×(0,1)

e−kηw2
1

(1− η)β
|φη|2dxdη

+

∫

T×{η=0}
w2
1|φ|2dx ≤ C

∫

T×(0,1)

e−kη|φ|2
(1− η)β

dxdη.



12 Y. GUO, T. NGUYEN

To obtain estimates for φx, we take x-derivative of the equation for φ and integrate the resulting
equation over T× (0, 1) against e−kηφx/(1 − η)β . We arrive at
(5.7)

1

2

d

dt

∫

T×(0,1)

e−kη|φx|2
(1− η)β

dxdη

= −
∫

T×(0,1)

[

ηUφxx + ηUxφx −Axφη −Aφxη −Bxφ−Bφx

− ((w1 + w2)∂
2
ηw2)xφ− (w1 + w2)∂

2
ηw2φx − w2

1φxηη − 2w1w1xφηη

] e−kηφx

(1− η)β
dxdη.

Similarly as in deriving the estimate (5.6), integration by parts and the bounds on A,B,wj easily
yields

(5.8)

∫

T×(0,1)

[

w2
1φxηη + 2w1w1xφηη

] e−kηφx

(1− η)β
dxdη

≤− 1

2

∫

T×(0,1)

e−kηw2
1

(1− η)β
|φxη|2dxdη + C

∫

T×(0,1)

|φx|2 + w2
1|φη|2

(1− η)β
e−kηdxdη

−
∫

T×(0,1)
∂η

[ e−kηφx

(1− η)β

]

φxηφxdxdη +

∫

T×{η=0}

[

w2
1φxη + 2w1w1xφη

]

φxdx.

Here, we note that there is a crucial factor of w2
1 in front of the term |φη|2 thanks to the bounds:

wj ∼ (1− η) and |wjx| ≤ C(1− η). Again, applying integration by parts to the third term on the
right-hand side yields

−
∫

T×(0,1)
∂η

[ e−kηw2
1

(1− η)β

]

φxηφxdxdη

=
1

2

∫

T×(0,1)
∂2
η

[ e−kηw2
1

(1− η)β

]

|φx|2dxdη +

∫

T×{η=0}
∂η

[ e−kηw2
1

(1− η)β

]

|φx|2dx,

where the last boundary term is clearly bounded by

−k

2

∫

T×{η=0}
w2
1|φx|2dx.

We now estimate the boundary term in (5.8). We recall that at the boundary η = 0, we have
w1φη = −w2ηφ. Thus,

w2
1φxη = w1(−w2ηφx − w2xηφ− w1xφη) = −w1(w2ηφx + w2xηφ) + w1xw2ηφ.

That is, the normal derivative φη on the boundary can always be eliminated to yield
∫

T×{η=0}

[

w2
1φxη + 2w1w1xφη

]

φxdx ≤ C

∫

T×{η=0}
(|φ|2 + |φx|2)dx.

The remaining terms on the right-hand side of (5.7) are again easily bounded by

C

∫

T×(0,1)
e−kη |φ|2 + |φx|2

(1− η)β
dxdη.
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Putting these estimates into (5.7), we have obtained
(5.9)

d

dt

∫

T×(0,1)

e−kη|φx|2
(1− η)β

dxdη ≤ C

∫

T×(0,1)

|φ|2 + |φx|2 + |w1|2|φη|2
(1− η)β

dxdη + C

∫

T×{η=0}
|φ|2dx.

Adding together this inequality with a large constant M times the inequality (5.6), we can get rid
of the boundary term and the term involving |φη|2 on the right-hand side of (5.9) and thus obtain

(5.10)
d

dt

∫

T×(0,1)
e−kηM |φ|2 + |φx|2

(1− η)β
dxdη ≤ C(M)

∫

T×(0,1)
e−kηM |φ|2 + |φx|2

(1− η)β
dxdη.

