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For elliptic interface problems with flux jumps, this article studies robust residual- and recovery-based a
posteriori error estimators for the conforming finite element approximation. The residual estimator is a nat-
ural extension of that developed in [Bernardi and Verfürth, Numer Math 85 (2000), 579–608; Petzoldt, Adv
Comp Math 16 (2002), 47–75], and the recovery estimator is a nontrivial extension of our method developed
in Cai and Zhang, SIAM J Numer Anal 47 (2009) 2132–2156. It is shown theoretically that reliability and
efficiency bounds of these error estimators are independent of the jumps provided that the distribution of
the coefficients is locally monotone. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 000:
000–000, 2010
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I. INTRODUCTION

Let � be a bounded polygonal domain in �d (d = 2 or 3) with boundary ∂� = �̄D ∪ �̄N and
�D ∩ �N = ∅. For simplicity, we assume that �D is not empty (i.e., mes (�D) �= 0). Let {�i}N

i=1

be a partition of the domain � with �i being an open polygonal subdomain, and let ni be the
outward unit vector normal to the boundary of the domain �i . When two subdomains �k and �l

share a common boundary, set

�kl := ∂�k ∩ ∂�l ,

the interface between �k and �l . As �kl = �lk , we assume that k < l for �kl . The collection of
the interior interfaces {�kl} is denoted by

S := ∪k<l �kl .
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Let α(x) be positive and piecewise constant on polygonal subdomains of � with possible large
jumps across subdomain boundaries (interfaces):

α(x) = αi > 0 in �i ,

for i = 1, . . . , N . For a function v defined on the domain �, denote by vi = v|�i
its restriction

on �i . For any interface �kl ∈ S, define the following jumps

[[v]]�kl
= (vk − vl)|�kl

and [[α∇v · n]]�kl
= (αk∇vk · nk + αl∇vl · nl)|�kl

.

In this article, we consider the following interface problem


−∇ · (α(x)∇ u) = f in �,
u = gD on �D ,

α(x)∇u · n = gN on �N

(1.1)

with jump conditions

[[u]] = 0 and [[α∇u · n]] = g on S, (1.2)

where the symbols ∇· and ∇ stand for the divergence and gradient operators, respectively, and
f , g, gD , and gN are given scalar-valued functions in L2. For simplicity, we consider the case
that the Dirichlet boundary condition gD can be exactly approximated by a continuous piecewise
linear function. Problem (1.1)–(1.2) arises in many applications (see, e.g., [1] and the book [2]).

A posteriori error estimations for finite element methods have been extensively studied for
the past three decades (see, e.g., books by Verfürth [3], Ainsworth and Oden [4], Babuška and
Strouboulis [5], and references therein). For elliptic interface problems without flux jumps, robust
a posteriori error estimators have been investigated. For the conforming finite element method,
Bernardi and Verfürth [6] and Petzoldt [7] studied a residual-based estimator, and we [8] studied
recovery-based estimators that were further extended to mixed and nonconforming finite element
methods in [9] and to discontinuous Galerkin finite element methods in [10].

Existing recovery based error estimators, such as Zienkiewicz-Zhu (ZZ) error estimators [11]
and Carstensen-Bartels (CB) error estimators [12], recover the gradient/flux in the continuous
finite element space. It is well-known that, when the underlying problem is not smooth along
the interface, the resulting estimators can significantly over-estimate local error in regions where
the approximation is good, and lead to over-refinement. This is shown by Ovall in [13, 14] and
our numerical results in [8, 9]. To overcome this difficulty, one often applies the method on each
subdomain separately. For reasons why this local approach is not favorable, see [14]. Moreover,
those recovery procedures are inexact for problems with Neumann boundary conditions (see e.g.,
[12]) because they are unable to enforce the Neumann boundary condition. This is particularly
true for problems with flux jumps.

The purpose of this article is to develop robust a posteriori error estimators for problem
(1.1)–(1.2). In particular, we study an explicit residual estimator for conforming finite element
approximation of all orders and a recovery estimator for conforming linear elements. The former
is a natural extension of that developed in [6, 7] and is analyzed in a similar fashion. The latter is
a nontrivial extension of our method developed in [8] because of the flux jumps along interfaces.
This is done through a decomposition of the flux: σ = σ g + σ 0, where σ g may be calculated
explicitly and σ 0 has continuous normal component across the interfaces and satisfies homoge-
neous Neumann boundary conditions on �N . Now, the σ 0 may be recovered in a similar fashion
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as those in [8]. The implicit recovery procedure leads to a good approximation to the flux. The
resulting recovery estimators based on both the implicit and the explicit recoveries are shown to
be robust provided that the distribution of the coefficients are locally monotone. The robustness
here means that constants of the reliability and efficiency bound are independent of the jumps of
the diffusion coefficients.

