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MIXED METHODS FOR STATIONARY

NAVIER-STOKES EQUATIONS BASED ON

PSEUDOSTRESS-PRESSURE-VELOCITY FORMULATION

ZHIQIANG CAI AND SHUN ZHANG

Abstract. In this paper, we develop and analyze mixed finite element meth-
ods for the Stokes and Navier-Stokes equations. Our mixed method is based
on the pseudostress-pressure-velocity formulation. The pseudostress is approx-
imated by the Raviart-Thomas, Brezzi-Douglas-Marini, or Brezzi-Douglas-
Fortin-Marini elements, the pressure and the velocity by piecewise discon-
tinuous polynomials of appropriate degree. It is shown that these sets of finite
elements are stable and yield optimal accuracy for the Stokes problem. For
the pseudostress-pressure-velocity formulation of the stationary Navier-Stokes
equations, the well-posedness and error estimation results are established. By
eliminating the pseudostress variables in the resulting algebraic system, we ob-
tain cell-centered finite volume schemes for the velocity and pressure variables
that preserve local balance of momentum.

1. Introduction

Let Ω be a bounded, open, connected subset of Rd (d = 2 or 3) with a Lipschitz
continuous boundary ∂Ω. Denote the outward unit vector normal to the boundary
by n = (n1, ... , nd). Let f = (f1, ... , fd) be a given external body force defined in
Ω. Let u(x) = (u1, ... , ud) be the velocity vector field and p the pressure. This
paper studies mixed finite element methods for solving the stationary Navier-Stokes
equations:

(1.1)

{
−νΔu+ u · ∇u+∇ p = f in Ω,

∇ · u = 0 in Ω

where ν > 0 is a given viscosity parameter and Δ, ∇, and ∇· denote the Laplace,
gradient, and divergence operators, respectively. The above system is supplemented
with Dirichlet boundary conditions for the velocity

(1.2) u = g on ∂Ω,

where g = (g1, . . . , gd) is a prescribed velocity on the boundary satisfying the
compatibility condition

(1.3)

∫
∂Ω

n · g ds = 0.
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Without the convection term, the system in (1.1) becomes the so-called Stokes
equations:

(1.4)

{
−νΔu+∇ p = f in Ω,

∇ · u = 0 in Ω,

which is typically used for modeling creeping fluids flows and for studying numerical
algorithms.

Numerical methods based on the velocity-pressure formulation in (1.1) have been
extensively studied and well documented (see, e.g., books [10, 24, 25]). Recently, the
practical need of the stress tensor associated with arising interest in non-Newtonian
flows have motivated extensive studies of mixed finite element methods, stabi-
lized mixed methods, and least-squares finite element methods based on the stress-
velocity-pressure formulation or on its variants (see, e.g., [19, 20, 5, 15, 16, 23, 13]
and references therein). In [19, 20], Farhloul and Fortin introduced the gradient
of the velocity, t = ∇u, as a new independent variable and studied the corre-
sponding hybridized mixed finite element method for the Stokes equation that uses
the RT0 element for the pseudostress σ = ν∇u − p δ, the piecewise constants
for the velocity and the pressure on elements, and the piecewise constants for the
Lagrange multiplier on edges. In [19], this hybridized method was used for the
Navier-Stokes equations by using the relation (u · ∇u,v) = (∇ · (u ⊗ u),v) for
the nonlinear convection term, and the method was not analyzed mathematically.
In [23], Gatica, González, and Meddahi studied a mixed finite element method
by introducing both the gradient of the velocity and the pseudostress as new in-
dependent variables for the quasi-Newtonian Stokes flows. The pseudostress is
approximated by the RT0 element, the velocity and the gradient of the velocity are
approximated by piecewise constants. In [5], Behr, Franca, and Tezduyar studied
stabilized finite element methods based on the stress-pressure-velocity formulation
for linearized incompressible Navier-Stokes equations. In [13], Cai, Lee, and Wang
studied least-squares finite element methods based on the (pseudo)stress-velocity
and the (pseudo)stress-velocity-pressure formulations.

Recently, in [15, 16] we analyzed a mixed finite element method based on the
pseudostress-velocity formulation for solving the Stokes and Navier-Stokes equa-
tions. The pseudostress and the velocity are approximated by a stable pair of finite
elements: Raviart-Thomas (RT) elements of index k ≥ 0 and discontinuous piece-
wise polynomials of degree k ≥ 0, respectively. As pointed out in [15], this method
is accurate for approximations to the stress, the vorticity, and other physical quan-
tities, preserves local balance of momentum, and has no essential boundary condi-
tions. Moreover, the discrete algebraic system can be reduced to a smaller system
having only the pseudostress unknowns through a penalty method by eliminating
the velocity, and the resulting pseudostress system can be numerically solved by
fast and efficient H(div) multigrid methods introduced in [3, 26, 30]. For the sta-
tionary Stokes equations, it is shown theoretically in [17] that the convergence rate
of the V (1, 1)-cycle multigrid is independent of the mesh size, the number of levels,
and the penalty parameter. This is also confirmed numerically in [15, 17] with re-
markably fast convergence rates around 0.21 for the RT element of index zero and
0.14 for the Brezzi-Douglas-Marini (BDM) element of index one.

The purpose of this paper is to study mixed finite element methods based on
the pseudostress-pressure-velocity formulation for the incompressible Stokes and
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Navier-Stokes equations. Obviously, this formulation leads to a slightly larger sys-
tem comparing to the pseudostress-velocity formulation due to the extra indepen-
dent variable: the pressure. However, it is possible to reduce dramatically the size
of the algebraic system by eliminating the pseudostress unknowns at the discrete
level through the hybridization technique (see [22, 1]). This leads to discretization
schemes of finite volume type that preserve local balance of momentum (see Section
6). For more details of this elimination procedure, see [12] for second-order elliptic
equations.