The claimed estimate (5.5) thus immediately follows from (5.10) by the standard Gronwall inequal-
ity, and this completes the proof of Lemma 5.3. �

We are now ready to give

Proof of Theorem 5.2. We only need to check the Lipschitz estimate (1.5). Let U(t, x) be a fixed
Euler flow, and take u01(x, y) and u02(x, y) be arbitrary smooth functions satisfying the assumption
(O). Let u1, u2 be solutions to (1.3) and w1, w2 the corresponding solutions to (5.2) constructed by
Theorem 5.1. Set z = u1−u2 and h = v1−v2 with vj being determined through the divergence-free
condition with uj . Then, z and h solve

(5.11) ∂tz + u1∂xz + z∂xu2 + v1∂yz + h∂yu2 = ∂2
yz, h = −

∫ y

0
∂xzdy

′,

with z|y=0 = z|y=+∞ = 0.

Multiplying the equation for z by e−ktz for some large k, taking integration over T × R+, and
applying integration by parts, we obtain

(5.12)
1

2

d

dt

∫

T×R+

|z|2dxdy +

∫

T×R+

[

(k + ∂xu2)|z|2 + ∂yu2hz + |∂yz|2
]

dxdy = 0.

By the definition of h, we can estimate
∣

∣

∣

∫

T×R+

∂yu2hzdxdy
∣

∣

∣
=

∣

∣

∣

∫

T×R+

∂y(u2 − U)z
(

∫ y

0
∂xzdy

′
)

dxdy
∣

∣

∣

≤ sup
t,x

(

∫

R+

y1/2∂y(u2 − U)dy
)

‖z‖‖∂xz‖

for some α < 1/2, where ‖ · ‖ denotes the standard L2 norm on T× R+. Thanks to bounds (5.4),

u2 converges exponentially to U as y → ∞ and thus the integral
∫

R+
y1/2∂y(u2 −U)dy is finite. In

addition, since the derivatives ∂xuj, ∂yuj are bounded, by taking k sufficiently large, the identity
(5.12) yields

(5.13)
d

dt

∫

T×R+

|z|2dxdy +
∫

T×R+

[

|z|2 + |zy|2
]

dxdy ≤ C‖zx‖2.
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We will next derive estimates for zy. For this, we take derivative with respect to y to the equation
for z and multiply the resulting equation by ∂yz. With noting that z|y=0 = 0 and zyy|y=0 = 0
(obtained by setting y = 0 in (5.11)), easy computations yield

1

2

d

dt

∫

T×R+

|zy|2dxdy +

∫

T×R+

|zyy|2dxdy +

∫

T×R+

[1

2
u1∂x|zy|2

+ (v1y + u2x)|zy|2 + u1yzxzy + u2yhyzy + u2xyzzy + v1
1

2
∂y|zy|2 + u2yyhzy

]

dxdy = 0.

Again, by using the boundedness of ujx, ujxy, ujyy, the divergence-free condition hy = −zx, and
similar estimates on the term involving h as above, we easily get

(5.14)
d

dt

∫

T×R+

|zy|2dxdy ≤ C
(

‖z‖2 + ‖zy‖2 + ‖zx‖2
)

.

We note that by using the fact that the derivatives ujx, ujxy, ujyy are not only bounded, but also
decay exponentially in y, similar estimates as done above also yield

(5.15)
d

dt

∫

T×R+

yn|zy|2dxdy ≤ C
(

‖z‖2 + ‖zy‖2 + ‖zx‖2
)

, ∀n ≥ 0.

Finally, we may wish to give similar estimates for zx. That is, taking x-derivative to the equation
for z, testing the resulting equation by zx, and using the boundary condition zx|y=0 = 0, one may
get

(5.16)

d

dt

∫

T×R+

|zx|2dxdy +

∫

T×R+

|zxy|2dxdy

+

∫

T×R+

[

(u1x + u2x)|zx|2 + u2xxzzx + v1xzxzy + u2yhxzx + u2xyhzx

]

dxdy = 0.

However, it is not at all immediate to estimate the term u2yhxzx in the above identity to yield a
similar bound as in (5.14) since h has the same order as zx by its definition (see (5.11)).