This article is organized as follows. Finite element methods and the Clément types of interpola-
tions are described in Sections II. A robust residual-based a posteriori error estimator is introduced
and analyzed in Section III. New recovery procedures and the resulting robust recovery-based
estimators are introduced and analyzed in Section IV.

II. FINITE ELEMENT APPROXIMATION AND CLÉMENT-TYPE INTERPOLATION

We use the standard notations and definitions for the Sobolev spaces Hs(�)d and Hs(∂�)d for
s ≥ 0. The standard associated inner products are denoted by (·, ·)s,� and (·, ·)s,∂�, and their
respective norms are denoted by ‖ · ‖s,� and ‖ · ‖s,∂�. (We suppress the superscript d because
the dependence on dimension will be clear by context. We also omit the subscript � from the
inner product and norm designation when there is no risk of confusion.) For s = 0, Hs(�)d

coincides with L2(�)d . In this case, the inner product and norm will be denoted by ‖ · ‖ and (·, ·),
respectively. We will also use the energy norm denoted by

|||v||| = |||v|||� = ‖α1/2∇ v‖0,�.

Let

U := {v ∈ H 1(�) : [[v]] = 0 on S},
Ug := {v ∈ U : v = gD on �D}, and U0 := {v ∈ U : v = 0 on �D}.

Then it is easy to see that the corresponding variational form of Eq. (1.1) with jump conditions
(1.2) is to find u ∈ Ug such that

a(u, v) = f (v) ∀ v ∈ U0, (2.1)

where the bilinear and linear forms are defined by

a(u, v) = (α(x)∇u, ∇v)� and f (v) = (f , v) + 〈g, v〉S + 〈gN , v〉�N
,

respectively. Here, 〈v, w〉S = ∫
S
wv ds denotes the inner product over (d − 1)-dimensional

manifold S.
For the simplicity of presentation, we consider only triangular and tetrahedral elements in the

respective two and three dimensions. Let T = {K} be a global conforming finite element partition
of the domain �, that is, T has no hanging nodes. Assume that the triangulation T is regular (see
[15]); that is, for all K ∈ T , there exists a positive constant κ such that

hK ≤ κ ρK ,

where hK denotes the diameter of the element K and ρK the diameter of the largest circle that
may be inscribed in K . Note that the assumption of the regularity does not exclude highly, locally
refined meshes. Furthermore, assume that the interface S do not cut through any element K ∈ T .
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Let Pk(K) be the space of polynomials of degree k on element K . Denote the continuous finite
element space of degree k associated with the triangulation T by

Uk := {v ∈ H 1(�) : v|K ∈ Pk(K) ∀ K ∈ T } ⊂ U .

Let Uk,g = {v ∈ Uk : v = gD on �D} and Uk,0 = {v ∈ Uk : v = 0 on �D}, then the finite element
approximation of (2.1) is to find uT ∈ Uk,g such that

a(uT , v) = f (v) ∀ v ∈ Uk,0. (2.2)

For each element K ∈ T , denote by EK the set of its edges/faces. Denote the set of all
edges/faces of elements in the triangulation by

E := E� ∪ ED ∪ EN ∪ ES ,

where ED and EN are the sets of boundary edges/faces, respectively, belonging to �D and �N ;
ES is the set of interior edges/faces belonging to the interface S; and E� is the set of all the
remaining interior edges/faces. For each e ∈ E , denote by ne the fixed unit vector normal to e.
When e ∈ ED ∪ EN , assume that ne is the unit outward vector normal to the boundary ∂�. When
e ∈ �kl ∈ ES , let ne be the unit outward vector normal to the boundary of �k (k < l). For each
e ∈ E , let ωe denote the union of elements have a common edge/face e.

In this article, we assume the following property of the distribution of the coefficients (the
Hypothesis 2.7 in [6]) holds.

Assumption on the Distribution of Coefficients. Assume that any two different subdomains
�̄i and �̄j , which share at least one point, have a connected path passing from �̄i to �̄j through
adjacent subdomains such that the diffusion coefficient α(x) is monotone along this path. This
assumption is weakened to the quasi-monotonicity in [7].