In this paper, the pseudostress is approximated by the H(div) conforming ele-
ments such as RT, BDM and Brezzi-Douglas-Fortin-Marini (BDFM) elements, and
both the pressure and the velocity are approximated by piecewise discontinuous
polynomials of appropriate degrees. For the Stokes equations, it is shown that
these sets of finite elements are stable and yield optimal accuracy. To establish
the stability and the optimality of the finite element approximations, in particular,
the L2 optimal accuracy of the BDM elements, we make use of a fundamental
inequality that bounds the L2 norm of a tensor function by the L2 norm of its de-
viatoric part and the H−1 norm of its divergence. For the stationary Navier-Stokes
equations, following our previous work in [16], we prove the well posedness of the
pseudostress-pressure-velocity formulation via establishing its equivalence to the
velocity-pressure formulation. Based on the theory of Brezzi, Rappaz, and Raviart
[11, 24], we show that for sufficiently small mesh size, the discrete problem has a
branch of nonsingular solutions in a neighborhood of the solution of the continuous

problem. Moreover, we establish accuracy O(hk+1−d
6 ) in the L3(Ω) norm. For a

different analysis for nonlinear scalar elliptic equations in the mixed form, see [27]
by Milner and Park.

The paper is organized as follows. The pseudostress-pressure-velocity formula-
tion of Stokes equations is derived in Section 2. Section 3 describes and analyzes
mixed finite element methods for the Stokes equations. Section 4 studies the sta-
tionary Navier-Stokes equations in the pseudostress-pressure-velocity formulation.
In Section 5, we analyze the mixed finite element methods of the stationary Navier-
Stokes equations. Finally, we describe cell-centered finite volume schemes obtained
from eliminating the pseudostress variables in Section 6.

1.1. Notation. Assume, throughout the paper, that the boundary of Ω is of class
C 2, a two-dimensional convex polygon, or convex polyhedra. We use the standard
notations and definitions for the Sobolev spaces W s,p(Ω)d and W s,p(∂Ω)d for s ≥ 0
and p ∈ [1,∞]. The standard associated inner products are denoted by (·, ·)s,p,Ω
and (·, ·)s,p,∂Ω, and their respective norms are denoted by ‖ · ‖s,p,Ω and ‖ · ‖s,p,∂Ω.
(We suppress the superscript d because the dependence on dimension will be clear
by context. We also omit the subscript Ω from the inner product and norm des-
ignation when there is no risk of confusion.) For s = 0, W s,p(Ω)d coincides with
Lp(Ω)d. Moreover, the space W s,2(Ω)d will generally be written in the shorthand
form Hs(Ω)d. Set

W 1,2
0 (Ω) := {q ∈ W 1,2(Ω)

∣∣∣ q = 0 on ∂Ω}

and

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣ ∫
Ω

q dx = 0

}
.
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Denote by D(Ω) the linear space of infinitely differentiable functions with compact
support on Ω. Let

(1.5) H(div; Ω) = {v ∈ L2(Ω)d
∣∣∣∇ · v ∈ L2(Ω)},

which is a Hilbert space equipped with the norm

‖v‖H(div) =
(
‖v‖20,2 + ‖∇ · v‖20,2

) 1
2

.

Next, we will introduce a space which is an analog of H(div; Ω) and is used for the
solution space of the pseudostress. For any s > 2, let

(1.6) W 0,s(div; Ω) =
{
v ∈ Ls(Ω)d

∣∣∣∇ · v ∈ L2(Ω)
}
⊂ H(div; Ω)

which is a Banach space equipped with the norm

‖v‖W 0,s(div) =
(
‖v‖20,s + ‖∇ · v‖20,2

) 1
2

.

Finally, denote the collections of tensor functions in H(div; Ω)d and Ŵ 0,s(div; Ω)d

whose trace has zero mean value by

Ĥ(div; Ω)d = {τ ∈ H(div; Ω)d |
∫
Ω

tr τ dx = 0}

and

Ŵ 0,s(div; Ω)d =

{
τ ∈ W 0,s(div; Ω)d

∣∣∣∣ ∫
Ω

tr τ dx = 0

}
,

respectively.

2. Pseudostress-pressure-velocity formulation for Stokes equations

Introducing a new independent tensor variable, pseudostress:

(2.1) σ = ν∇u− p δ,

where δ denotes the identity tensor, then the first equation in (1.4) becomes

(2.2) −∇ · σ = f .

Taking trace of (2.1) and using the second equation of (1.4) gives

(2.3) trσ = −dp.

Hence, we have the following pseudostress-pressure-velocity formulation of the
Stokes equation: ⎧⎪⎪⎨⎪⎪⎩

ν−1 (σ + p δ)−∇u = 0 in Ω,

ν−1 (trσ + d p) = 0 in Ω,

∇ · σ = −f in Ω

(2.4)

with boundary conditions (1.2) and compatibility condition (1.3). Note that the
incompressibility condition is implicitly contained in the first and second equations
of (2.4). Note also that elimination of the pressure and the second equation in
(2.4) leads to the pseudostress-velocity formulation whose numerical methods were
previously studied in [15].
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Multiplying the first equation in (2.4) by a tensor function τ ∈ Ĥ(div; Ω)d, inte-
grating over the domain Ω, and using integration by parts and boundary conditions
(1.2) gives

1

ν
(σ + p δ, τ ) + (u, ∇ · τ ) =

∫
∂Ω

g · (n · τ )ds ≡ g(τ ).

Multiplying the second and third equations by a scalar function q ∈ L2(Ω) and a
vector function v ∈ L2(Ω)d, respectively, and integrating them over the domain Ω
yields

1

ν
(σ + p δ, q δ) =

1

ν
(trσ + d p, q) = 0 and (∇ · σ, v) = −(f , v) ≡ f(v).

Let

Xd := Ĥ(div; Ω)d × L2(Ω)

equipped with the standard product norm

|||(τ , q)||| = ‖τ‖H(div) + ‖q‖0,2, ∀ (τ , q) ∈ Xd.