Therefore, we shall derive estimates for zx through the equation (5.2) and the estimates on w
obtained in Lemma 5.3. First, we recall that u is defined through w by the relation (see, for
example, [6, Eq. (4.1.52)]):

y =

∫ u(t,x,y)/U(t,x)

0

1

w(t, x, η′)
dη′.

Differentiating this identity with respect to x, we immediately obtain1

(5.17) ux = u
Ux

U
+ wU

∫ u/U

0

wx

w2
(t, x, η′)dη′,

for u and w being solutions to (1.3) and (5.2). We apply this expression to u1, w1 and u2, w2,
respectively and derive an estimate for zx = u1x − u2x. In regions where u1 ≥ u2, it will appear to
be convenient to estimate zx as follows:

(5.18)

|zx| ≤C
[

|z|+ |w1(t, x, u1/U)− w2(t, x, u2/U)|
∫ u2/U

0

∣

∣

∣

w2x

w2
2

∣

∣

∣
(t, x, η′)dη′

+ |w1|
∣

∣

∣

∫ u2/U

u1/U

w1x

w2
1

(t, x, η′)dη′
∣

∣

∣
+ |w1|

∫ u2/U

0

∣

∣

∣

w1x

w2
1

− w2x

w2
2

∣

∣

∣
(t, x, η′)dη′

]

.

1There is an unfortunate typo in [6, Eq. (4.1.53)] where the integral in (5.17) was
∫ u/U

0

wx

w
(t, x, η′)dη′.
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Whereas in regions where u1 ≤ u2 we estimate

(5.19)

|zx| ≤C
[

|z|+ |w1(t, x, u1/U)− w2(t, x, u2/U)|
∫ u1/U

0

∣

∣

∣

w1x

w2
1

∣

∣

∣
(t, x, η′)dη′

+ |w2|
∣

∣

∣

∫ u2/U

u1/U

w2x

w2
2

(t, x, η′)dη′
∣

∣

∣
+ |w2|

∫ u1/U

0

∣

∣

∣

w1x

w2
1

− w2x

w2
2

∣

∣

∣
(t, x, η′)dη′

]

.

From the definition wj(t, x, uj/U) = ∂yuj(t, x, y), we have |w1(t, x, u1/U) − w2(t, x, u2/U)| = |zy|.
Also, note that |wjx/wj | is uniformly bounded. We have

∫ uj/U

0

∣

∣

∣

wjx

w2
j

∣

∣

∣
(t, x, η′)dη′ ≤ C

∫ uj/U

0

∣

∣

∣

1

wj

∣

∣

∣
(t, x, η′)dη′ = Cy,

and

|wj |
∣

∣

∣

∫ u2/U

u1/U

wjx

w2
j

(t, x, η′)dη′
∣

∣

∣
≤ C|wj|

∣

∣

∣

∫ u2/U

u1/U

1

1− η′
dη′

∣

∣

∣
≤ C

( |wj |
1− u1/U

+
|wj |

1− u2/U

)

|u1 − u2|.

Now, if u1 ≥ u2, we use the estimate (5.18) and the fact that |wj | ≤ C(1− uj/U). We thus obtain

|w1|
1− u1/U

+
|w1|

1− u2/U
≤ 2

|w1|
1− u1/U

≤ C.

Similarly, if u1 ≤ u2, we use (5.19) and replace w1 by w2 in the above inequality, leading to the
similar uniform bound. This explains our choice of expressions in (5.18)-(5.19). By combining
these estimates, the second and third terms in (5.18) when u1 ≥ u2 and in (5.19) when u1 ≤ u2 are
bounded by

C(|z|+ y|zy|).