Lemma 2.1 ([6–8]). For any v ∈ U0, there exists an interpolation operator I : L1(�) → Uk,0

such that

‖v − Iv‖0,K ≤ C hKα
−1/2
K |||v|||�K

and ‖∇(v − Iv)‖0,K ≤ C α
−1/2
K |||v|||�K

(2.3)

for all K ∈ T , where �K is the union of all elements that share at least one vertex with K; and
that

‖v − Iv‖0,e ≤ C h1/2
e α−1/2

e |||v|||�e (2.4)

for all e ∈ E , where �e is the union of all elements that share at least one vertex with e, and αe

is the arithmetic average of α over ωe:

αe = 1

2

∑
K∈ωe

αK for e ∈ E� ∪ ES and αe = αK for e ∈ EN ∪ ED .

Remark 2.2. The above lemma is proved in [6–8] for the linear finite element approximation.
For higher order finite elements, it can be proved similarly by changing linear nodal basis func-
tions φz in [6–8] defined on vertices to higher order Lagrange nodal basis functions defined on
nodes of the finite element mesh in the construction of interpolation operator I.
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III. EXPLICIT RESIDUAL-BASED ERROR ESTIMATOR

Let fT , gT , and gN ,T be the L2 projections of f , g, and gN onto spaces of piecewise polynomials
of degree k − 1 defined on elements of T , interior edges/faces of ES , and boundary edges/faces
of EN , respectively.

Definition 3.1. Define the element residual RK(uT ) for all K ∈ T and the edge jump Je(uT )

for all e ∈ E\ED as follows

RK(uT ) = fT + ∇ · (α∇uT ) and Je(uT ) =



−[[α∇uT · ne]] e ∈ E�,
gT − [[α∇uT · ne]] e ∈ ES ,
gN ,T − α∇uT · ne e ∈ EN .

(3.5)

Lemma 3.2. For all v ∈ U0, the residual functional has the following L2 representation

(f , v) − a(uT , v) =
∑
K∈T

(RK(uT ), v)K +
∑

e∈E\ED

〈Je(uT ), v〉e

+ (f − fT , v) + 〈g − gT , v〉S + 〈g − gN ,T , v〉�N
(3.6)

Proof. (3.6) is a direct consequence of integration by parts and rearrangement of the
summation over edges/faces.

Definition 3.3. Define the residual based error estimator and its local error indicator on K as
follows

ηR =
(∑

K∈T
η2

K

)1/2

, (3.7)

ηK =

h2

K

αK

‖RK(uT )‖2
0,K +

∑
e∈EK∩(E�∪ES )

he

2αe

‖Je(uT )‖2
0,e +

∑
e∈EK∩EN

he

αe

‖Je(uT )‖2
0,e




1/2

. (3.8)

Definition 3.4. For the linear finite element approximation, define the edge error estimator and
its local error indicator on e as follows

ηE =

 ∑

e∈E\ED

η2
e




1/2

and ηe = h1/2
e α−1/2

e ‖Je(uT )‖0,e. (3.9)

Denote by N and NK the sets of all vertcies of the triangulation T and of the element K ∈ T ,
respectively. For any z ∈ N , denote by φz the linear nodal basis function, let ωz = supp (φz). For
a given function v, define its weighted average over ωz by

−
∫

ωz

v dx =
∫

ωz
v φz dx∫

ωz
φz dx

.
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Let

Hf =
(∑

K∈T
H 2

f ,K

)1/2

with Hf ,K = hK√
αK

‖f − fT ‖0,K ∀ K ∈ T ,

Hg =

∑

e∈ES

H 2
g,e




1/2

with Hg,e =
√

he

αe

‖g − gT ‖0,e ∀ e ∈ ES ,

HgN
=


∑

e∈EN

H 2
gN ,e




1/2

with HgN ,e =
√

he

αe

‖gN − gN ,T ‖0,e ∀ e ∈ EN ,

and for linear finite approximations, let

Ĥf =

 ∑

z∈N∩(S∪�D)

∑
K⊂ωz

h2
K

αK

‖f ‖2
0,K +

∑
z∈N \(S∪�D)

∑
K⊂ωz

h2
K

αK

∥∥∥∥f − −
∫

ωz

f dx

∥∥∥∥
2

0,K




1/2

.

Remark 3.5. For the linear finite element approximation, the second term in Ĥf is of higher
order than ηE for f ∈ L2(�) and so is the first term for f ∈ Lp(�) with p > 2 (see [16]).

