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Abstract

The purpose of this paper is to investigate the dynamics of a class of triangular parabolic
systems given on bounded domains of arbitrary dimension. In particular, the existence of
global attractors and the persistence property will be established.
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1 Introduction

In a recent work [16], we studied the global existence of a triangular cross diffusion
parabolic systems of the type

∂u

∂t
= ∇[(d1 + α11u+ α12v)∇u+ β11u∇v] + u(a1 − b1u− c1v),

∂v

∂t
= ∇[(d2 + α21u+ α22v)∇v] + v(a2 − b2u− c2v),

(1.1)
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which is supplied with the Neumann (r1 = r2 = 0) or Robin type boundary conditions

∂u

∂n
+ r1(x)u = 0,

∂v

∂n
+ r2(x)v = 0 (1.2)

on the boundary ∂Ω of a bounded domain Ω in IRn. Here r1, r2 are given nonnegative
smooth functions on ∂Ω. The initial conditions are described by u(x, 0) = u0(x) and
v(x, 0) = v0(x), x ∈ Ω. Here u0, v0 ∈W 1,p(Ω) for some p > n.

The system (1.1) has its origin from the Shigesada, Kawasaki and Teramoto model
([21]) 

∂u

∂t
= ∆[(d1 + α′11u+ α′12v)u] + u(a1 − b1u− c1v),

∂v

∂t
= ∆[(d2 + α′21u+ α′22v)v] + v(a2 − b2u− c2v),

(1.3)

in population dynamics, which has been recently investigated to study the competition of
two species with cross diffusion effects. In the context of ecology, di’s and α′ij’s are the
self and cross dispersal rates, ai’s represent growth rates, b1, c2 denote self-limitation rates,
and c1, b2 are the interaction rates.

Many works have been done under the assumption that α′21 = 0. In this case, our
system (1.1) is a bit more general by having the term α21u in the equation for v. Further-
more, the flux components in (1.1), when α12 6= β11, do not have to be gradients of some
functions as described in (1.3).

As far as we know, only global existence results were obtained for this system. In
particular, one can find global existence results for a simplified version of (1.3) (when
α′21 = 0) in [4, 13, 16, 19], and a regularity result for the full system in [15].

A central issue in population dynamics is the long-term development of populations,
and one finds terms such as uniform persistence, coexistence, and extinction describing
important special types of asymptotic behavior of the solutions of associated model equa-
tions. If αij , βij are all zero, (1.1) reduced to the well known Lotka Volterra system, whose
persistence property has been widely studied (see [8] for a good reference). However, to
the best of our knowledge, this issue has not ever been addressed for cross diffusion cases.
This is, of course, due to the presence of the cross diffusion terms making necessary a priori
estimates extremely difficult.

In our previous results [13] and [19], we proved the existence of the global attractor
for the system (1.1) with α21 = 0. Global existence results for the case α21 > 0 were
established in [16]. Recently, in [17], we can only show that the L∞ norms of solutions
of (1.1) are ultimately uniformly bounded. We should remark that the presence of the
term α21u in the self-diffusion term in the equation of v makes the methods in [4, 13, 19]
inapplicable. Furthermore, these methods require that the dimension n is less than 6. This
restriction is not assumed in this current paper (and [16, 17]).

Steady state or coexistence problems for similar systems were also extensively studied
(see [10] and the reference therein). However, whether these coexistence states are observ-
able, that is their stability, is still yet to be determined. This question remains widely open
even for the simpler Lotka-Volterra counterpart. Coexistence in the sense of uniform persis-
tence would then be more appropriate and realistic. Roughly speaking, uniform persistence
means that there are positive threshold levels below which time dependent solutions will
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never be for large t. In biological terms, this means that no species will be either wiped out
or completely invaded by others.

Persistence theories for general dynamical systems have been available for some years
(see [9] and the references therein). It is now well known that the first step needed to
apply these theories to a concrete model is to establish the existence of the global attractor.
For regular diffusion cases, by the smoothing effect of parabolic equations, this type of
results is almost immediate as long as one can show that the L∞ norms of the solutions are
ultimately uniformly bounded. However, this is not the case for cross diffusion systems as
one has to go further to show that the solutions are regular in higher norms, which are also
uniformly bounded. To achieve this, more sophisticated PDE techniques will be needed.

Our first main result is to obtain uniform estimates in higher norms to establish the
existence of an absorbing ball in theW 1,p space as well as the compactness of the semiflow.
Since u, v are population densities, only positive solutions are of interest in this paper. We
then study the dynamics of the system on the positive cone ofW 1,p, and prove the following
theorem in Section 2.

Theorem 1.1 Assume that αij ≥ 0, di, β11 > 0, i, j = 1, 2 and

α11 > α21, α22 > α12, and α22 6= α12 + β11. (1.4)

Then (1.1) defines a dynamical system on W 1,p
+ (Ω), the positive cone of W 1,p(Ω),

for some p > n.
This dynamical system possesses a global attractor in W 1,p(Ω). Furthermore,

there exist ν > 1 and a positive constant C∞ independent of initial conditions such
that

‖u(., t)‖Cν , ‖v(., t)‖Cν ≤ C∞ (1.5)

for sufficiently large t.

In population dynamics terms, the first two conditions in (1.4) means that self diffusion
rates are stronger than cross diffusion ones. The third condition is a technical one. In
fact, this condition was only used in [16, 17] to derive uniform estimates for L∞ norms of
the solutions via the existence of a Lyapunov function. The proof in this paper employs
Morrey’s estimates and imbedding theorems to achieve higher regularity. Once again, we
should point out that the techniques in [4], in the absence of the term α21u, can only give
that the W 1,p norms do not blow up, and hence the global existence result. Meanwhile,
[19, 16] do not provide uniform estimates like (1.5) for first order derivatives, which will
be crucial for our proof of persistence below. Moreover, our technique works for more
general systems and requires only uniform L∞ estimates at the onset (see the assumptions
(Q.1), (Q.2) in Section 2). Thus, Theorem 2.1 and Theorem 2.2 in Section 2 can apply to
much more general settings, provided that L∞ estimates are derived by other means.

Our next goal is to study the uniform persistence property of positive solutions of (1.1).
We take advantage of the theory developed in [9] for dynamical systems (see Theorem 3.1),
and apply it to our model. We will prove the following result.
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Theorem 1.2 Assume (1.4) holds, and that the principal eigenvalues of the following
problems: {

λψ = d1∆ψ + a1ψ,
∂ψ

∂n
+ r1ψ = 0,

and

{
λφ = d2∆φ+ a2φ,
∂φ

∂n
+ r2φ = 0,

(1.6)

are positive. Moreover, we assume that either

(P.1) r1 = r2 ≡ 0 and
b1
b2
>
a1

a2
>
c1
c2
,

or

(P.2) r1, r2 6= 0 and

min
{
b1
b2
,
α11

2α21

}
>
a1

a2
> max

{
c1
c2
,
2α12

α22

}
,

and

(r.1) α12 > β11 and d1α22 > 2d2β11;

(r.2) the quantities α21, α12−β11, |a1d2−a2d1| and supx∈∂Ω |r1(x)− r2(x)|
are all sufficiently small.