Define the bilinear forms a(·, ·) : Xd ×Xd → R and b(·, ·) : Xd × L2(Ω)d → R by

(2.5) a((σ, p) , (τ , q)) =
1

ν
(σ + p δ, τ + q δ) and b((σ, p) ,v) = (∇ · σ,v),

respectively. Then the variational problem of the pseudostress-pressure-velocity
formulation is to find ((σ, p),u) ∈ Xd × L2(Ω)d such that

(2.6)

{
a((σ, p) , (τ , q)) + b((τ , q) ,u) = g(τ ) ∀ (τ , q) ∈ Xd,

b((σ, p) ,v) = f(v) ∀ v ∈ L2(Ω)d.

To study the well-posedness of (2.6) and estimate error bounds of finite element
approximations, we will need the following inequality. (In this paper, we use C
with or without subscripts to denote a generic positive constant, possibly different
at different occurrences; that is, independent of the mesh size h but may depend
on the domain Ω.)

Lemma 2.1. For any τ ∈ Ĥ(div; Ω)d, there exists a positive constant C such that

(2.7) ‖τ‖0,2 ≤ C (‖Aτ‖0,2 + ‖∇ · τ‖−1,2) ,

where Aτ = τ − 1

d
(tr τ )δ is the deviatoric part of the tensor τ .

Proof. It was shown (see Lemma 3.2 in [14] with μ = 1/2 ) that there exists a
constant C > 0 independent of λ such that

(2.8) ‖τ‖0,2 ≤ C
(
(Aλτ , τ )

1/2 + ‖∇ · τ‖−1,2

)
,

where Aλτ = τ − λ

dλ+ 1
(tr τ )δ = Aτ +

1

d(dλ+ 1)
(tr τ )δ. Since ‖Aτ‖20,2 =

(Aτ , τ ), (2.7) is then a limit of (2.8) as λ → ∞.
For the convenience of readers, we sketch the proof of (2.8) for three dimensions

(d = 3). A simple calculation gives

‖τ‖20,2 = (Aλτ , τ ) +
λ

3λ+ 1
‖tr τ‖20,2.
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Then it suffices to show that there exists a constant C > 0 independent of λ such
that

(2.9) ‖tr τ‖0,2 ≤ C
(
(Aλτ , τ )

1/2 + ‖∇ · τ‖−1,2

)
.

This is established in Lemma 5.4 of [14] through the Helmholtz decomposition:

τ = A−1
λ ∇q+∇×Φ = ∇q+ λ(∇ · q)δ +∇×Φ,

where q ∈ W 1,2
0 (Ω)3 and Φ ∈ H(curl; Ω)3 satisfy the following inequalities (Lemma

5.2 and (5.12) and (5.14) in [14]):

λ ‖∇ · q‖0,2 ≤ C ‖∇ · τ‖−1,2 and ‖tr∇×Φ‖0,2 ≤ C ‖A−1/2
λ τ‖0,2.

Now, (2.9) follows from the identity tr τ = (1+3λ)∇·q+tr∇×Φ and the triangle
inequality. �

Remark 2.2. A slightly weaker result, ‖τ‖0,2 ≤ C (‖Aτ‖0,2 + ‖∇ · τ‖0,2) in two
dimensions was proved in [2] and [10] (Prop. 3.1 in Chap. IV). Note that the
negative norm in (2.7) is essential for showing the optimal convergence rate of
BDM elements.

To prove the uniqueness and existence of our variational problem, we employ
the abstract theory on saddle-point problems in [6, 10]. To this end, denote by
B : Xd → L2(Ω)d the linear operator associated with the bilinear form b(·, ·); i.e.,
for any τ ∈ Xd, Bτ ∈ L2(Ω)d satisfies

(Bτ ,v) = b(τ ,v) ∀v ∈ L2(Ω)d.

Denote the divergence-free subspace of Ĥ(div; Ω)d by

Ĥ0(div; Ω)d = {τ ∈ Ĥ(div; Ω)d | ∇ · τ = 0},
then it is easy to see that

KerB = X0,d = Ĥ0(div; Ω)d × L2(Ω).

The next lemma establishes the coercivity of the bilinear form a(· , ·) in X0,d×X0,d.

Lemma 2.3. There exists a positive constant α such that

(2.10) α |||(τ , q)|||2 ≤ a((τ , q), (τ , q))

for any (τ , q) in X0,d.

Proof. For any (τ , q) ∈ Xd = Ĥ(div; Ω)d × L2(Ω), it follows from the definition of
Aτ and the triangle inequality that

‖Aτ‖0,2 ≤ ‖τ + q δ‖0,2 + ‖1
d
(trτ + d q) δ‖0,2 ≤ C ‖τ + q δ‖0,2

and that

‖q‖0,2 ≤ ‖τ + q δ‖0,2 + ‖τ‖0,2
together with Lemma 2.1 implies

‖τ‖0,2 + ‖q‖0,2 ≤ C (‖τ + q δ‖0,2 + ‖∇ · τ‖−1,2) .

Hence,

(2.11) ‖τ‖20,2 + ‖q‖20,2 ≤ C(a((τ , q) , (τ , q)) + ‖∇ · τ‖2−1,2).
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Now, for any (τ , q) ∈ X0,d = Ĥ0(div; Ω)d × L2(Ω), the lemma is then a straight-
forward consequence of the face that ∇ · τ = 0. This completes the proof of the
lemma. �

Theorem 2.4. The variational problem in (2.6) has a unique solution. Moreover,
the solution satisfies the following a priori estimate:

(2.12) |||(σ, p)|||+ ‖u‖0,2 ≤ C(‖f‖0,2 + ‖g‖1/2,2,∂Ω).

Proof. It is easy to see that the linear forms f(v) and g(τ ) are continuous in L2(Ω)d

and Xd:

|f(v)| ≤ ‖f‖0,2 ‖v‖0,2 and |g(τ )| ≤ ‖g‖1/2,2,∂Ω‖τ‖H(div) ≤ ‖g‖1/2,2,∂Ω|||(τ , q)|||.

For any v ∈ L2(Ω)d, it was proved in [15], that there exists a constant β > 0, such
that

sup
τ∈ ̂H(div; Ω)d

(∇ · τ , v)
‖τ‖H(div)

≥ β ‖v‖0,2.