Lemma 3.6. For any v ∈ U0, there exists a positive constant C independent of the ratio
αmax/αmin such that

|(f − fT , v − Iv)| ≤ C Hf |||v|||, (3.10)

|〈g − gT , v − Iv〉S | ≤ C Hg|||v||| and |〈gN − gN ,T , v − Iv〉�N
| ≤ C HgN

|||v|||. (3.11)

and for the linear finite element approximation,

|(f , v − Iv)| ≤ C Ĥf |||v||| (3.12)

Proof. The inequality in (3.12) is established in [8]. The inequality in (3.10) follows from
the Cauchy-Schwarz inequality and (2.3) that

(f − fT , v − Iv) ≤
(∑

K∈T

h2
K

αK

‖f − fT ‖2
0,K

)1/2 (∑
K∈T

αK

h2
K

‖v − Iv‖2
0,K

)1/2

≤ C Hf |||v|||.

(3.11) may be proved in the same fashion.

Theorem 3.7 (Reliability). Denote the true error of the solution by e = u − uT . The error
estimator ηR satisfies the following global reliability bound:

|||e|||� ≤ C(ηR + Hf + Hg + HgN
). (3.13)

For the linear finite element approximation, the edge error estimator ηE satisfies the following
global reliability bound:

|||e|||� ≤ C(ηE + Ĥf + Hg + HgN
). (3.14)

The constants in both bounds are independent of the ratio αmax/αmin.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



RESIDUAL- AND RECOVERY-BASED ERROR ESTIMATORS 7

Proof. It follows from the orthogonality property of the finite element solution, Lemma 4.2,
(2.3), (2.4), and Lemma 3.6 that

|||e|||2� = a(e, e − Ie)

=
∑
K∈T

(RK(uT ), e − Ie)K +
∑

e∈E\ED

〈Je(uT ), e − Ie〉e

+ (f − fT , e − Ie) + 〈g − gT , e − Ie〉S + 〈gN − gN ,T , e − Ie〉�N

≤ C
∑
K∈T

hK√
αK

‖RK(uT )‖0,K |||e|||�K
+ C

∑
e∈E\ED

√
he

αe

‖Je(uT )‖0,e|||e|||�e

+ C(Hf + Hg + HgN
)|||e|||�.

Thus,

|||e||| ≤ C(ηR + Hf + Hg + HgN
).

For the linear finite element approximation, since ∇ · (α∇uT ) = 0 on each element K ∈ T , we
have

|||e|||2� = a(e, e − Ie)

= (f , e − Ie) +
∑
e∈E

〈Je(uT ), e − Ie〉e + 〈g − gT , e − Ie〉S + 〈gN − gN ,T , e − Ie〉�N

≤ C
∑

e∈E\ED

h1/2
e α−1/2

e ‖Je(uT )‖0,e|||e|||�e + C(Ĥf + Hg + HgN
)|||e|||�,

which implies (3.14). This completes the proof of the theorem.

Lemma 3.8. There exists a bubble function ψK ∈ H 1
0 (K) such that for any v ∈ Pk(K),

C‖v‖0,K ≤ ‖vψK‖0,K ≤ ∥∥vψ
1/2
K

∥∥
0,K

≤ ‖v‖0,K , (3.15)

and a bubble function ψe ∈ H 1
0 (ωe) such that for any v ∈ Pk(K) and any K ∈ ωe,

C‖v‖0,e ≤ ‖vψe‖0,e ≤ ∥∥vψ1/2
e

∥∥
0,e

≤ ‖v‖0,e. (3.16)

Proof. The lemma is proved in [3].

Lemma 3.9 (Efficiency). Without the assumption on the distribution of the coefficients α, there
exists a positive constant C independent of αmax/αmin, hK , and he such that

h2
Kα−1

K ‖RK(uT )‖2
0,K ≤ C

(|||e|||2K + H 2
f ,K

)
(3.17)

and that

heα
−1
e ‖Je(uT )‖2

0,e ≤ C

(
|||e|||2ωe

+
∑

K∈T ∩ωe

H 2
f ,K + H 2

g,e + H 2
gN ,e

)
(3.18)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Proof. (3.17) may be proved by choosing the test function v = RK(uT )ψK in (3.6) and
following the standard argument in [3]. Similarly, (3.18) may be proved by choosing the test
function v = Je(uT )ψe in (3.6)

IV. FLUX RECOVERY AND ERROR ESTIMATOR

In this section, we assume that the solution u ∈ Ht(�i), t > 3/2, for i = 1, . . . , N .
The flux is an important physical quantity defined by

σ = −α(x)∇u in �. (4.1)

For the interface problem in (1.1) with the jump conditions in (1.2), as f ∈ L2(�), it is then
known that

σ ∈ H(div; �i) := {τ ∈ L2(�i)
d : ∇ · τ ∈ L2(�i)}

for i = 1, . . . , N . The H(div; �i) is a Hilbert space under the norm

‖τ‖H(div; �i)
:= (‖τ‖2

0,�i
+ ‖∇ · τ‖2

0,�i

) 1
2 .