Then the system (1.1) is uniformly persistent, that is, there exists η > 0 such
that for any initial data u0, v0 ∈W 1,p(Ω) with u0, v0 > 0 we have

lim inf
t→∞

‖u(., t)‖C1(Ω) ≥ η, lim inf
t→∞

‖v(., t)‖C1(Ω) ≥ η. (1.7)

In the context of biology, this means that no species is completely invaded or wiped out
by the other so that they coexist in time. From the structure of (1.1), the positivity of λ in
(1.6) and the results of [2], it is known that the system possesses three trivial and semitrivial
steady states (0, 0), (0, v∗) and (u∗, 0). The trivial one describes the situation when both
species are wiped out from the environment. The other two semitrivial solutions model the
survival of one species while the other is completely invaded. The positivity of the principal
eigenvalues in (1.6) gives the instability of the trivial steady state (see Proposition 3.1). Our
conditions (P.1), (P.2) are essentially to guarantee that the two semitrivial steady states are
unstable (or repelling) in their complement directions.

It is worth noticing that (P.1) is already well known for the Lotka-Volterra counterparts
with homogeneous Neumann boundary conditions (see [2, 3, 8] and the references therein).
It is not quite surprising to see that the cross diffusion parameters (αij , β11) do not manifest
in this case as the semitrivial steady states u∗, v∗ are being just constants. The situation
will be more interesting when we consider (P.2) and the Robin boundary conditions in
(1.1). Now, the semitrivial steady states are nonhomogeneous; and the cross diffusion (or
gradient) effects will play an essential role.
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The proof of this theorem will be presented at the end of Section 3. In fact, we will
establish sufficient conditions for the uniform persistence of each component. That is to
say when one species is not wiped out by the other (see Proposition 3.2 with Lemma 3.1,
and Proposition 3.3 with Lemma 3.2).

Finally, we would like to remark that the uniform persistence property in this paper
is established in the C1 norm instead of the usual L∞ norm widely used in literature of
Lotka-Volterra systems. This is in part due to the setting of the phase space W 1,p for
strongly coupled parabolic systems (see [1]). So, our persistence result does not rule out
the possibility that solutions might form spikes at some points but approach zero almost
everywhere as t→∞. That type of behavior can be seen in some models for chemotaxis,
which also involve a form of strong coupling, so it may be that the results presented here
are optimal. However, it is naturally to ask if it is impossible for one species can survive
in the sense that its density is going to be almost negligible (that is, the L∞ norm goes to
zero) while oscillating wildly to maintain the positivity of its C1 norm. The answer to this
question is still under investigation.

2 Estimates for the gradients

In this section we will establish the uniform bound (1.5) for the gradients and prove Theo-
rem 1.1. In fact, we will consider a more general parabolic system

∂u

∂t
= ∇[P (u, v)∇u+R(u, v)∇v] + f(u, v),

∂v

∂t
= ∇[Q(u, v)∇v] + g(u, v),

(2.1)

with Neumann or Robin boundary conditions. For the sake of simplicity, we will deal with

the Neumann conditions
∂u

∂n
=

∂v

∂n
= 0 in the proof below, and leave the Robin case to

Remark 2.1.
In order to prove (1.5) for (2.1), we assume the following conditions on the parameters

of the system and the uniform boundedness of the solutions.

(Q.1) There exists a positive constant d such that P (u, v), Q(u, v) ≥ d. Moreover, there
is a constant C such that |R(u, v)| ≤ C|u|.

(Q.2) The solutions are uniformly bounded. That is

lim sup
t→∞

‖u(., t)‖∞, lim sup
t→∞

‖v(., t)‖∞ ≤ C∞ (2.2)

for some constant C∞ independent of the initial data u0, v0.

Indeed, we proved in [12] that weak bounded solutions of triangular parabolic systems
including (2.1) are Hölder continuous and therefore classical (see [1]). Moreover the Cα

norms of solutions are ultimately bounded by a positive constant dependent only on their
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L∞ norms. Thus, (2.2) implies the existence of a constant C∞(α) independent of initial
data such that

lim sup
t→∞

‖u(., t)‖Cα , lim sup
t→∞

‖v(., t)‖Cα ≤ C∞(α), ∀α ∈ (0, 1). (2.3)

Our main estimate of this section is the following.

Theorem 2.1 Let (u, v) be a nonnegative solution of (2.1) satisfying (Q.1), (Q.2).
For any p ≥ 1, there exists a positive constant C∞,p independent of the initial data
such that

lim sup
t→∞

‖u(., t)‖1,p + lim sup
t→∞

‖v(., t)‖1,p ≤ C∞,p. (2.4)

Furthermore, the following stronger estimate also holds.

Theorem 2.2 Let (u, v) be a nonnegative solution of (2.1) satisfying (Q.1) and (Q.2).
There exist finite constants C∞ and ν > 1 such that

lim sup
t→∞

‖u(., t)‖Cν + lim sup
t→∞

‖v(., t)‖Cν ≤ C∞. (2.5)

The main idea of the proof is to use the imbedding results for Morrey’s spaces. We re-
call the definitions of the Morrey space Mp,λ(Ω) and the Sobolev-Morrey space W 1,(p,λ).
Let BR(x) denotes a cube centered at x with radius R in IRn.

We say that f ∈Mp,λ(Ω) if f ∈ Lp(Ω) and

‖f‖p
Mp,λ := sup

x∈Ω,ρ>0
ρ−λ

∫
Bρ(x)

|f |pdy <∞.

Moreover, f is in the Sobolev-Morrey space W 1,(p,λ) if f ∈W 1,p(Ω) and

‖f‖p
W 1,(p,λ) := ‖f‖p

Mp,λ + ‖∇f‖p
Mp,λ <∞.

If λ < n − p, p ≥ 1, and pλ = p(n−λ)
n−λ−p , we then have the following imbedding result

(see Theorem 2.5 in [5])
W 1,(p,λ)(B) ⊂Mpλ,λ(B). (2.6)

We then proceed by proving some estimates for the Morrey norms of the gradients of
the solutions. In the sequel, the temporal variable t is always assumed to be sufficiently
large such that (see (2.3))

‖u(., t)‖Cα , ‖v(., t)‖Cα ≤ C∞(α), ∀α ∈ (0, 1) and t ≥ T, (2.7)

where T may depend on the initial data.
From now on, let us fix a point (x, t) ∈ Ω× (T,∞). As far as no ambiguity can arise,

we write BR = BR(x), ΩR = Ω
⋂
BR, and QR = ΩR × [t−R2, t].