Together with the fact that

sup
(τ ,q)∈Xd

(∇ · τ ,v)
‖|(τ , q)‖| ≥ sup

(τ ,0)∈Xd

(∇ · τ ,v)
‖τ‖H(div)

≥ sup
τ∈ ̂H(div; Ω)d

(∇ · τ ,v)
‖τ‖H(div)

yields

(2.13) sup
(τ ,p)∈Xd

b((τ , q),v)

‖|(τ , q)|‖ ≥ β‖v‖0,2

for any v ∈ L2(Ω)d. Now, by the abstract theory in [6], the existence and uniqueness
of the variational problem (2.6) and the a priori estimates (2.12) are immediate
consequences of the continuity of the linear forms f and g, the coercivity (2.10),
and the inf-sup condition (2.13). �

As pointed out in [15], the pseudostress contains more information than the
stress

σ̃ = −p δ + ν
(
∇u+ (∇u)t

)
= σ + ν (∇u)t.

Physical quantities such as the velocity gradient, stress, and vorticity can be alge-
braically expressed in terms of the pseudostress and pressure:

(2.14) ∇u =
1

ν
(σ + p δ), σ̃ = (σ + σt) + p δ, and ω =

1

2 ν

(
σ + σt

)
,

respectively. Therefore, these physical quantities (if needed) can be computed in a
post-processing procedure without degrading the accuracy of the approximation.

3. Finite element approximation: Stokes equations

Assume the domain Ω is polygonal (polyhedronal) in two (three) dimensions
and that Th is a quasi-regular triangulation of Ω into triangles or rectangles (tetra-
hedrons or cubes) in two (three) dimensions with size O(h). Rectangular (cubic)

elements are constructed on a reference element K̂ = (−1, 1)d and then extended
to general quadrilaterals through the change of variables (see [10]).

We approximate each row of the pseudostress by conforming elements of

Ĥ(div; Ω), such as Raviart-Thomas (RT), Brezzi-Douglas-Marini (BDM), and
Brezzi-Douglas-Fortin-Marini (BDFM) elements, and approximate the pressure and
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velocity by discontinuous polynomials of appropriate degrees. To this end, we de-
scribe these finite element spaces and their approximation properties by following
[10]. Denote spaces of polynomials on an element K ⊂ Rd by:

Pk(K) is the space of polynomials of degree ≤ k,

Pk1,k2
(K) =

⎧⎨⎩p(x1, x2)
∣∣∣ p(x1, x2) =

∑
i≤k1, j≤k2

aijx
i
1x

j
2

⎫⎬⎭ , d = 2;

Pk1,k2,k3
(K) =

{
p(x1, x2, x3)

∣∣∣ p(x1, x2, x3)

=
∑

i≤k1, j≤k2, k≤k3

aijkx
i
1x

j
2x

k
3

⎫⎬⎭ , d = 3;

Qk(K) =

{
Pk,k(K) for d = 2,
Pk,k,k(K) for d = 3.

Denote polynomial spaces on the boundary of an element K by

Rk(∂K) = {φ ∈ L2(∂K)
∣∣∣φ|ei ∈ Pk(ei) ∀ ei ∈ ∂K},

where ei (i = 1, ..., 3 for triangular elements, i = 1, ..., 4 for tetrahedra or rectangular
elements, or i = 1, ..., 6 for cubic elements) are the edges or faces of K.

Let x = (x1, ..., xd). Define the local RT space of index k ≥ 0 on an element K
([29, 28]) by

RTk(K) =

{
Pk(K)d + xPk(K), K = triangle/tetrahedron,

Qk(K)d + xQk(K), K = rectangle/cube.

Define the local BDM space of index k ≥ 1 on a triangle or a tetrahedra K ([9, 7])
by

BDMk(K) = Pk(K)d,

The local BDMk(K) of index k ≥ 1 is defined on a rectangle ([9]) by

BDMk(K) =

{
q
∣∣∣q = pk + r∇⊥ (xk+1

1 x2) + s∇⊥ (x1x
k+1
2 ),

∀pk ∈ P 2
k , ∀ r, s ∈ R

}
and on a cube ([7]) by

BDMk(K)=
{
q
∣∣∣q=pk+

k∑
i=0

[ri ∇×{0, 0, x1x
i+1
2 xk−i

3 }+si ∇× (x2x
k+1
3 xk−i

1 , 0, 0)

+ti ∇× (0, x3x
k+1
1 xk−i

2 , 0)], ∀pk ∈ P 3
k , ∀ ri, si, ti ∈ R

}
.
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Define the local BDFM space of index k ≥ 1 on an element K ([8]) by

BDFMk(K) = {v ∈ BDFMk(K)
∣∣∣v · n|∂K ∈ Rk−1(∂K)},

where n is the unit outward normal to ∂K. From now on, whenever it may be
convenient, we will use Mk(K) to denote RTk or BDFMk+1(K) for k ≥ 0 or
BDMk(K) for k ≥ 1. Let

Dk(K) = div(Mk(K)).

For an affine element K, one has that

div(BDMk(K)) = Pk−1(K),

div(BDFMk+1(K)) = Pk(K),

div(RTk(K)) = Pk(K),K is a triangle/tetrahedron,

div(RTk(K)) = Qk(K),K is a rectangle/cube.

Starting from the local definitions, for each choice of Mk(K), define the global
H(div; Ω) conforming space by

Mk =
{
v ∈ H(div; Ω)

∣∣∣v|K ∈ Mk(K), ∀K ∈ Th
}
.

(See [10] for appropriate choices of degrees of freedom for these spaces.) Mk will
be replaced by RTk, BDMk, or BDFMk+1 when specified spaces are needed. Sim-
ilarly, define

Dk =
{
q ∈ L2(Ω)

∣∣∣ q|K ∈ Dk(K), ∀K ∈ Th
}

and denote the space of piecewise discontinuous polynomials of degree ≤ k by

Pk =
{
q ∈ L2(Ω)

∣∣∣ q|K ∈ Pk(K), ∀K ∈ Th
}
.

