Recovery-Based A Posteriori Error Estimators for Elliptic Equations

Zhiqiang Cai Shun Zhang

Department of Mathematics Purdue University

Recent Advances in A Posteriori Error Estimation and Adaptive Methods, SIAM Annual Meeting, 2008

Outline

- Scalar Elliptic Equations
 L2 Projection Recovery Estimators

 L2 Projection Recovery Estimators
 Higher-order Finite Elements?

 An H(div) Problem Recovery

 An H(div) Problem Recovery
 An H(div) Problem Recovery
 An H(div) Problem Recovery
 An H(div) Problem Recovery
 An H(div) Problem Recovery
- 4 Numerical Examples
 - Two Criteria for Recovery Based Error Estimators
 - 1-D P2 Element Example
 - 2-D P2 Element Example
 - Concluding Remarks

3 1 4 3

Scalar Elliptic Equations

Scalar Elliptic Equations

 $-\nabla \cdot (A(x)\nabla u) + \mathbf{b} \cdot \nabla u + cu = f$ in $\Omega \subset \mathcal{R}^d$

with boundary conditions

u = 0 on Γ_D and $\mathbf{n} \cdot A \nabla u = 0$ on Γ_N

• Let $X v = \mathbf{b} \cdot \nabla v + c v$, rewrite the equation as

 $-\nabla \cdot (A(x)\nabla u) + X u = f \text{ in } \Omega \subset \mathcal{R}^d$

Diffusion Dominant Case only

L2 Projection Recovery Estimators Higher-order Finite Elements?

L² Projection Recovery

The finite element solution u_h ∈ U_k, U_k (k ≥ 1) is the piecewise continuous k − th degree polynomial finite element space.

$(A \nabla u_h, \nabla v) + (X u_h, v) = (f, v) \quad \forall v \in \mathcal{U}_k$

- Quantity to recover: the flux $\sigma = -A \nabla u \in H(div)$
- Recovered flux σ_h lies in H(div) conforming finite element space RT_{k-1} or BDM_k.
- Find $\sigma_h \in RT_{k-1}/BDM_k$, s.t.

$(\mathbf{A}^{-1}\sigma_h, \tau) = -(\nabla u_h, \tau) \quad \forall \tau \in \mathbf{R}T_{k-1}/\mathbf{B}DM_k$

L2 Projection Recovery Estimators Higher-order Finite Elements?

L² Projection Recovery

The finite element solution u_h ∈ U_k, U_k (k ≥ 1) is the piecewise continuous k − th degree polynomial finite element space.

$$(A \nabla u_h, \nabla v) + (X u_h, v) = (f, v) \quad \forall v \in \mathcal{U}_k$$

- Quantity to recover: the flux $\sigma = -A\nabla u \in H(div)$
- Recovered flux σ_h lies in H(div) conforming finite element space RT_{k-1} or BDM_k.
- Find $\sigma_h \in RT_{k-1}/BDM_k$, s.t.

$(\mathbf{A}^{-1}\sigma_{\mathbf{h}},\tau) = -(\nabla u_{\mathbf{h}},\tau) \quad \forall \tau \in \mathbf{R}T_{k-1}/\mathbf{B}DM_k$

L2 Projection Recovery Estimators Higher-order Finite Elements?

L² Projection Recovery

The finite element solution u_h ∈ U_k, U_k (k ≥ 1) is the piecewise continuous k − th degree polynomial finite element space.

$$(A \nabla u_h, \nabla v) + (X u_h, v) = (f, v) \quad \forall v \in \mathcal{U}_k$$

- Quantity to recover: the flux $\sigma = -A\nabla u \in H(div)$
- Recovered flux σ_h lies in H(div) conforming finite element space RT_{k-1} or BDM_k.
- Find $\sigma_h \in RT_{k-1}/BDM_k$, s.t.