We first have the following technical lemma.
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Lemma 2.1 For sufficiently small R > 0, we have the following estimate∫
ΩR

(|∇u(x, t)|2 + |∇v(x, t)|2) dx+
∫∫
QR

[u2
t + v2

t + |∆u|2 + |∆v|2] dz ≤ CRn−2+2α.

For the proof, we will need two useful results from [11] by Ladyzhenskaya et al. for
scalar functions. It is easy to see that they also hold for vector valued functions as we
restate in the following lemmas.

Lemma 2.2 ([11, Lemma II.5.4]) For any function u in W 1,2s+2(Ω, IRm) and any

smooth function ξ such that
∂u

∂n
ξ vanishes on ∂Ω, we have

∫
Ω

|∇u|2s+2ξ2 dx ≤ Cosc2{u,Ω}
∫

Ω

(|∇u|2s−2|∆u|2ξ2 + |∇u|2s|∇ξ|2) dx. (2.8)

Here, C is a constant depending on n,m, s.

Lemma 2.3 ([11, Lemma II.5.3]) Let α > 0 and v be a nonnegative function such that
for any ball BR and ΩR = Ω

⋂
BR the estimate∫

ΩR

v(x) dx ≤ CRn−2+α

holds. Then for any function ξ from W 1,2
0 (BR) the inequality∫

ΩR

v(x)ξ2 dx ≤ CRα
∫

ΩR

|∇ξ|2 dx (2.9)

is valid.

Proof of Lemma 2.1. Let ξ(x, t) be a cut off function for QR and Q2R. That is, ξ = 1 on
QR and ξ = 0 outside Q2R. Integration by parts in x gives∫∫

Q2R

vt∆vξ2 dz =
∫∫
Q2R

[−1
2
∂(|∇v|2ξ2)

∂t
+ |∇v|2ξξt − vt∇vξ∇ξ] dz.

We test the equation of v by −∆vξ2. Since ξ(x, t− 2R2) = 0, the above and a simple
use of the Young inequality yield∫

ΩR

|∇v(x, t)|2 dx +
∫∫
Q2R

|∆v|2ξ2 dz

≤
∫∫
Q2R

[εv2
t ξ

2 + C(|∇u|4 + |∇v|4)ξ2] dz (2.10)

+ C

∫∫
Q2R

|∇v|2(|ξt|+ |∇ξ|2) dz + C

∫∫
Q2R

ξ2 dz.
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Here, we have used the fact that f, g are uniformly bounded thanks to (2.2). Also, because
the solutions are classical, the integrals of |∇u|4, |∇v|4 make sense. Similarly, test the
equation of u by −∆uξ2 to get∫

ΩR

|∇u(x, t)|2 dx +
∫∫
Q2R

|∆u|2ξ2 dz

≤ ε

∫∫
Q2R

u2
t ξ

2 dz + C

∫∫
Q2R

(|∇u|4 + |∇v|4 + C|∆v|2)ξ2 dz

+ C

∫∫
Q2R

|∇u|2(|ξt|+ |∇ξ|2) dz + C

∫∫
Q2R

ξ2 dz. (2.11)

From the equations of (2.1), we also infer

u2
t + v2

t ≤ C(|∆u|2 + |∆v|2 + |∇u|4 + |∇v|4 + |∇u|2 + |∇v|2 + 1). (2.12)

Using this in (2.10), (2.11) and adding them, we get∫
ΩR

(|∇u(x, t)|2 + |∇v(x, t)|2) dx +
∫∫
Q2R

(|∆u|2 + |∆v|2)ξ2 dz (2.13)

≤ C

∫∫
Q2R

(|∇u|2 + |∇v|2)(ξ2 + |ξt|+ |∇ξ|2) dz

+ C

∫∫
Q2R

(|∇u|4 + |∇v|4)ξ2 dz + C

∫∫
Q2R

ξ2 dz.

Using Lemma 2.2, we have∫∫
Q2R

(|∇u|4 + |∇v|4)ξ2 dz ≤ CRα
∫∫
Q2R

(|∆u|2 + |∆v|2)ξ2 + (|∇u|2 + |∇v|2)|∇ξ|2) dz.

Thus, for sufficiently small R, we see that the integrals of |∇u|4, |∇v|4 in (2.13) can be
absorbed to the left. This shows that the quantity∫

ΩR

(|∇u|2 + |∇v|2) dx+
∫∫
Q2R

(|∆u|2 + |∆v|2)ξ2 dz

can be majorized by

C

∫∫
Q2R

[(|∇u|2 + |∇v|2)(ξ2 + |ξt|+ |∇ξ|2) + ξ2] dz. (2.14)

This fact and (2.12), together with another use of Lemma 2.2, show that the quantity∫
ΩR

(|∇u(x, t)|2 + |∇v(x, t)|2) dx+
∫∫
QR

(u2
t + v2

t ) dz +
∫∫
QR

(|∆u|2 + |∆v|2) dz

is also bounded by (2.14).
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Finally, by testing equations of u and v in (2.1) with (u − uR)ξ2 and (v − vR)ξ2 re-
spectively, with uR, vR being the averages of u, v over QR and ξ being the cut-off function
for QR and Q3R, we can easily prove that∫∫

Q2R

(|∇u|2 + |∇v|2) dz ≤ CRn+2α.

Putting this and the fact that |ξt|, |∇ξ|2 ≤ CR−2 into (2.14), we see that the claims in
our lemma are established.

The following lemma shows that∇u,∇v are uniformly bounded inW 1,(2,n−4+2α)(ΩR)
norms so that the imbedding (2.6) can be used.

Lemma 2.4 For R > 0 sufficiently small, we have the following estimates :∫
ΩR

(u2
t + v2

t ) dx ≤ CRn−4+2α, (2.15)

and ∫
ΩR

(|∆u|2 + |∆v|2) dx ≤ CRn−4+2α. (2.16)

Proof. Again, let ξ(x, t) be a cut off function for QR and Q2R. We now test the equation
of v with −(vtξ2)t. Integration by parts in t, x gives

1
2

∫∫
Q2R

∂(v2
t ξ

2)
∂t

dz −
∫∫
Q2R

v2
t ξξt dz +

∫∫
Q2R

(Q∇v)t∇(vtξ2) dz

=
∫∫
Q2R

gt(u, v)vtξ2 dz. (2.17)

Note that, by the choice of ξ and the Neumann condition of v, ξ
∂v

∂n
= 0 on ∂Ω2R.