Notice under the regularity assumption that u|�i
∈ Ht(�i), t > 3/2, by the trace theorem (see

e.g. [17]), σ · n|∂�i
= −α∇u · n|∂�i

∈ L2(∂�i).
Define the corresponding space on the whole domain � by

� :=
{
τ ∈ L2(�)d :

τ |�i
∈ H(div; �i) for i = 1, · · · , N ,

τ · n|�N
∈ L2(�N) and (τ |�i

· n�i
)|S∩∂�i

∈ L2(S ∩ ∂�i).

}
,

which is equipped with the broken H(div) norm

‖τ‖� =
(

N∑
i=1

‖τ‖2
H(div;�i)

)1/2

.

Denote by

�g := {τ ∈ � : τ · n = −gN on �N and [[τ · n]] = −g on S},
and let

�0 := {τ ∈ H(div; �) : τ · n = 0 on �N }.
The flux satisfies the following problem: find σ ∈ �g such that

(α−1σ , τ ) = −(∇u, τ ) ∀ τ ∈ �0. (4.2)

Since gN and g are L2 functions on �N and S, respectively, there exists a function σ g ∈ �

such that σ g · n = −gN on �N and that [[σ g · n]] = −g on S. Then the flux has the following
decomposition

σ = σ g + σ 0,

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where σ 0 = σ − σ g ∈ �0 satisfies

(α−1σ 0, τ ) = −(∇u, τ ) − (α−1σ g , τ ) ∀ τ ∈ �0. (4.3)

Note that this decomposition is not unique.

A. Flux Recovery

The recovery procedure introduced in this article is based on the H(div) conforming finite ele-
ment approximation to the variational problem in (4.3). There are several families of the H(div)

conforming finite element spaces (see, e.g., [18]), but we consider only Raviart-Thomas elements
[19] for simplicity.

Denote the local lowest order Raviart-Thomas space on a element K ∈ T by

RT0(K) = P0(K)d + x P0(K), x = (x1, . . . , xd).

Then piecewise H(div) conforming Raviart-Thomas space with respect to the subdomains {�i}
are defined as follows

V = {τ ∈ � : τ |K ∈ RT0(K) ∀ K ∈ T }.

Implicit Approximation. Let

Vg := {τ ∈ V : τ · n = −gN ,T on �N and [[τ · n]] = −gT on S},
and

V0 := V ∩ �0.

Define σ g,T ∈ Vg by setting its normal components: single value σg,e for all e ∈ E� ∪ ED ∪ EN

and multiple values σ±
g,e for all e ∈ ES as follows

σg,e =
{−gN ,T in EN ,

0 in E� ∪ ED

and σ+
g,e = −gT , σ−

g,e = 0 in ES .

Let ūT ∈ U1 be a linear finite element approximation of the exact solution u of (2.1), then the
recovered flux is defined by

σT = σ 0,T + σ g,T , (4.4)

where σ 0,T ∈ V0 satisfies

(α−1σ 0,T , τ ) = −(∇ūT , τ ) − (α−1σ g,T , τ ) ∀ τ ∈ V0. (4.5)

First, we estimate difference between σ g and σ g,T .