Let P ′
h be the L2 projection into Pk and it is well known that

(3.1) ‖q − P ′
hq‖0,r ≤ Chs‖q‖s,r 0 ≤ s ≤ k + 1.

Let Ph be the L2 projection into Dk. It is well known that for all q ∈ Hr(Ω),

(3.2) ‖q − Ph q‖0,r ≤ C hs‖q‖s,r
where s ≤ k + 1 for RTk and BDFMk+1, s ≤ k for BDMk. It is also well known
that there exists an interpolation operator Πh : H(div; Ω)∩Lt(Ω)d → Mk for fixed
t > 2 satisfying the commutativity property

(3.3) ∇ · (Πh v) = Ph ∇ · v ∀ v ∈ H(div; Ω) ∩ Lt(Ω)d,

and the approximation properties: for 2 ≤ r ≤ ∞,

(3.4) ‖v −Πh v‖0,r ≤ C hs‖v‖s,r

where
1

r
< s ≤ k + 1 and

(3.5) ‖∇ · (v−Πh v)‖0,2 ≤ C hs‖∇ · v‖s,2,

where 0 ≤ s ≤ k + 1 for RTk and BDFMk+1 or 0 ≤ s ≤ k for BDMk.
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Denote the product spaces by

Md
k =

d∏
i=1

Mk and Dd
k =

d∏
i=1

Dk,

define a subspace of Md
k by

M̂d
k = {τ ∈ Md

k

∣∣∣ ∫
Ω

tr τ dx = 0},

and let

Xd
k = M̂d

k × Pk.

Then our mixed finite element approximation is to find a triple ((σh, ph) ,uh) ∈
Xd

k ×Dd
k such that

(3.6)

{
a((σh, ph) , (τ , q)) + b((τ , q) ,uh) = g(τ ) ∀ (τ , q) ∈ Xd

k ,

b((σh, ph) ,v) = f(v) ∀ v ∈ Dd
k,

where the bilinear forms a(·, ·) and b(·, ·) are defined as those in (2.5).
To establish well-posedness of (3.6) and error bounds, we define an interpolation

operator Πh : Ĥ(div; Ω)d ∩ Lt(Ω)d×d → M̂d
k by

Πhτ = (Πhτ 1, . . . , Πhτ d)− b δ with b =
1

d |Ω|

∫
Ω

tr (Πhτ 1, . . . , Πhτ d) dx

and the L2 projection operator into Dd
k by

Phv = (Phv1, . . . ,Phvd).

By (3.3), (3.4), (3.5), and (3.2), it is then easy to check the validity of the commu-
tativity property

(3.7) ∇ · (Πh τ ) = Ph ∇ · τ ∀ τ ∈ H(div; Ω)d ∩ Lt(Ω)d×d,

and the approximation properties: for 2 ≤ r ≤ ∞,

(3.8) ‖v −Ph v‖0,r ≤ C hs‖v‖s,r,

where s ≤ k + 1 for RTk and BDFMk+1, s ≤ k for BDMk,

(3.9) ‖τ −Πh τ‖0,r ≤ C hs‖τ‖s,r,

where
1

r
≤ s ≤ k + 1, and

(3.10) ‖∇ · (τ −Πh τ )‖0,2 ≤ C hs‖∇ · τ‖s,2,

where 0 ≤ s ≤ k for BDMk, 0 ≤ s ≤ k + 1 for RTk and BDFMk+1.
Let

Zd
k = {τ ∈ M̂d

k

∣∣∣ (∇ · τ , v) = 0 ∀ v ∈ P d
k }

and

X0,d
k = {(τ , q) ∈ Xd

k

∣∣∣ b((τ , q) ,v) = 0 ∀ v ∈ Dd
k} = Zd

k ×Dk.
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The next two lemmas verify the coercivity of the bilinear form a(·, ·) in X0,d
k

and the inf-sup condition of the bilinear form b(·, ·) in Xd
k ×Dd

k.

Lemma 3.1. There exists a positive constant α̂ independent of the mesh size h
such that

(3.11) α̂ |||(τ , q)|||2 ≤ a((τ , q), (τ , q))

for any (τ , q) ∈ X0,d
k .

Proof. The commutativity property in (3.7) gives that ∇ · M̂d
k ⊂ Dd

k, which, in

turn, implies that Zd
k is the divergence free subspace of M̂d

k . Hence, X0,d
k ⊂ X0,d.

Now, the coercivity (3.11) follows from (2.10). �

Lemma 3.2. There exists a positive constant β̂ independent of the mesh size h
such that

(3.12) sup
(τ , q)∈Xd

k

b((τ , q)v)

|||(τ , q)||| ≥ β̂ ‖v‖0,2

for any v ∈ Dd
k.

Proof. For any v ∈ Dd
k, it is easy to see that

sup
(τ ,q)∈Xd

k

(∇ · τ ,v)
‖|(τ , q)‖| ≥ sup

(τ ,0)∈Xd
k

(∇ · τ ,v)
‖τ‖H(div)

≥ sup
τ∈M̂d

k

(∇ · τ ,v)
‖τ‖H(div)

.

Now, to show the validity of (3.12), it suffices to prove that there exists a positive

constant β̂ independent of the mesh size h such that for any v in Dd
k, we have

(3.13) sup
τ∈M̂d

k

(∇ · τ , v)
‖τ‖H(div)

≥ β̂ ‖v‖0,2,

which has been established in [15] for RT elements. In a similar fashion, we can
prove the validity of (3.13) for both BDM and BDFM elements. This completes
the proof of the lemma. �

Now, we are ready to establish the well-posedness and error bounds of mixed
finite element approximation.

Theorem 3.3. The discrete problem in (3.6) has a unique solution ((σh, ph) ,uh)
in Xd

k ×Dd
k. Let (σ, u) be the solution of (2.6), then we have

(3.14) |||(σ, p)− (σh, ph)||| ≤ C inf
(τ ,q)∈Xd

k

|||(σ, p)− (τ , q)|||

and

(3.15) ‖u− uh‖0,2 ≤ C
(

inf
v∈Dd

k

‖u− v‖0,2 + inf
(τ ,q)∈Xd

k

|||(σ − τ , p− q)|||
)
.