Therefore the boundary integrals resulting in the integration by parts are all zero.
As

(Q∇v)t∇(vtξ2) = (Q∇vt +Quut∇v +Qvvt∇v)(∇vtξ2 + 2vtξ∇ξ),

we easily see that (2.17), the ellipticity condition (Q.1), (2.2) and the facts that ξ(x, t −
2R2) = 0 and |gt(u, v)| ≤ C|ut|+ |vt| give

∫
ΩR

v2
t dx +

∫∫
Q2R

|∇vt|2ξ2 dz ≤ C

∫∫
Q2R

(u2
t + v2

t )(ξ
2 + |ξt|) dz +

+ C

∫∫
Q2R

[|vt∇vtξ∇ξ|+ |(|ut|+ |vt|)∇v∇vtξ2|+ |(|ut|+ |vt|)∇vvtξ∇ξ|] dz.
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Using Young’s inequality, we have

|vt∇vtξ∇ξ| ≤ ε|∇vt|2ξ2 + C(ε)v2
t |∇ξ|2,

|(ut + vt)∇v∇vtξ2| ≤ ε|∇vt|2ξ2 + C(ε)(u2
t + v2

t )|∇v|2ξ2,
|(ut + vt)∇vvtξ∇ξ| ≤ C[(u2

t + v2
t )|∇v|2ξ2 + v2

t |∇ξ|2].

Therefore,∫
ΩR

v2
t dx +

∫∫
Q2R

|∇vt|2ξ2 dz (2.18)

≤ C

∫∫
Q2R

(u2
t + v2

t )|∇v|2ξ2 dz + C

∫∫
Q2R

(u2
t + v2

t )(ξ
2 + |ξt|+ |∇ξ|2) dz.

Next, we test the equation of u with −(utξ2)t and note that

(R∇v)t∇(utξ2) = (Ruut∇v +R∇vt)(∇utξ2 + 2utξ∇ξ).

By Hölder inequality, we also have∫∫
Q2R

|(R∇v)t∇(utξ2)| dz ≤ ε

∫∫
Q2R

|∇ut|2ξ2 dz + C

∫∫
Q2R

|∇vt|2ξ2 dz

+
∫∫
Q2R

(u2
t |∇v|2ξ2 + u2

t |∇ξ|2) dz.

Hence, arguing similarly as before, we also have∫
ΩR

u2
t dx +

∫∫
Q2R

|∇ut|2ξ2 dz ≤ C

∫∫
Q2R

|∇vt|2ξ2 dz (2.19)

+ C

∫∫
Q2R

(u2
t + v2

t )(|∇u|2 + |∇v|2)ξ2 + (u2
t + v2

t )(ξ
2 + |ξt|+ |∇ξ|2) dz.

By (2.18), the integral of |∇vt|2ξ2 can be eliminated from the right hand side. The
result and (2.18) together show that

∫
ΩR

u2
t + v2

t dx +
∫∫
Q2R

(|∇ut|2 + |∇vt|2)ξ2 dz ≤ (2.20)

+ C

∫∫
Q2R

(u2
t + v2

t )(|∇u|2 + |∇v|2)ξ2 + (u2
t + v2

t )(ξ
2 + |ξt|+ |∇ξ|2) dz.

As we proved in Lemma 2.1,
∫

ΩR

(|∇u|2 + |∇v|2) dx ≤ cRn−2+2α. This allows us

to apply Lemma 2.3, with the function v replaced by |∇u|2 + |∇v|2, to derive∫∫
Q2R

(|∇u|2 + |∇v|2)v2
t ξ

2 dz ≤ cR2α

∫∫
Q2R

[|∇vt|2ξ2 + v2
t |∇ξ|2] dz



Cross diffusion parabolic systems 519

and ∫∫
Q2R

(|∇u|2 + |∇v|2)u2
t ξ

2 dz ≤ cR2α

∫∫
Q2R

[|∇ut|2ξ2 + u2
t |∇ξ|2] dz.

Hence, for R sufficiently small, we obtain from (2.20) that∫
ΩR

u2
t (x, t) + v2

t (x, t) dx ≤ C

∫∫
Q2R

(u2
t + v2

t )(ξ
2 + |ξt|+ |∇ξ|2) dz. (2.21)

Applying Lemma 2.1 and using the fact that |ξt|, |∇ξ|2 ≤ CR−2, we obtain the desired
inequality (2.15). For (2.16), we solve ∆u and ∆v in terms of ut, vt,∇u, and ∇v and then
integrate them over ΩR to get∫

ΩR

(|∆u|2 + |∆v|2)ξ2 dx ≤ C

∫
ΩR

(u2
t + v2

t + |∇u|2 + |∇v|2 + |∇u|4 + |∇v|4 + 1)ξ2 dx.

We then use Lemma 2.2 again to absorb the term |∇u|4 + |∇v|4 to the left hand side. The
result is∫

ΩR

(|∆u|2 + |∆v|2)ξ2 dx ≤ C

∫
ΩR

[(u2
t + v2

t )ξ
2 + (|∇u|2 + |∇v|2)(ξ2 + |∇ξ|2) + ξ2] dx.

This, Lemma 2.1 and (2.15) give (2.16), and complete our proof.

We are now ready to give
Proof of Theorem 2.1. Thanks to the above lemmas, the estimate

∫
ΩR

[(u2
t + v2

t ) + (|∇u|2 + |∇v|2) + (|∇u|4 + |∇v|4) + (|∆u|2 + |∆v|2)] dx ≤ CRn−4+2α

holds for some constant C independent of the initial data if t is sufficiently large.
By rewriting the equations of u, v as P∆u = F̃ and Q∆v = G̃, with F̃ , G̃ depending

on the first order derivatives of u, v in x, t, and using the above estimates, we can apply [20,
Lemma 4.1] to assert that the norms of∇u and∇v in W 1,(2,λ)(ΩR), with λ = n−4+2α,
are uniformly bounded. Therefore, by the imbedding (2.6), and the fact that M2λ,λ ⊂ L2λ ,
we have ‖∇u(•, t)‖L2λ (Ω) and ‖∇v(•, t)‖L2λ (Ω), with 2λ = 2(4−2α)

2−2α , are bounded by
some constant C. Since α can be arbitrarily chosen in (0, 1), 2λ can be as large as desired.
This proves (2.4).