Lemma 4.1. There exists a function σ g ∈ �g such that

‖α−1/2(σ g − σ g,T )‖0,� ≤ C
(
H 2

g + H 2
gN

)1/2
(4.6)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Proof. Let σ g = σ g,T − α∇v, where the function v satisfies the following problem:




−∇ · (α∇v) = 0 in �,
[[α∇v · n]] = g − gT on S,
α∇v · n = gN − gN ,T on �N ,
v = 0 on �D ,

whose variational formulation is to find v ∈ U0, such that

a(v, w) = 〈g − gT , w〉S + 〈gN − gN ,T , w〉�N
∀ w ∈ U0. (4.7)

Since gT and gN ,T are the L2 projections of g and gN onto spaces of piecewise constants defined
on interior edges/faces of ES and boundary edges/faces of EN , respectively, we have

〈g − gT , c〉e = 0 ∀ e ∈ ES and 〈gN − gN ,T , c〉e = 0 ∀ e ∈ EN (4.8)

for any constant c ∈ �. Denote by v̄e be the average of v on the edge e. Also denote by Kmax,e

be the element has a bigger αK in ωe. If there are two K’s that have the same αK in ωe, then pick
an arbitrary one and denote it as Kmax,e. Choosing w = v in (4.7), then it follows from (4.8), the
Cauchy-Schwarz inequality, trace inequality, and approximation theory that

‖α1/2∇v‖2
0 = 〈g − gT , v〉S + 〈gN − gN ,T , v〉�N

=
∑
e∈ES

〈g − gT , v − v̄e〉e +
∑
e∈EN

〈gN − gN ,T , v − v̄e〉e

≤
∑
e∈ES

Hg,eh
−1/2
e α1/2

e ‖v − v̄e‖0,e +
∑
e∈EN

HgN ,eh
−1/2
e α1/2

e ‖v − v̄e‖0,e

≤ C
∑
e∈ES

Hg,e‖α 1
2 ∇v‖0,Kmax,e + C

∑
e∈EN

HgN ,e‖α 1
2 ∇v‖0,Kmax,e

≤ C
(
H 2

g + H 2
gN

)1/2‖α1/2∇v‖0,�,

which implies

‖α−1/2(σ g − σ g,T )‖0,� = ‖α1/2∇v‖0,� ≤ C
(
H 2

g + H 2
gN

)1/2
.

This completes the proof of the lemma.

Theorem 4.2. Let u be the solution of (2.1). Then there exists a positive constant C independent
of the ratio αmax/αmin such that

‖α−1/2(σ − σT )‖0,� ≤ C
(

inf
τ∈V0

‖α−1/2(σ 0 − τ )‖0,� + |||u − ūT |||� + (
H 2

g + H 2
gN

)1/2)

Proof. Let σ g be chosen as in Lemma 4.1, then

σ − σT = (σ g − σ g,T ) + (σ 0 − σ 0,T ),
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which, together with the triangle inequality, implies

‖α−1/2(σ − σT )‖0,� ≤ ‖α−1/2(σ g − σ g,T )‖0,� + ‖α−1/2(σ 0 − σ 0,T )‖0,�. (4.9)

The difference of Eqs. (4.3) and (4.5) gives

(α−1(σ 0 − σ 0,T ), τ ) = −(∇(u − ūT ), τ ) − (α−1(σ g − σ g,T ), τ ) ∀ τ ∈ V0,

Combining with the Cauchy-Schwarz and triangle inequalities yields

‖α−1/2(σ 0 − σ 0,T )‖2
0,�

= (α−1(σ 0 − σ 0,T ), σ 0 − τ ) − (∇(u − ūT ), τ − σ 0,T ) − (α−1(σ g − σ g,T ), τ − σ 0,T )

≤ ‖α−1/2(σ 0 − σ 0,T )‖0,�‖α−1/2(σ 0 − τ )‖0,�

+ (|||u − ūT |||� + ‖α−1/2(σ g − σ g,T )‖0,�)(‖α−1/2(τ − σ 0)‖0,� + ‖α−1/2(σ 0 − σ 0,T )‖0,�).

Hence,

‖α− 1
2 (σ 0 − σ 0,T )‖0,� ≤ C

(
inf

τ∈V0
‖α−1/2(σ 0 − τ )‖0,� + |||u − ūT |||� + ‖α− 1

2 (σ g − σ g,T )‖0,�

)
.

Now, the theorem is a direct consequence of (4.9) and Lemma 4.1.

Explicit Approximations. The nodal basis function φe of RT0 corresponding to e ∈ E is
characterized by

φe · ne′ |e′ = δe e′ ∀ e, e′ ∈ E , (4.10)

where δe e′ is the Kronecker delta. For each edge/face e ∈ E� ∪ ES , let K+
e and K−

e be the two
elements sharing the common edge/face e such that the unit outward normal vector of K+

e coin-
cides with ne. For each edge/face e ∈ ES and e ⊂ �kl with k < l, we always choose K+

e ⊂ �k

and K−
e ⊂ �l .