 $(\mathbf{A}^{-1}\sigma_h, \tau) = -(\nabla u_h, \tau) \quad \forall \tau \in \mathbf{R}T_{k-1}/\mathbf{B}DM_k$

L2 Projection Recovery Estimators Higher-order Finite Elements?

L² Projection Recovery

The finite element solution u_h ∈ U_k, U_k (k ≥ 1) is the piecewise continuous k − th degree polynomial finite element space.

$$(A \nabla u_h, \nabla v) + (X u_h, v) = (f, v) \quad \forall v \in \mathcal{U}_k$$

- Quantity to recover: the flux $\sigma = -A\nabla u \in H(div)$
- Recovered flux σ_h lies in H(div) conforming finite element space RT_{k-1} or BDM_k.
- Find $\sigma_h \in RT_{k-1}/BDM_k$, s.t.

$$(\mathbf{A}^{-1}\sigma_h, \tau) = -(\nabla u_h, \tau) \quad \forall \tau \in \mathbf{R}T_{k-1}/\mathbf{B}DM_k$$

L2 Projection Recovery Estimators Higher-order Finite Elements?

L² Projection Error Estimators

• L² projection error estimator

$$\xi_{L2} = \|A^{1/2} \nabla u_h + A^{-1/2} \sigma_h\|_{0,\Omega}$$

When Linear Elements and Diffusion Dominated, even for discontinuous A

$$\xi_{L2} \sim \|\boldsymbol{A}^{1/2} \nabla (\boldsymbol{u} - \boldsymbol{u}_h)\|_{0,\Omega}$$

L2 Projection Recovery Estimators Higher-order Finite Elements?

L² Projection Error Estimators

• L² projection error estimator

$$\xi_{L2} = \|A^{1/2} \nabla u_h + A^{-1/2} \sigma_h\|_{0,\Omega}$$

• When Linear Elements and Diffusion Dominated, even for discontinuous *A*

$$\xi_{L2} \sim \|\boldsymbol{A}^{1/2} \nabla (\boldsymbol{u} - \boldsymbol{u}_h)\|_{0,\Omega}$$

L2 Projection Recovery Estimators Higher-order Finite Elements?

Existing recovery based error estimators for higher order finite elements

- (Bank, Xu, and B. Zhang 2007) Superconvergence, gradient recovery
- (Naga and Z. Zhang 2005) Polynomial Preserving Recovery of the gradient on mildly structured mesh
- (Bartels and Carstensen 2002) Averaging Scheme for the gradient, Poisson equations

L2 Projection Recovery Estimators Higher-order Finite Elements?

Why *L*² recovery works for linear elements?

Residual based error estimator:

$$\eta_{Res}^2 := \sum_{e \in \mathcal{E}} h_e \| [A \nabla u_h \cdot \mathbf{n}] \|_{0,e}^2 + \sum_{K \in \mathcal{T}} h_K^2 \| f + \nabla \cdot (A \nabla u_h) - X u_h \|_{0,K}^2$$

 (Carstensen and Verfürth 1999), for the linear element case, edge jump terms are dominant, and element residual terms are higher order terms.

•
$$\eta_{edge}^2 = \sum_{e \in \mathcal{E}} h_e \| [A \nabla u_h \cdot \mathbf{n}] \|_{0,e}^2$$

• $\xi_{L2} \sim \eta_{edge}$

(日)

L2 Projection Recovery Estimators Higher-order Finite Elements?

Why *L*² recovery works for linear elements?

• Residual based error estimator:

$$\eta_{Res}^2 := \sum_{e \in \mathcal{E}} h_e \| [A \nabla u_h \cdot \mathbf{n}] \|_{0,e}^2 + \sum_{K \in \mathcal{T}} h_K^2 \| f + \nabla \cdot (A \nabla u_h) - X u_h \|_{0,K}^2$$

- (Carstensen and Verfürth 1999), for the linear element case, edge jump terms are dominant, and element residual terms are higher order terms.
- $\eta_{edge}^2 = \sum_{e \in \mathcal{E}} h_e \| [A \nabla u_h \cdot \mathbf{n}] \|_{0,e}^2$
- $\xi_{L2} \sim \eta_{edge}$

(日)

L2 Projection Recovery Estimators Higher-order Finite Elements?