Regarding (2.5), we rewrite the equation of v as follows:

vt = Q∆v +G

with G = Qu∇u∇v + Qv|∇v|2 + g. Since u, v are Hölder continuous with uniformly
bounded norms, we can regard Q as a Hölder continuous function in (x, t). Therefore, we
can apply ii) of [13, Lemma 2.5] here to obtain
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‖v(., t)‖Cµ ≤ t−βe−δt‖v(., τ)‖r +
∫ t

τ

(t− s)−βe−δ(t−s)(‖∇u‖22r + ‖∇v‖22r + ‖g‖r)ds

(2.22)
for any 0 < τ < t and 2β > µ+ n/r. Using (2.4) and (2.2), for sufficiently large t, τ , we
have

‖v(., t)‖Cµ ≤ C(r)t−βe−δt + C(r)
∫ t

τ

(t− s)−βe−δ(t−s)ds (2.23)

for some constant C(r) independent of the initial data. The above integral is finite for all
t if β ∈ (0, 1). Obviously, we can choose r sufficiently large and µ > 1 such that β < 1,
and therefore prove that ‖v(., t)‖Cµ is uniformly bounded for large t. Finally, such Hölder
estimate for ∇v allows us to follow the proof of Theorem 2.2 in [13] to get the uniform
estimate for ‖u(., t)‖Cµ as desired.

Remark 2.1 The case of Robin boundary conditions can be reduced to the Neumann one
by a simple change of variables. First of all, since our proof based on the local estimates
of Lemma 2.1 and Lemma 2.4, we need only to study these inequalities near the boundary.
As ∂Ω is smooth, we can locally flatten the boundary and assume that ∂Ω is the plane
{xn = 0}. Furthermore, we can take ΩR = {(x′, xn) : xn > 0, |(x′, xn)| < r}. The
boundary conditions become

∂u

∂xn
+ r̃1(x′)u = 0,

∂v

∂xn
+ r̃2(x′)v = 0.

We then introduce

U(x′, xn) = exp(xnr̃1(x′))u(x′, xn), V (x′, xn) = exp(xnr̃2(x′))v(x′, xn).

Obviously, U, V satisfy the Neumann boundary condition on xn = 0. Simple calculations
also show that U, V verify a system similar to that for u, v, and the conditions (Q.1), (Q.2)
are still valid. In fact, there will be some extra terms occurring in the divergence parts of the
equations for U, V , but these terms can be handled by a simple use of Young’s inequality
so that our proof can go on with minor modifications. Thus Theorem 2.1 applies to U, V ,
and the estimates for u, v then follow.

We conclude this section by giving the proof of Theorem 1.1.

Proof of Theorem 1.1: In our recent works (see [16], [17]), we proved that nonnegative
weak solutions of (1.1) are ultimately uniformly bounded in their L∞ norms. Therefore,
the conditions (Q.1), (Q.2) are verified by (1.1), and Theorem 2.1 applies here. The es-
timate (2.4) asserts the existence of an absorbing ball in W 1,p(Ω) attracting all solutions.
The compactness of associated semiflow in W 1,p(Ω) comes from the estimate (1.5). The
existence of the global attractor then follows (see [7]).
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3 Persistence results

In this section we shall consider the question of persistence and prove Theorem 1.2. Our
proof mainly bases on a persistence result in [9] for general dynamical systems defined
on metric spaces. In order to restate this result, let us first recall some definitions in the
dynamical system theory. Let (X, d) be a metric space and Φ be a semiflow on X . A
subset A ⊂ X is said to be an attractor for Φ if A is nonempty, compact, invariant, and
there exists some open neighborhood U of A in X such that limt→∞ d(Φt(u), A) = 0 for
all u ∈ U . Here, d(x,A) is the usual Hausdorff distance from x to the set A. If A is an
attractor which attracts every point in X , A is called global attractor. For a nonempty
invariant set M , the set W s(M) := {x ∈ X : limt→∞ d(Φt(x),M) = 0} is called the
stable set of M . A nonempty invariant subset M of X is said to be isolated if it is the
maximal invariant set in some neighborhood of itself.

Let A and B be two isolated invariant sets. A is said to be chained to B, denoted by
A → B, if there exists a globally defined trajectory Φt(x), t ∈ (−∞,∞), through some
x 6∈ A

⋃
B whose range has compact closure such that the omega limit set ω(x) ⊂ B and

the alpha limit set α(x) ⊂ A. A finite sequence {M1,M2, ...,Mk} of isolated invariant sets
is called a chain if M1 →M2 → ...→Mk. The chain is called a cycle if Mk = M1.

Let X0 ⊂ X be an open set and ∂X0 = X \ X0. Assume that X0 is positively
invariant. Let p(x) = d(x, ∂X0), the distance from x to ∂X0. Φ is said to be uniformly
persistent with respect to (X0, ∂X0, p) if there exists η > 0 such that

lim inf
t→∞

p(Φt(x)) ≥ η

for all x ∈ X0.
The following uniform persistence result is established in [9].

Theorem 3.1 (Theorem 4.3 in [9]) Assume that

(C1) Φ has a global attractor A;

(C2) There exists a finite sequence M = {M1, ...,Mk} of pairwise disjoint, compact
and isolated invariant sets in ∂X0 with the following properties:

(m.1)
⋃
x∈∂X0

ω(x) ⊂
⋃k
i=1Mi,

(m.2) no set of M forms a cycle in ∂X0,

(m.3) Mi is isolated in X,

(m.4) W s(Mi)
⋂
X0 = ∅ for each i = 1, ..., k.

Then there exists δ > 0 such that for any x ∈ X0, the following inequality holds

inf
y∈ω(x)

d(y, ∂X0) > δ.

We will apply this theorem to obtain the uniform persistence for the system (1.1). Let
C1

+(Ω) = {u ∈ C1(Ω) : u(x) ≥ 0∀x ∈ Ω}. We define

X = C1
+(Ω)× C1

+(Ω) and X0 = {(u, v) ∈ X : u(x) > 0 and v(x) > 0},
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with norm ‖(u, v)‖X = ‖u‖C1(Ω) + ‖v‖C1(Ω). Thanks to Theorem 1.1, the solutions with
initial data inW 1,p(Ω) will become C1 smooth so that we need only to consider the system
(1.1) and its associated semiflow Φ onX . That is, for any (u0, v0) inX , let (u(•, t), v(•, t))
be the solution to (1.1) and define Φt(u0, v0) = (u(•, t), v(•, t)) for all t ≥ 0.

Firstly, we will see that X0 is positively invariant with respect to Φ. Indeed, let us
rewrite the equation of u as follows:

ut = div(a(x, t)∇u+ b(x, t)u) + c(x, t),

where a(x, t) = P (u(x, t), v(x, t)) ≥ d > 0, b(x, t) = Ru∇v(x, t) and c(x, t) =
f(u(x, t), v(x, t)). Here and throughout this section, we denote

P (u, v) = d1 + α11u+ α12v, R(u) = β11u, Q(u, v) = d2 + α21u+ α22v,

and
f(u, v) = u(a1 − b1u− c1v), g(u, v) = v(a2 − b2u− c2v).

By virtue of Theorem 1.1, we see that a, b, c are bounded. Using the strong positivity result
in [18], we see that u(x, t) > 0 for all t. Similar argument shows that the component v
also stays positive. Hence, Φt(u0, v0) ∈ X0 for all t. Theorem 1.1 also asserts that Φ has
a global attractor in X , and thus (C1) is verified.