Let τ = −α(x)∇ ūT . For any interior edge/face e ∈ E� ∪ ES , denote restrictions of φe and τ

on K+
e and K−

e by

φ+
e = φe

∣∣
K+

e
, φ−

e = φe

∣∣
K−

e
, τ+ = τ |K+

e
, and τ+ = τ |K+

e
.

Define an approximation, σ̂T (ūT ), of τ in RT0 by

σ̂T (ūT ) =
∑

e∈E�∪ED∪EN

σ̂e φe(x) +
∑
e∈ES

(
σ̂+

e φ+
e (x) + σ̂−

e φ−
e (x)

)
, (4.11)

where σ̂e on e ∈ E� ∪ ED ∪ EN is the normal component of σ̂T defined by

σ̂e :=



γe

(
τ+

e · ne

)∣∣
e
+ (1 − γe)

(
τ−

e · ne

)∣∣
e

for e ∈ E�,
τ |e · ne for e ∈ ED ,
−gN ,T |e for e ∈ EN

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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are the normal components of σ̂T defined by

σ̂+
e = γe

(
τ+

e · ne

)∣∣
e
− (1 − γe)gh|e + (1 − γe)

(
τ−

e · ne

)∣∣
e

and σ̂−
e = γe

(
τ+

e · ne

)∣∣
e
+ γegh|e + (1 − γe)

(
τ−

e · ne

)∣∣
e

for some constant γe ∈ [0, 1]. In this article, we choose

γe = αK−
e

αK+
e

+ αK−
e

or
√

αK−
e√

αK+
e

+ √
αK−

e

(4.12)

to ensure that the efficiency constant on the corresponding a posteriori error estimator is inde-
pendent of the ratio αmax/αmin (see Theorem 5.4). Notice, with either special choice of γe, the
following inequality holds,

(1 − γe)
2

αK+
e

≤ 1

αK+
e

+ αK−
e

. (4.13)

Note that the approximation, σ̂T (ūT ), defined in (4.11) has continuous normal component across
e ∈ E� and preserves the flux jump on e ∈ ES :

σ̂+
e − σ̂−

e = −gT |e.

B. Recovery-Based Error Estimators

Let σT be the recovered flux defined in (4.4), define the following local a posteriori error indicator
by

ηV ,K = ‖α−1/2σT + α1/2∇ūT ‖0,K (4.14)

for any element K ∈ T . Then the corresponding global a posteriori error estimator is

ηV =
(∑

K∈T
(ηV ,K)2

)1/2

= ‖α−1/2σT + α1/2∇ūT ‖0,�. (4.15)

From the construction of σT , it is easy to see that every function τ ∈ Vg can be written as the
sum of σ g,T and τ 0,T with τ 0,T ∈ V0. For fixed σ g,T , this construction is unique. Thus,

ηV = min
τ∈V0

‖α−1/2(τ + σ g,T ) + α1/2∇ūT ‖0,� = min
τ∈Vg

‖α−1/2τ + α1/2∇ūT ‖0,�. (4.16)

Next, based on the explicit approximation in (4.11), we define the explicit local a posteriori error
indicator by

η̂V ,K = ‖α−1/2σ̂T + α1/2∇ūT ‖0,K (4.17)

for any K ∈ T and the explicit global a posteriori error estimator by

η̂V =
(∑

K∈T
(η̂V ,K)2

)1/2

= ‖α−1/2σ̂T + α1/2∇ūT ‖0,�. (4.18)
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V. RELIABILITY AND EFFICIENCY BOUNDS FOR RECOVERY-BASED
ERROR ESTIMATORS

In this section, we establish reliability and efficiency bounds for both implicit and explicit
estimators.

A. Reliability

Theorem 5.1. Assume that ūT = uT is the linear finite element solution of (2.2). Then the
estimator ηV defined in (4.15) satisfies the following global reliability bound:

|||e||| ≤ C (ηV + Ĥf + Hg + HgN
), (5.1)

where C is a constant independent of the ratio αmax/αmin

Proof. It follows from the orthogonality property of the finite element solution, integration
by parts, (1.1), and the Cauchy-Schwarz inequality that

|||e|||2 = a(e, e − Ie) = (α∇ (u − uT ), ∇(e − Ie))

= (α∇u + σT , ∇ (e − Ie)) − (σT + α∇uT , ∇ (e − Ie))