Why *L*² recovery works for linear elements?

• Residual based error estimator:

$$\eta_{Res}^2 := \sum_{e \in \mathcal{E}} h_e \| [A \nabla u_h \cdot \mathbf{n}] \|_{0,e}^2 + \sum_{K \in \mathcal{T}} h_K^2 \| f + \nabla \cdot (A \nabla u_h) - X u_h \|_{0,K}^2$$

 (Carstensen and Verfürth 1999), for the linear element case, edge jump terms are dominant, and element residual terms are higher order terms.

•
$$\eta_{edge}^2 = \sum_{e \in \mathcal{E}} h_e \| [A \nabla u_h \cdot \mathbf{n}] \|_{0,e}^2$$

• $\xi_{L2} \sim \eta_{edge}$

(日)

L2 Projection Recovery Estimators Higher-order Finite Elements?

Why *L*² recovery works for linear elements?

• Residual based error estimator:

$$\eta_{Res}^2 := \sum_{\boldsymbol{e} \in \mathcal{E}} h_{\boldsymbol{e}} \| [\boldsymbol{A} \nabla \boldsymbol{u}_h \cdot \boldsymbol{n}] \|_{0,\boldsymbol{e}}^2 + \sum_{K \in \mathcal{T}} h_K^2 \| \boldsymbol{f} + \nabla \cdot (\boldsymbol{A} \nabla \boldsymbol{u}_h) - X \boldsymbol{u}_h \|_{0,K}^2$$

 (Carstensen and Verfürth 1999), for the linear element case, edge jump terms are dominant, and element residual terms are higher order terms.

•
$$\eta_{edge}^2 = \sum_{e \in \mathcal{E}} h_e \| [A \nabla u_h \cdot \mathbf{n}] \|_{0,e}^2$$

• $\xi_{L2} \sim \eta_{edge}$

L2 Projection Recovery Estimators Higher-order Finite Elements?

Why L² recovery may fail for higher order elements?

- (D.Yu 91), for rectangular grids, edge jump terms are dominant for the odd-order element case, while element residual terms are dominant for the even-order element case.
- Simple L² projection recovery of the flux may fail for higher order finite elements.

L2 Projection Recovery Estimators Higher-order Finite Elements?

Why L² recovery may fail for higher order elements?

- (D.Yu 91), for rectangular grids, edge jump terms are dominant for the odd-order element case, while element residual terms are dominant for the even-order element case.
- Simple *L*² projection recovery of the flux may fail for higher order finite elements.

L2 Projection Recovery Estimators Higher-order Finite Elements?

How to fix it?

Recover a σ , such that element residual terms are higher order terms.

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

An H(div) Problem Recovery

• Find $\sigma_h \in RT_{k-1}/BDM_k$, s.t.,

$$(A^{-1}\sigma_h, \tau) + (\nabla \cdot \sigma_h, \nabla \cdot \tau) = (-\nabla u_h, \tau) + (f - Xu_h, \nabla \cdot \tau) \quad \forall \tau \in RT_{k-1}/BDM_k$$

Too costly to solve?
 Fast Full-Multigrid H(div) Solvers or Direct Solvers

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

An H(div) Problem Recovery

• Find $\sigma_h \in RT_{k-1}/BDM_k$, s.t.,

$$(A^{-1}\sigma_h, \tau) + (\nabla \cdot \sigma_h, \nabla \cdot \tau) = (-\nabla u_h, \tau) + (f - Xu_h, \nabla \cdot \tau) \quad \forall \tau \in RT_{k-1}/BDM_k$$

Too costly to solve?
 Fast Full-Multigrid H(div) Solvers or Direct Solvers

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

New Error Estimator

$$\xi_{hdiv,\mathcal{K}} = \|\boldsymbol{A}^{-1/2}\boldsymbol{\sigma}_h + \boldsymbol{A}^{1/2}\nabla \boldsymbol{u}_h\|_{0,\mathcal{K}}.$$

$$\xi_{hdiv} = \|A^{-1/2}\sigma_h + A^{1/2}\nabla u_h\|_{0,\Omega}$$

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

- $e = u u_h$.
- Notation: $||h g(x)||_0 = (\sum_{K \in \mathcal{T}} h_K^2 ||g||_{0,K}^2)^{1/2}$

Reliability bound.