Moreover, assume that f ∈ Hr(Ω)d and (σ, p, u) ∈ Hr(Ω)d×d ×Hr(Ω)×Hr(Ω)d.
Then we have the error bounds

(3.16) |||(σ, p)− (σh, ph)||| ≤ C hr (‖σ‖r + ‖p‖r,2 + ‖f‖r,2)
and

(3.17) ‖u− uh‖0,2 ≤ C hr (‖u‖r,2 + ‖σ‖r,2 + ‖p‖r,2 + ‖f‖r,2) ,
where r ≤ k+ 1 for RTk and BDFMk+1 elements and r ≤ k for BDMk elements.
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Proof. Existence and uniqueness of problem (3.6) and error bounds in (3.14) and
(3.15) follow from the abstract theory for the saddle-point problem (see, e.g., [6, 10])
and Lemmas 3.1 and 3.2. Since

inf
(τ ,q)∈Xd

k

|||(σ, p)− (τ , q)||| ≤ inf
τ∈M̂d

k

‖σ − τ‖H(div) + inf
q∈Pk

‖p− q‖0,2,

error bounds (3.16) and (3.17) follow from (3.14), (3.15), and the approximation
properties in (3.1), (3.2), (3.9), (3.10), and (3.8). �

The L2 error estimates contained in (3.16) is optimal for both the RTk and
BDFMk+1 approximation, but not for the BDMk element.

Theorem 3.4. Let ((σh, ph) ,uh) be the unique solution of (3.6) using BDMk

element with k ≥ 1. Under the same assumption in Theorem 3.3, we have the
optimal L2 approximation

(3.18) ‖σ − σh‖0,2 + ‖p− ph‖0,2 ≤ Chr(‖σ‖r,2 + ‖p‖r,2 + ‖f‖r,2)
for all r ≤ k + 1.

Proof. For the BDMk elements with k ≥ 1, we have

Md
k = ˆBDM

d

k × Pk and Dd
k = P d

k−1.

Denote the discretization and the interpolation errors by

(Eh, eh) = (σ − σh, p− ph) and (EI , eI) = (σ −Πhσ, p− P ′
hp),

respectively, then the difference between (2.6) and (3.6) yields the following error
equations:
(3.19){

a((Eh, eh) , (τ , q)) + (∇ · τ ,u− uh) = 0 ∀ (τ , q) ∈ ˆBDM
d

k × Pk,

(∇ ·Eh ,v) = 0 ∀ v ∈ P d
k−1.

The commutativity property in (3.7) gives

(3.20) (∇ ·EI ,v) = (∇ · (σ −Πhσ),v) = 0 ∀v ∈ P d
k−1,

which, together with the second equation in (3.19), leads to

(3.21) ∇ · (σh −Πhσ) = 0.

To establish the optimal L2 norm error bounds in (3.18), we use (2.11) with
(τ , q) = (Eh, eh):

(3.22) ‖Eh‖20,2 + ‖eh‖20,2 ≤ C(a((Eh, eh), (Eh, eh)) + ‖∇ ·Eh‖2−1,2).

By the first equation in (3.19), (3.21), and the Cauchy-Schwarz and triangle in-
equalities, we have

a((Eh, eh), (Eh, eh)) = a((Eh, eh), (EI , eI)) + a((Eh, eh), (Πhσ − σh, P
′
hp− ph))

= a((Eh, eh), (EI , eI))− (∇ · (Πhσ − σh),u− uh)

= a((Eh, eh), (EI , eI))

≤ C
√
a((Eh, eh), (Eh, eh))(‖EI‖0,2 + ‖eI‖0,2),

which implies

(3.23) a((Eh, eh), (Eh, eh)) ≤ C(‖EI‖20,2 + ‖eI‖20,2).
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It follows from (3.21), the definition of the H−1 norm, (3.20), the Cauchy-Schwarz
inequality, and (3.8) with r = 1 that

‖∇ ·Eh‖−1,2 = ‖∇ ·EI‖−1,2 = sup
v∈H1

0 (Ω)d

(∇ ·EI ,v)

‖v‖1,2
= sup

v∈H1
0 (Ω)d

(∇ ·EI ,v −Phv)

‖v‖1,2

≤ ‖∇ ·EI‖0,2 sup
v∈H1

0 (Ω)d

‖v −Phv‖0,2
‖v‖1,2

≤ Ch‖∇ ·EI‖0,2.

(3.24)

Combining (3.22), (3.24), and (3.23) gives

‖Eh‖0,2 + ‖eh‖0,2 ≤ h‖∇ ·EI‖0,2 + ‖EI‖0,2 + ‖eI‖0,2.

Now, (3.18) is a direct consequence of approximation properties in (3.1) with q = p
and (3.9) and (3.8) with τ = σ. This completes the proof of the theorem. �

Remark 3.5. For the pseudostress-velocity formulation in [15], similar results to
those Theorems 3.3 and 3.4 can be proved for both the BDM and BDFM elements
in a similar fashion. To ensure the optimal L2 norm bound for the BDM element,
the inequality in (2.7) from [14] is essential.

Remark 3.6. There are several approaches to numerically solve the algebraic sys-
tem resulting in the mixed finite element methods for the Stokes equations. First,
one can eliminate the velocity unknowns by the penalty method to obtain a sym-
metric, positive definite system on the pseudostress and the pressure unknowns,
that may be numerically solved by fast and efficient H(div) multigrid methods (see
[3, 4, 26, 30]). This is similar to, but better than that for the pseudostress-velocity
formulation [15, 17]. Second, one can eliminate the pseudostress and the pressure
unknowns to get a small discrete system involving only the Lagrange multiplier
and the velocity through the hybridization technique (see, e.g., [22, 1]). Third, one
can eliminate the Lagrange multiplier and the pseudostress by the hybridization
technique and using appropriate quadrature rule to obtain finite volume discretiza-
tions on the velocity and the pressure (see [12] and Section 6). For the Navier-
Stokes equations considered in the subsequent section, one can then combine the
approaches mentioned above with various linearization procedures.