Next, we consider the condition (C.2). It is clear that the “boundary” parts u = 0 or
v = 0 of X0 are also invariant with respect to Φ. On these boundaries, the dynamics of
(1.1) is reduced to those of the following scalar parabolic equations.

ut = ∇(P (u, 0)∇u) + f(u, 0), u(0) > 0, (3.1)
vt = ∇(Q(0, v)∇v) + g(0, v), v(0) > 0. (3.2)

Investigating the dynamics of these equations leads us to the following steady state
equations

∇(P (u∗, 0)∇u∗) + f(u∗, 0) = 0, ∇(Q(0, v∗)∇v∗) + g(0, v∗) = 0,

together with the boundary conditions as in (1.2). If the principal eigenvalues of (1.6) are
positive, the above equations admit unique solutions, which are denoted respectively by
u∗ and v∗. Furthermore, the solutions u(x, t), v(x, t) of (3.1), (3.2) converge to u∗, v∗,
respectively, in the C(Ω) norm as t tends to infinity. Meanwhile, the trivial solution 0 is
an unstable steady state for both equations. These claims are obtained by following closely
the proof of [2, Corollary 2.4] or [3, Theorem 1.2], where the Dirichlet boundary condition
was assumed.

Therefore, the setsM0 = (0, 0), M1 = (u∗, 0), andM2 = (0, v∗) are pairwise disjoint,
compact and isolated invariant sets in ∂X0 with respect to Φ. Moreover, no set of {Mi}
can form a cycle in ∂X0; and

⋃
x∈∂X0

ω(x) ⊂
⋃2
i=0Mi. We thus show that the conditions

(m.1) and (m.2) are satisfied.
Checking (m.3) and (m.4) requires much more effort. The role of the parameters r1, r2

will play an important role here. Let us assume that the system (1.1) satisfies the Robin
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boundary condition (1.2) with r1, r2 6= 0. The Neumann case is simpler, and will be
discussed later in Remark 3.1.

We discuss first the property (m.4) at M0. We will show below that the instability of
M0 is determined by the principal eigenvalue λ of (see (1.6)){

λφ = d2∆φ+ a2φ,
∂φ

∂n
+ r2φ = 0.

(3.3)

Proposition 3.1 Assume that the principal eigenvalue λ of (3.3) is positive. There
exists η0 > 0 such that for any solution (u, v) of (1.1) with (u0, v0) ∈ X0, we have

lim sup
t→∞

‖(u(., t), v(., t))‖X ≥ η0.

Proof. Let φ be the positive eigenfunction associated to the principal eigenvalue λ of (3.3).
By testing the equation of v by φ and (3.3) by v, we subtract the results to get

d

dt

∫
Ω

vφ dx = λ

∫
Ω

vφ dx+
∫

Ω

[−Q0∇v∇φ+ (g − a2v)φ] dx−
∫
∂Ω

Q0r2vφ dσ.

(3.4)
Here, we denoted Q0 = Q− d2 = α21u+ α22v. Integration by parts yields

−
∫

Ω

Q0∇v∇φ dx =
∫

Ω

v∇(Q0∇φ) dx+
∫
∂Ω

r2Q0vφ dσ.

Putting this in (3.4), we infer

d

dt

∫
Ω

vφ dx = λ

∫
Ω

vφ dx+
∫

Ω

vφ
∇(Q0∇φ)

φ
dx−

∫
Ω

(b2u+ c2v)vφ dx.

Now, suppose that our claim was false. For any η > 0, there would be a solution
u, v such that ‖(u(., t), v(., t))‖X ≤ η when t is large. This implies that the quantities
|∇(Q0∇φ)|

φ and (b2u + c2v) can be very small. Thus, if η is sufficiently small, then the
above equation yields

d

dt

∫
Ω

vφ dx ≥ λ

2

∫
Ω

vφ dx.

This shows that, as t → ∞,
∫

Ω

v(., t)φ dx goes to infinity, contradicting the fact that

‖(u, v)‖X is bounded. Our proof is complete.

Next, we study M1 and M2. Our main assumption for (m.3) and (m.4) to hold is the
instability of M1, M2 in their complement v, u directions, respectively. To this end, we
consider the linearization of the system (1.1) at a general steady state point (u, v).{

λψ = ∇[(Puψ + Pvφ)∇u+ P∇ψ + (Ruψ +Rvφ)∇v +R∇φ] + fuψ + fvφ,

λφ = ∇[(Quψ +Qvφ)∇v +Q∇φ] + guψ + gvφ.
(3.5)
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Here ψ (respectively, φ) satisfies the boundary condition of u (respectively, v) in (1.2).
Putting (u, v) = (0, v∗) and (ψ, φ) = (ψ, 0), the instability of M2 = (0, v∗) in the

direction u is determined by the sign of the principal eigenvalue of the following system.

λψ = ∇(P (0, v∗)∇ψ +Ruψ∇v∗) + fu(0, v∗)ψ, (3.6)

with v∗ being the solution of

0 = ∇(Q(0, v∗)∇v∗) + g(0, v∗). (3.7)

We shall establish the following repelling property of (0, v∗).

Proposition 3.2 Suppose that the principal eigenvalue λ of (3.6) is positive. If Pv −
Ru = α12 − β11 is positive and sufficiently small, then there exists η0 > 0 such that
for any solution (u, v) of (1.1) with (u0, v0) ∈ X0, we have

lim sup
t→∞

‖(u(., t), v(., t))− (0, v∗)‖X ≥ η0.

Similarly, the instability of M1 = (u∗, 0) in the direction v is determined by the sign
of the principal eigenvalue of the following system.

λφ = ∇(Q(u∗, 0)∇φ) + gv(u∗, 0)φ, (3.8)

with u∗ being the solution of

0 = ∇(P (u∗, 0)∇u∗) + f(u∗, 0). (3.9)

Proposition 3.3 Suppose that the principal eigenvalue λ of (3.8) is positive. If Qu =
α21 is positive and sufficiently small, then there exists η0 > 0 such that for any
solution (u, v) of (1.1) with (u0, v0) ∈ X0, we have

lim sup
t→∞

‖(u(., t), v(., t))− (u∗, 0)‖X ≥ η0.

An immediate consequence of these propositions is thatW s(Mi)
⋂
X0 = ∅, i = 0, 1, 2

respectively. Otherwise, by the definition of W s(Mi), there exists (u0, v0) ∈ X0 such that
d((u(t), v(t)),Mi) → 0 as t → ∞, a contradiction to the above corresponding proposi-
tions.