 $\|oldsymbol{A}^{1/2}
ablaoldsymbol{e}\|_0\leq oldsymbol{C}(\xi_{\mathit{hdiv}}+\|oldsymbol{h}(\mathit{f}-\mathit{X}\mathit{u}_habla\cdotoldsymbol{\sigma}_h)\|_0)$

• Is $\|h(f - Xu_h - \nabla \cdot \sigma_h)\|_0$ is of higher order compared to ξ_{hdiv} ?

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

Analysis

- $e = u u_h$.
- Notation: $||h|g(x)||_0 = (\sum_{K \in \mathcal{T}} h_K^2 ||g||_{0,K}^2)^{1/2}$
- Reliability bound.

 $\|A^{1/2} \nabla e\|_0 \leq C(\xi_{hdiv} + \|h(f - Xu_h - \nabla \cdot \boldsymbol{\sigma}_h)\|_0)$

• Is $\|h(f - Xu_h - \nabla \cdot \sigma_h)\|_0$ is of higher order compared to ξ_{hdiv} ?

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

- $e = u u_h$.
- Notation: $||h g(x)||_0 = (\sum_{K \in \mathcal{T}} h_K^2 ||g||_{0,K}^2)^{1/2}$
- Reliability bound.

 $\|A^{1/2} \nabla e\|_0 \leq C(\xi_{hdiv} + \|h(f - Xu_h - \nabla \cdot \boldsymbol{\sigma}_h)\|_0)$

• Is $||h(f - Xu_h - \nabla \cdot \sigma_h)||_0$ is of higher order compared to ξ_{hdiv} ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

• Since $(f - Xu_h - \nabla \cdot \sigma_h, \nabla \cdot \tau) = (\nabla u_h + A^{-1}\sigma_h, \tau)$, we can prove

$$\|f - Xu_h - \nabla \cdot \boldsymbol{\sigma}_h\|_0 \leq C\xi_{hdiv} + \|R - \mathcal{P}_{k-1}R\|_0$$

Where $R = f - Xu_h - \nabla \cdot \sigma_h$, and \mathcal{P}_{k-1} is the L^2 projection operator onto the discontinuous piecewise polynomial space of degree k - 1 with respect to the triangulation \mathcal{T} .

• $||h(f - Xu_h - \nabla \cdot \sigma_h)||_0$ is of higher order compared to ξ_{hdiv} .

 $\|A^{1/2} \nabla e\|_0 \leq C \xi_{hdiv} + h.o.t$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

• Since $(f - Xu_h - \nabla \cdot \sigma_h, \nabla \cdot \tau) = (\nabla u_h + A^{-1}\sigma_h, \tau)$, we can prove

$$\|f - Xu_h - \nabla \cdot \boldsymbol{\sigma}_h\|_0 \leq C\xi_{hdiv} + \|R - \mathcal{P}_{k-1}R\|_0$$

Where $R = f - Xu_h - \nabla \cdot \sigma_h$, and \mathcal{P}_{k-1} is the L^2 projection operator onto the discontinuous piecewise polynomial space of degree k - 1 with respect to the triangulation \mathcal{T} .

• $||h(f - Xu_h - \nabla \cdot \sigma_h)||_0$ is of higher order compared to ξ_{hdiv} .