Finally, we give estimates for the last term in inequalities (5.18) and (5.19). Using the estimates
on w,wx, we have

∣

∣

∣

w1x

w2
1

− w2x

w2
2

∣

∣

∣
≤ C

|w1x − w2x|
(1− η′)2

+ C
|w1 − w2|
(1− η′)2

, ∀η′ ∈ (0, 1),

which together with the standard Hölder inequality implies that
∫

T×R+

|wj |2
∣

∣

∣

∫ uk/U

0

(w1x

w2
1

− w2x

w2
2

)

(t, x, η′)dη′
∣

∣

∣

2
dxdy

≤ C sup
t,x

∫

R+

|∂yuj|2(1−
uk
U

)β−2dy

∫

T×[0,1]

[ |w1x − w2x|2
(1− η′)β

+
|w1 − w2|2
(1− η′)β

]

dxdη′

≤ C sup
t,x

∫

R+

e−2θ1ye(3−β)θ2ydy

∫

T×[0,1]

[ |w1x − w2x|2
(1− η′)β

+
|w1 − w2|2
(1− η′)β

]

dxdη′

≤ C

∫

T×[0,1]

[ |w1x − w2x|2
(1− η′)β

+
|w1 − w2|2
(1− η′)β

]

dxdη′,

for some β < 3 satisfying (3− β)θ2 ≤ θ1.

Thus, we have obtained

(5.20) ‖zx‖2L2 ≤ C
[

‖z‖2L2 + ‖yzy‖2L2 +

∫

T×[0,1]

[ |w1x − w2x|2
(1− η)β

+
|w1 − w2|2
(1− η)β

]

dxdη
]

,
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for some β < 3. Now, applying Lemma 5.3 into (5.20), we then have the following estimate:

(5.21) ‖zx‖2L2 ≤ C
[

‖z‖2L2 + ‖yzy‖2L2 +

∫

T×[0,1]

[ |w1x − w2x|2
(1− η)β

+
|w1 − w2|2
(1− η)β

]

(0, x, η)dxdη
]

.

Combining this with estimates (5.13), (5.14), and (5.15) and applying the standard Gronwall’s
inequality, we easily obtain

(5.22) ‖z‖2H1(t) ≤ C(T )
[

‖z0‖2H1 + ‖yz0y‖2L2 +

∫

T×[0,1]

[ |w1x − w2x|2
(1− η)β

+
|w1 − w2|2
(1− η)β

]

(0, x, η)dxdη
]

,

where we have denoted z0 = u01 − u02.

Note that ‖yz0y‖2L2 ≤ ‖eyz0y‖2L2 . It thus remains to express the last estimate in terms of initial
data u01 and u02. We note that for η = u1(0, x, y)/U(t, x),

|w1 − w2|(0, x, η) ≤ |w1(0, x, u1/U)− w2(0, x, u2/U)|+ |w2(0, x, u1/U)−w2(0, x, u2/U)|
≤ |∂y(u1 − u2)(0, x, y)| + |∂ηw2||u1 − u2|(0, x, y).

In addition, for η = u1(0, x, y)/U(t, x), assumptions on initial data (see (O)) gives (1−η)−1 ≤ Ceθ2y

and |ηy| = |∂yu01/U | ≤ C(1 − u01/U). Thus, we can make change of variable η back to y and
estimate
∫

T×[0,1]

|w1 − w2|2
(1− η)β

(0, x, η)dxdη ≤ C

∫

T×R+

e(β−1)θ2y(|∂y(u01 − u02)|2 + |u01 − u02|2)(x, y) dxdy

≤ C‖e(β−1)θ2y/2(u01 − u02)‖2H1 .

Similarly, we have

|w1x −w2x|(0, x, η) ≤ |∂x∂y(u01 − u02)|(x, y) + C|∂x(u01 − u02)|(x, y),
and thus

∫

T×[0,1]

|w1x − w2x|2
(1− η)β

(0, x, η)dxdη ≤ C‖e(β−1)θ2y/2(u01 − u02)‖2H2 .

Putting these into (5.22), we have obtained

(5.23) ‖(u1 − u2)(t)‖2H1 ≤ C‖eαy(u01 − u02)‖2H2 ,

for α = (β − 1)θ2/2. Theorem 5.2 thus follows. �
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