Moreover, we also see that Mi is isolated in X . Indeed, consider a neighborhood of
Mi in X0, V = {(u, v) ∈ X0 : d((u, v),Mi) < η0/2}. For any (u0, v0) ∈ X0

⋂
V ,

the above proposition shows that (u(t), v(t)) will inevitably exits V . This means Mi is
maximal in V , and isolated in X .

We now give the proof of Proposition 3.2 and Proposition 3.3.

Proof of Proposition 3.2. The proof is by contradiction. Assume that for any η > 0 there
exists a solution (u, v) of (1.1) and T > 0 such that

‖u(., t)‖C1(Ω), ‖v(., t)− v∗‖C1(Ω) < η (3.10)
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for all t > T . Hereafter, we always consider t > T .
We denote P0 = P (0, v∗) and recall (3.5):

λψ = ∇(P0∇ψ +Ruψ∇v∗) + fu(0, v∗)ψ.

Set P (u, v) =
∫ u
0
P (s, v)ds. We note that ∇P (u, v) = P∇u+Pvu∇v. Testing the above

equation with P , we obtain

λ

∫
Ω

ψP (u, v) dx = −
∫

Ω

P0P∇ψ∇u dx−
∫

Ω

P0Pvu∇ψ∇v dx

−
∫

Ω

Ruψ∇v∗(P∇u+ Pvu∇v) dx+
∫

Ω

fu((0, v∗))ψP dx

+
∫
∂Ω

(P0
∂ψ

∂n
+Ruψ

∂v∗
∂n

)P dσ. (3.11)

Similarly, we test the equation of u in (1.1) with P0ψ (∇(P0ψ) = Pvψ∇v∗ + P0∇ψ),
and get

∂

∂t

∫
Ω

P0uψ dx = −
∫

Ω

PP0∇u∇ψ dx−
∫

Ω

PPvψ∇u∇v∗ dx

−
∫

Ω

R∇v(P0∇ψ + Pvψ∇v∗) dx+
∫

Ω

fP0ψ dx

+
∫
∂Ω

(P
∂u

∂n
+R

∂v

∂n
)P0ψ dσ. (3.12)

From (3.11), (3.12) and the boundary condition (1.2), we find

∂

∂t

∫
Ω

P0uψ dx = λ

∫
Ω

ψP dx+ (Pv −Ru)
∫

Ω

[P0u∇v∇ψ − Pψ∇u∇v∗] dx

+
∫

Ω

(fP0 − fu(0, v∗)P )ψ dx+ I∂ , (3.13)

where I∂ =
∫
∂Ω

(P − Pu)r1ψP0 + (Pv∗ − uvP0)Rur2ψ dσ.

Next, we shall show that the integrals on the right of (3.13) are either nonnegative or
controlled by the first integral. From the definition of the parameters, we have

Pψ = (d1 + α12v)uψ +
α11u

2

2
ψ ≥ P0uψ + Pv(v − v∗)uψ,

(fP0 − fu(0, v∗)P )ψ = (c1(v∗ − v)− b1u)P0uψ + fu(α12(v∗ − v)− α11u

2
)uψ.

Hence, if η in (3.10) is sufficiently small, the above gives∫
Ω

Pψ dx ≥ 3
4

∫
Ω

P0uψ dx,

∣∣∣∣∫
Ω

(fP0 − fu(0, v∗)P )ψ dx
∣∣∣∣ ≤ λ

4

∫
Ω

P0uψ dx.
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On the other hand, integrate by parts to get

−
∫

Ω

Pψ∇u∇v∗ dx =
∫

Ω

u∇(Pψ∇v∗) dx−
∫
∂Ω

uPψ
∂v∗
∂n

dσ

=
∫

Ω

uψ
∇(Pψ∇v∗)

ψ
dx+

∫
∂Ω

uPψr2v∗ dσ.

Thanks to (3.10) and the fact that ψ > 0 on Ω̄, the quantities |∇v||∇ψψ |, ∇(Pψ∇v∗)
P0ψ

are
bounded. Thus, if Pv −Ru is positive and sufficiently small, then

(Pv−Ru)
∫

Ω

[P0u∇v∇ψ − Pψ∇u∇v∗] dx ≥ −λ
4

∫
Ω

P0uψ dx+(Pv−Ru)
∫
∂Ω

Pr2v∗uψ dσ.

Putting these facts in (3.13), we derive

∂

∂t

∫
Ω

P0uψ dx ≥
λ

4

∫
Ω

P0uψ dx+ I∂ + (Pv −Ru)
∫
∂Ω

uPψr2v∗ dσ.

Finally, we study the boundary integrals. Straightforward calculations show

I∂ =
∫
∂Ω

[−α11

2
ur1P0 + (d1(v∗ − v) +

α11

2
uv∗)Rur2]uψ dσ.

If η in (3.10) is small, then it is clear that the quantity in the brackets can be very small.

Thus, I∂ can be controlled by the positive boundary integral (Pv−Ru)
∫
∂Ω

Pr2v∗uψ dσ.

Therefore
∂

∂t

∫
Ω

P0uψ dx ≥
λ

4

∫
Ω

P0uψ dx. (3.14)

As λ > 0, this shows that
∫

Ω

P (0, v∗)uψ dx goes to infinity as t does. This contradicts

(3.10) and completes this proof.

Proof of Proposition 3.3. Along the line of the proof of Proposition 3.2, we assume that

for any η > 0 there exists a solution (u, v) of (1.1) and T > 0 such that

‖v(., t)‖C1(Ω) + ‖u(., t)− u∗‖C1(Ω) < η, for any t > T . (3.15)

Consider the equation (3.8)

λφ = ∇(Q0∇φ) + gv(u∗, 0)φ,

where Q0 = Q(u∗, 0). Set Q(u, v) =
∫ v
0
Q(u, s)ds. Test the above equation with Q and

the equation of v in (1.1) with Q0φ, we easily derive

∂

∂t

∫
Ω

Q0vφ dx = λ

∫
Ω

φQ dx+Qu

∫
Ω

Q0v∇u∇φ dx−Qu

∫
Ω

Qφ∇v∇u∗ dx

+
∫

Ω

(gQ0 − gv(u∗, 0)Q)φ dx+
∫
∂Ω

(Q−Qv)r2φQ0 dσ.(3.16)
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First, for sufficiently small η in (3.15), it is not difficult to see that∣∣∣∣∫
Ω

(gQ0 − gv(u∗, 0)Q)φ dx
∣∣∣∣ ≤ λ

4

∫
Ω

φQ dx.

Next, by integration by parts and the boundary condition of u∗, we get

−
∫

Ω

Qφ∇v∇u∗ dx =
∫

Ω

v∇(Qφ∇u∗) dx+
∫
∂Ω

Qvφr1u∗ dσ.