 $\|\mathcal{A}^{1/2}
abla e\|_0\leq C\xi_{hdiv}+h.o.t$

H(div) Problem Recovery New Error Estimator Analysis of the New Error Estimator

• Since $(f - Xu_h - \nabla \cdot \sigma_h, \nabla \cdot \tau) = (\nabla u_h + A^{-1}\sigma_h, \tau)$, we can prove

$$\|f - Xu_h - \nabla \cdot \boldsymbol{\sigma}_h\|_0 \leq C\xi_{hdiv} + \|R - \mathcal{P}_{k-1}R\|_0$$

Where $R = f - Xu_h - \nabla \cdot \sigma_h$, and \mathcal{P}_{k-1} is the L^2 projection operator onto the discontinuous piecewise polynomial space of degree k - 1 with respect to the triangulation \mathcal{T} .

• $||h(f - Xu_h - \nabla \cdot \sigma_h)||_0$ is of higher order compared to ξ_{hdiv} .

$$\|A^{1/2}
abla e\|_0 \leq C \xi_{hdiv} + h.o.t$$

э.

Two Criteria for Recovery Based Error Estimators 1-D P2 Element Example 2-D P2 Element Example

Two Criteria for Recovery Based Error Estimators

- Optimality of the mesh
 - Smooth solution and uniform mesh
 - Poisson equation $-\Delta u = f$ and $u \in H^{1+k}$,
 - *u_h* ∈ *U_k* is the finite element solution in the piecewise continuous *k*-th degree finite element space.
 - T_h is the mesh with uniform mesh size h
 - *N*: Number of the unknowns $\approx h^{-d}$, d = 1, 2, or 3.
 - $\bullet \ \|\nabla \boldsymbol{e}\|_0 \leq \boldsymbol{C} \boldsymbol{h}^k \|\boldsymbol{D}^{1+k} \boldsymbol{u}\|_0 = \boldsymbol{C} \boldsymbol{N}^{-k/d}$
 - The slope of $\log(N)$ - $\log(\|\nabla e\|_0)$ line is -k/d.
 - Adaptive mesh generated by error indicators: should have similar error decay.
- Effectivity index —

Two Criteria for Recovery Based Error Estimators 1-D P2 Element Example 2-D P2 Element Example

Two Criteria for Recovery Based Error Estimators

- Optimality of the mesh
 - Smooth solution and uniform mesh
 - Poisson equation $-\Delta u = f$ and $u \in H^{1+k}$,
 - *u_h* ∈ *U_k* is the finite element solution in the piecewise continuous *k*-th degree finite element space.
 - T_h is the mesh with uniform mesh size h
 - *N*: Number of the unknowns $\approx h^{-d}$, d = 1, 2, or 3.
 - $\|\nabla e\|_0 \leq Ch^k \|D^{1+k}u\|_0 = CN^{-k/d}.$
 - The slope of log(N)-log(||∇e||₀) line is -k/d.
 - Adaptive mesh generated by error indicators: should have similar error decay.

Two Criteria for Recovery Based Error Estimators 1-D P2 Element Example 2-D P2 Element Example

Two Criteria for Recovery Based Error Estimators

- Optimality of the mesh
 - Smooth solution and uniform mesh
 - Poisson equation $-\Delta u = f$ and $u \in H^{1+k}$,
 - *u_h* ∈ *U_k* is the finite element solution in the piecewise continuous *k*-th degree finite element space.
 - T_h is the mesh with uniform mesh size h
 - *N*: Number of the unknowns $\approx h^{-d}$, d = 1, 2, or 3.
 - $\|\nabla e\|_0 \leq Ch^k \|D^{1+k}u\|_0 = CN^{-k/d}.$
 - The slope of $\log(N)$ - $\log(\|\nabla e\|_0)$ line is -k/d.
 - Adaptive mesh generated by error indicators: should have similar error decay.

Two Criteria for Recovery Based Error Estimators **1-D P2 Element Example** 2-D P2 Element Example

A 1-D P2 element example

-u'' = f on (0, 1), u(0) = u(1) = 0, with the right-hand side function $f = 30x^4 - 20x^3$ and the exact solution $u = x^5(1 - x)$.