4. The stationary Navier-Stokes equations

For the stationary Navier-Stokes equation, the analysis here follows our previous
one on the pseudostress-velocity formulation in [16]. Introducing the pseudostress
as in (2.1), the stationary Navier-Stokes equation may be rewritten in the following
pseudostress-pressure-velocity formulation:

(4.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

ν
(σ + p δ)−∇u = 0,

trσ + d p = 0,

∇ · σ − u · 1
ν
(σ + pδ) = −f .
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Rescaling the stress, the pressure, and the right-hand side by σ/ν → σ, p/ν → p
and f/ν → f , respectively, system (4.1) may be written as

(4.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ + p δ −∇u = 0,

trσ + d p = 0,

∇ · σ − 1

ν
c (σ, p, u) = −f .

where c(σ, p, u) = u · (σ +p δ)−∇ν ·σ. For simplicity of presentation, we assume
that the viscosity parameter is a positive constant in this paper so that

c(σ, p, u) = u · (σ + p δ).

The corresponding variational form of (4.2) and (1.2) is to find

(σ, p,u) ∈ Ŵ 0,3(div; Ω)d × L3(Ω)d × L2(Ω)d

such that
(4.3)⎧⎪⎨⎪⎩

(σ + p δ, τ + q δ) + (∇ · τ , u) = g(τ ) ∀ (τ , q) ∈ Ĥ(div; Ω)d × L2(Ω),

(∇ · σ, v)− 1
ν (u · (σ + pδ), v) = f(v) ∀v ∈ L2(Ω)d.

Remark 4.1. The variational form in (4.3) uses smaller trial spaces Ŵ 0,3(div; Ω)d ⊂
Ĥ(div; Ω)d and L3(Ω) ⊂ L2(Ω) than the Stokes equations for the pseudostress
and the pressure, respectively. By doing so, we can guarantee the nonlinear term,
u ·(σ+pδ), being in L2(Ω)d and, hence, the second equation in (4.3) is well defined.
To see why, note first that the first equation in (4.3) implies that u ∈ H1(Ω); see
Lemma 2.3 of [16]. Since the imbedding theorem implies that H1(Ω) is continuously
imbedded in Lr(Ω) with r ∈ [1, ∞) for d = 2 and r ∈ [1, 6] for d = 3, it then follows
from the Hölder inequality with p = 3 and q = 3/2 that

(4.4) ‖u · (σ + pδ)‖0,2 ≤ C ‖u‖0,6(‖σ‖0,3 + ‖p‖0,3) ≤ C ‖u‖1,2(‖σ‖0,3 + ‖p‖0,3).

In the velocity-pressure formulation of the stationary Navier-Stokes equation
with constant viscosity, rescaling the pressure and the right-hand side by p/ν → p
and f/ν → f , respectively, gives

(4.5)

⎧⎨⎩
1

ν
u · ∇u−Δu+∇ p = f ,

∇ · u = 0.

Let

H1
g(Ω)

d =
{
u ∈ H1(Ω)d

∣∣∣u|∂Ω = g
}
.

The variational form of (4.5) and (1.2) is to find (u, p) ∈ H1
g(Ω)

d×L2
0(Ω) such that

(4.6)

⎧⎪⎨⎪⎩
(∇u,∇v) +

1

ν
(u · ∇u,v)− (p,∇ · v) = −f(v) ∀v ∈ H1

0 (Ω)
d,

(∇ · u, q) = 0 ∀ q ∈ L2
0(Ω).

Under the assumption on the boundary in Section 1.1, the following theorem is
well known (see, e.g., [18, 24]).
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Theorem 4.2. For f ∈ H l−1(Ω)d and g ∈ H l+1/2(∂Ω)d with l = 0, 1, system (4.6)
has solutions, (u, p), belonging to H l+1(Ω)d×H l(Ω). Moreover, if ν > ν0(Ω; f ,g)

1,
then the solution (u, p) is unique.

In the rest of this section, we establish the well-posedness and uniqueness of
system (4.3).

Lemma 4.3. For given f ∈ L2(Ω)d and g ∈ H1/2(∂Ω)d, let

(σ∗, p∗,u∗) ∈ Ŵ 0,3(div; Ω)d × L3(Ω)× L2(Ω)d

be a solution of (4.3), then (u∗, p∗) satisfies (4.6).

Proof. By a standard argument, the first equation in (4.3) implies that

(4.7) ∇u∗ = σ∗ + p∗δ and p∗ = −1

d
trσ∗ in Ω

and that u∗ = g on ∂Ω. In (4.7), taking the trace of the first equation and using
the second equation gives

∇ · u∗ = 0 in Ω,

which yields that (u∗, p∗) satisfies the second equation in (4.6). The second equa-

tion in (4.7) and the fact that (σ∗, p∗,u∗) ∈ Ŵ 0,3(div; Ω)d × L3(Ω) × L2(Ω)d

implies p∗ ∈ L2
0(Ω). Finally, substituting (4.7) into the second equation in (4.3)

shows that (u∗, p∗) satisfies the first equation in (4.6). This completes the proof of
the lemma. �
Lemma 4.4. For given f ∈ L2(Ω)d and g ∈ H1/2+γ(∂Ω)d with 1

2 ≤ γ ≤ 1, let

(u†, p†) ∈ (H1+γ(Ω)d ∩H1
g(Ω)

d)× (Hγ(Ω)/R) be a solution of (4.6), then (∇u† −
p† δ, p†, u†) satisfies (4.3).

Proof. Let (u†, p†) be the solution of (4.6) and let σ† = ∇u† − p† δ, then the first
equation in (4.5) gives

∇ · σ† =
1

ν
u† · ∇u† − f .