As |∇u||∇φ|/|φ| and |∇(Qφ∇u∗)|/φ are bounded, if Qu is sufficiently small, we also
have

Qu

∫
Ω

Q0v∇u∇φ dx and Qu

∫
Ω

v∇(Qφ∇u∗) dx ≥ −λ
4

∫
Ω

Q0vφ dx.

Put these estimates in (3.16) to see that

∂

∂t

∫
Ω

Q0vφ dx ≥
λ

4

∫
Ω

Q0vφ dx+
∫
∂Ω

(Q−Qv)r2φQ0 dσ +Qu

∫
∂Ω

Qvφr1u∗ dσ.

(3.17)
Concerning the boundary integrals, we note that Q − Qv = −α22

2 v2. Therefore, if η
in (3.15) is sufficiently small, then the sum of the boundary integral is positive. We then
conclude that

∂

∂t

∫
Ω

Q0vφ dx ≥
λ

4

∫
Ω

Q0vφ dx.

This inequality shows
∫

Ω

Q0vφ dx tends to infinity, contradicting (3.15). Our proof is

complete.

Remark 3.1 If the boundary conditions are of Neumann type, then u∗, v∗, ψ, φ in the
above proofs are just constant functions and our calculations will be much simpler. In
fact, it is easy to see that the smallness condition for Pv − Ru (respectively Qu) in Propo-
sition 3.2 (respectively Proposition 3.3) is no longer needed.

Next, we will present explicit and simple criteria on the parameters of (1.1) for the
positivity of the principal eigenvalues of (3.6), (3.8).

Lemma 3.1 Assume that either r1 = r2 ≡ 0 and a1/a2 > c1/c2, or

a1

a2
> max

{
c1
c2
,
2α12

α22

}
, (3.18)

and

a) α12 > β11;

b) d1α22 ≥ 2d2β11; supx∈∂Ω(r1(x) − r2(x))+ and (a2d1 − a1d2)+ are sufficiently
small.
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Then λ in (3.6) is positive.

Proof. Set P0 = P (0, v∗), Q0 = Q(0, v∗). We test (3.6) with Q =
∫ v∗
0
Q(0, s)ds and test

(3.7) with P (0, v∗)ψ. Together, we get

λ

∫
Ω

ψQ dx = −
∫

Ω

P0Q0∇ψ∇v∗ dx−
∫

Ω

RuQ0ψ|∇v∗|2 dx

+
∫
∂Ω

(P0
∂ψ

∂n
+Ruψ

∂v∗
∂n

)Q dσ +
∫

Ω

fuψQ dx

= (Pv −Ru)
∫

Ω

Q0ψ|∇v∗|2 dx+
∫

Ω

(fuQ− g0P0)ψ dx

+
∫
∂Ω

(P0
∂ψ

∂n
+Ruψ

∂v∗
∂n

)Q dσ −
∫
∂Ω

Q0P0ψ
∂v∗
∂n

dσ.

We need only show that the right hand side is positive. Since Pv = α12 > β11 = Ru,
the first term on the right is nonnegative. For the second integral, we note that

fuQ− g0P0 = v∗[(a1 − c1v∗)(d2 +
α22

2
v∗)− (a2 − c2v∗)(d1 + α12v∗)].

We study the quantity in the brackets by considering the quadratic

F (X) = (a1 − c1X)(d2 +
α22

2
X)− (a2 − c2X)(d1 + α12X)

= (c2α12 −
1
2
c1α22)X2 + (

1
2
a1α22 − a2α12 + c2d1 − c1d2)X + a1d2 − a2d1.

First of all, by a simple use of maximum principles, we can easily show that 0 <
v∗(x) ≤ a2/c2 for all x ∈ Ω. Let µ = infΩ v∗(x) > 0.

We will show that F (v∗) > 0. Firstly, due to (3.18),

F (0) = a1d2 − a2d1 and F (a2/c2) = (a1 −
a2c1
c2

)(d2 +
a2α22

2c2
) > 0.

Consider the case when the coefficient of X2 in F (X) is negative. If F (0) ≥ 0 then
F (v∗) > 0 because 0 < µ ≤ v∗(x) ≤ a2/c2. If F (0) < 0, then F (X) = 0 has two
positive rootsX1, X2 withX2 > a2/c2. Hence, if |F (0)| is sufficiently small then µ > X1

and therefore F (v∗) > 0.
Otherwise, by (3.18), we have F (v∗) ≥ ( 1

2a1α22 − a2α12 + c2d1 − c1d2)v∗ + F (0).
If (c2d1 − c1d2) ≥ 0, the last quantity is obviously positive when either F (0) ≥ 0 or
F (0) < 0 but |F (0)| is small. Or else, because v∗ ≤ a2/c2 we have

F (v∗) ≥ (c2d1 − c1d2)
a2

c2
+ a1d2 − a2d1 = a2d2(

a1

a2
− c1
c2

) > 0.

In all cases, F (v∗) > 0. Thus, the second integral is also positive. It remains to consider
the boundary integrals. In view of (1.2), they are∫
∂Ω

(r2 − r1)P0Qψ dσ +
∫
∂Ω

r2ψv
2
∗

(α22

2
d1 − β11d2 +

α22

2
(Pv −Ru)v∗

)
dσ
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The last integrand is positive due to the first condition in b). Therefore the above sum
is nonnegative if either r2 ≥ r1 or r1 − r2 > 0 but sufficiently small. Therefore, under the
stated assumptions in the lemma, λ is positive.

Similarly, we have the following result.

Lemma 3.2 Assume that either r1 = r2 ≡ 0 and a2/a1 > b2/b1, or

a2

a1
> max

{
b2
b1
,
2α21

α11

}
, (3.19)

and (a2d1 − a1d2)−, supx∈∂Ω(r2(x)− r1(x))+ are sufficiently small.
Then λ in (3.8) is positive.

Proof. Following the previous proof, we test (3.8) with P =
∫ u∗
0
P (s, 0)ds, (3.9) with

Q0φ (Q0 = Q(u∗, 0), P0 = P (u∗, 0)), to get

λ

∫
Ω

φP dx =
∫

Ω

[QuP0φ|∇u∗|2 + (gvP − fQ0)φ] dx+
∫
∂Ω

(r1P0u∗ − r2P )Q0φ dσ.

We note that r1P0u∗ − r2P = (r1 − r2)P0u∗ + Pu

2 r2u
2
∗, and

gvP − fQ0 = (a2 − b2u∗)(d1 +
α11

2
u∗)u∗ − (a1 − b1u∗)(d2 + α21u∗)u∗.

The proof is then similar to that of Lemma 3.1. We omit the details.

We conclude this paper by giving the proof of Theorem 1.2.

Proof of Theorem 1.2. It is clear that the stated conditions (P.1) or (P.2) satisfy those of
our propositions and lemmas of this section. The theorem then follows from Theorem 3.1.
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