≤ (f − ∇ · σT , e − Ie) + 〈g + [[σT · n]], e − Ie〉S

+ 〈gN − gN ,T , e − Ie〉�N
+ ηV |||e − Ie|||,

which, combining with the fact that ∇ · (α(x)∇uT )|K = 0 for all K ∈ T , (3.12), (3.11), and the
Cauchy-Schwarz inequality, implies

|||e|||2 ≤ (f , e − I e) −
∑
K∈T

(∇ · (σT + α∇uT ), e − I e)K + 〈g − gT , e − Ie〉S

+ 〈gN − gN ,T , e − Ie〉�N
+ C ηV |||e|||

≤ C(Ĥf + Hg + HgN
+ ηV)|||e|||

+
(∑

K∈T
h2

K‖∇ · (
α−1/2σT + α1/2∇uT

)‖2
0,K

)1/2 (∑
K∈T

h−2
K αK‖e − Ie‖2

0,K

)1/2

.

Using the inverse inequality and (2.3), we then have

|||e|||2 ≤ C (Ĥf + Hg + HgN
+ ηV)|||e||| + C ηV |||e||| = C(Ĥf + Hg + HgN

+ ηV)|||e|||,
which leads to (5.1). This completes the proof of the theorem.

Theorem 5.2. Under the same assumption of Theorem 5.1, the explicit estimator η̂V defined
in (4.18) satisfies the following global reliability bound:

|||e||| ≤ C (η̂V + Ĥf + Hg + HgN
), (5.2)

where C is a constant independent of the ratio αmax/αmin.
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Proof. The reliability bound in (5.2) is an immediate consequence of (5.1) and the fact that

η̂V ≥ min
τ∈Vg

‖α(x)−1/2τ + α(x)1/2∇uT ‖0,� = ηV .

This completes the proof of the theorem.

B. Efficiency

Lemma 5.3. For any element K ∈ T , the constant vector τ on K has the following
representation in V:

τ =
∑
e∈∂K

τe,K φe(x), (5.3)

where τe,K = (τ |K · ne)|e is the normal component of τ on edge e

Proof. The lemma is a direct consequence of the fact, that RT0(K) contains the constant
vector and the properties of the nodal basis functions (4.10).

Theorem 5.4. There exists a constant C > 0 independent of αmax/αmin such that

η̂2
V ,K ≤ C


|||e|||2ωK

+
∑

T ∈T ∩ωK

H 2
f ,K +

∑
e∈∂K∩EN

H 2
gN ,e +

∑
e∈∂K∩ES

H 2
g,e


 , (5.4)

where ωK is the union of elements sharing a common edge/face with K , and that

ηV ≤ η̂V ≤ C(|||e|||� + Hf + Hg + HgN
) (5.5)

Proof. For any element K ∈ T and for any edge/face e ∈ ∂K , without loss of generality,
assume that ne is the outward unit vector normal to ∂K . Denote by Ke the adjacent element with
common edge/face e. Let τ = −α∇uT , then, for any x ∈ K , (4.11), (4.12), and (5.3) give

σ̂T − τ =
∑
e∈EK

(σ̂e − τe,K) φe(x)

=
∑

e∈EK∩E�

(1 − γe)(τe,Ke − τe,K) φe(x) +
∑

e∈EK∩EN

(−gN ,T − τe,K) φe(x)

+
∑

e∈EK∩ES

(1 − γe)(τe,Ke − τe,K − gT ) φe(x)

=
∑

e∈EK∩(E�∪ES )

(1 − γe)Je(uT ) φe(x) −
∑

e∈EK∩EN

Je(uT ) φe(x).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Since Je(uT ) is constant in K and ‖φe(x)‖2
0,K ≤ C|K|, it then follows from the triangle inequality

and (4.13) that

η̂2
V ,K = ‖α−1/2(σ̂T − τ )‖2

0,K

≤ C
∑

e∈EK∩(E�∪ES )

(1 − γe)
2

αK

‖Je(uT )φe(x)‖2
0,K +

∑
e∈EK∩EN

1

αK

‖Je(uT )φe(x)‖2
0,K

≤ C
∑

e∈EK∩(E�∪ES )

1

αK + αKe

|Je(uT )|2 ‖φe(x)‖2
0,K +

∑
e∈EK∩EN

1

αK

|Je(uT )|2 ‖φe(x)‖2
0,K

≤ C
∑

e∈EK∩(E�∪ES∪EN )

η2
e , (5.6)

which, together with (3.18), implies (5.4).
The first inequality in the global efficiency bound (5.5) follows from (4.16). Summing up (5.4)

over all K ∈ T proves the second one in (5.5).
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