Figure: True solution u

Zhiqiang Cai, Shun Zhang Recovery-Based A Posteriori Error Estimators

Two Criteria for Recovery Based Error Estimators **1-D P2 Element Example** 2-D P2 Element Example

L² projection error estimator fails

 $u_h \in \mathcal{U}_2$ is the quadratic finite element solution. L^2 projection recovery: Find $\sigma_h \in \mathcal{U}_2$,s.t., $(\sigma_h, \tau) = -(u'_h, \tau) \ \forall \tau \in \mathcal{U}_2$ $\xi_{L2} = \|\sigma + u'_h\|_0$

Two Criteria for Recovery Based Error Estimators 1-D P2 Element Example 2-D P2 Element Example

Error estimator ξ_{hdiv}

 $u_h \in \mathcal{U}_2$ is the quadratic finite element solution. Recover $\sigma_h \in \mathcal{U}_2$

$$(\sigma_h, \tau) + (\sigma'_h, \tau') = -(u'_h, \tau) + (f, \tau') \quad \forall \tau \in \mathcal{U}_2$$

Error Estimator

 $\xi_{hdiv} = \|\sigma_h + u_h'\|_0$

Two Criteria for Recovery Based Error Estimators **1-D P2 Element Example** 2-D P2 Element Example

(4) (3) (4) (4) (4)

Image: A matrix

For P_2 element, error estimator ξ_{hdiv} works

Zhiqiang Cai, Shun Zhang Recovery-Based A Posteriori Error Estimators

Two Criteria for Recovery Based Error Estimators 1-D P2 Element Example 2-D P2 Element Example

2-D P2 Element Example

Interface problem

$$\begin{cases} -\nabla \cdot (a\nabla u) = f \text{ in } \Omega = (-1, 1)^2 \\ u = g \text{ on } \partial \Omega \end{cases}$$

with a = R in $(0, 1)^2 \cup (-1, 0)^2$ and 1 in $(-1, 0) \times (0, 1) \cup (0, 1) \times (-1, 0)$

• Exact solution $u(r, \theta) = r^{\alpha} \mu(\theta) \in H^{1+\alpha-\epsilon}(\Omega)$ with

$$\mu(\theta) = \begin{cases} \cos((\frac{\pi}{2} - \sigma)\alpha) \cdot \cos((\theta - \frac{\pi}{2} + \rho)\alpha) & \text{if } 0 \le \theta \le \frac{\pi}{2}, \\ \cos(\rho\alpha) \cdot \cos((\theta - \pi + \sigma)\alpha) & \text{if } \frac{\pi}{2} \le \theta \le \pi, \\ \cos(\sigma\alpha) \cdot \cos((\theta - \pi - \rho)\alpha) & \text{if } \pi \le \theta \le \frac{3\pi}{2}, \\ \cos((\frac{\pi}{2} - \rho)\alpha) \cdot \cos((\theta - \frac{3\pi}{2} - \sigma)\alpha) & \text{if } \frac{3\pi}{2} \le \theta \le 2\pi. \end{cases}$$

• Example when $\alpha = 0.5$, then $R \approx 5.828427124746190$ **PURDUE** $\rho = \pi/4$, and $\sigma \approx -2.3561944901923448$.

Two Criteria for Recovery Based Error Estimators 1-D P2 Element Example 2-D P2 Element Example

Concluding Remarks

Two Criteria for Recovery Based Error Estimators 1-D P2 Element Example 2-D P2 Element Example

Two Criteria for Recovery Based Error Estimators 1-D P2 Element Example 2-D P2 Element Example

Zhiqiang Cai, Shun Zhang

Recovery-Based A Posteriori Error Estimators

Concluding Remarks

- An Extension of L² Recovery
- Flux Recovery for Higher Order Finite Elements
- No Regularity Assumptions are Required