The smoothness of (u†, p†) implies that σ† lies in L3(Ω)d×d and that the above
equation holds in the L2 sense. It is then straightforward to see that (σ†, p†,u†) =
(∇u† − p† δ, p†, u†) is a solution of (4.3). �

Theorem 4.5. For given f ∈ L2(Ω)d and g ∈ H1/2+γ(∂Ω)d with 1
2 ≤ γ ≤ 1,

system (4.3) has a solution, (σ, p, u), belonging to Hγ(Ω)d×d×Hγ(Ω)×H1+γ(Ω)d.
Moreover, if ν > ν0(Ω; f ,g), then the solution (σ, p,u) is unique.

Proof. The theorem is a direct consequence of Theorem 4.2 and Lemmas 4.3 and
4.4. �

1Here ν0(Ω; f ,g) is defined by

ν0 = inf{ρ(u0) + (N ‖l(f ;u0)‖V ′ )
1/2

∣
∣
∣u0 ∈ H1

g(Ω)d and ∇ · u0 = 0}

with

V = {v ∈ H1
0 (Ω)d

∣
∣
∣∇ · u0 = 0}, ρ(u0) = sup

v∈V

(v · ∇u0,v)

|v|21,Ω
,

N = sup
u,v,w∈V

(w · ∇u, v)

|u|1,Ω|v|1,Ω|w|1,Ω
, ‖l(f ;u0)‖V ′ = sup

v∈V

ν(f ,v)− ν (∇u0,∇u0)− (u0 · ∇u0,v)

|v|1,Ω
.
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Our mixed finite element approximation is to find a pair (σh, ph,uh) ∈ M̂d
k ×

Pk ×Dd
k such that

(4.8)

⎧⎨⎩ (σh + ph δ, τ + q δ) + (∇ · τ ,uh) = g(τ ) ∀ τ ∈ M̂d
k × Pk,

(∇ · σh, v)− 1
ν (uh · (σh + ph δ), v) = f(v) ∀v ∈ Dd

k.

5. Convergence analysis of Navier-Stokes equations

To analyze the convergence of the finite element approximation, we make use of
the abstract approximation theory of Brezzi, Rappaz, and Raviart [11, 24]. For a
concise presentation of the main theory, see Section 3.3 (Theorem 3.3 and Remark
3.4) in Chapter IV of [24] or Section 4 of [16].

To apply the abstract theory, similar to the velocity-pressure formulation, it is
natural to choose

(5.1) G(ν, φ) =

(
−g,

1

ν
u · (σ + pδ)− f

)
for φ = (σ, p,u), which contains the nonlinear term and the given data. Since the
momentum equation is required to be valid in L2(Ω)d (see (4.3)), we set

Y = H
3
2 (∂Ω)d × L2(Ω)d,

and let Z = Y. Here we assumed g ∈ H
3
2 (∂Ω)d to guarantee the exact solution

(σ, p, u) is in H1(Ω)d×d ×H1(Ω)×H2(Ω)d.
A simple calculation gives that the Fréchet derivative of the operator G with

respect to φ is

(5.2) DφG(ν, φ)[ψ] =

(
0,

1

ν
(u · (τ + qδ) + v · (σ + pδ))

)
for ψ = (τ , q, v).

Let

X = L3(Ω)d×d × L3(Ω)× L3(Ω)d

with the norm

‖(τ , q,v)‖X =
(
‖τ‖20,3 + ‖q‖20,3 + ‖v‖20,3

) 1
2

.

This choice of X yields DφG(ν, φ)[ψ] defined in (5.2) belonging to Z for any ψ ∈ X
if φ = (σ, p,u) is the exact solution of (4.3) and (σ, p, u) is in H1(Ω)d×d×H1(Ω)×
H2(Ω)d.

In the remainder of this section, we define the Stokes solution operator and
estimate the discretization error in the ‖·‖X norm needed in the abstract theory in
subsection 5.1. Subsection 5.2 proves that a unique solution of (4.3) is also a branch
of nonsingular solution. Finally, error estimates for the Navier-Stokes equation are
established in subsection 5.3.
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5.1. The Stokes solution operators. For any (g∗, f∗) ∈ Y, define T : Y → X
by

(5.3) T (g∗, f∗) = (σ, p,u) ∈ X,

where (σ, p,u) is the solution of the Stokes equations in the pseudostress-velocity
formulation

(5.4)

⎧⎨⎩(σ + pδ, τ + qδ) + (u, ∇ · τ ) = g∗(τ ) ∀ (τ , q) ∈ Ĥ(div; Ω)d × L2(Ω),

(∇ · σ, v) = f∗(v) ∀v ∈ L2(Ω)d.

Here the linear forms are defined by

g∗(τ ) =

∫
∂Ω

(n · τ ) · g∗ ds and f∗(v) = −
∫
Ω

f∗ · v dx.

Lemma 5.1. For any (g∗, f∗) ∈ Y, problem (5.4) has a unique solution (σ, p,u) =
T (g∗, f∗) which is in H1(Ω)d×d ×H1(Ω)×H2(Ω)d ⊂ X.

Proof. It is shown in Theorem 2.4 that problem (5.4) has a unique solution (σ, p,u)

∈ Ĥ(div; Ω)d × L2(Ω)× L2(Ω)d. A similar argument as that of Lemma 4.3 yields
that (u, p) ∈ H1

g∗(Ω)
d×L2

0(Ω) satisfies the corresponding Stokes equation and that

σ = −p δ +∇u and trσ + dp = 0.

Now, the H2 full regularity, (u, p) ∈ H2(Ω)d×H1(Ω), (see, e.g., [24]) of the station-
ary Stokes equation implies that (σ, p,u) ∈ H1(Ω)d×d×H1(Ω)×H2(Ω)d ⊂ X. �

Denote by

Xh = M̂d
k × Pk ×Dd

k ⊂ X

the finite element space and define Th : Y → Xh by

(5.5) Th(g∗, f∗) = (σh, ph,uh) ∈ Xh,

where (σh, ph,uh) is the solution of the discrete counterpart of (5.4)

(5.6)

{
(σh + phδ, τ + qδ) + (uh, ∇ · τ ) = g∗(τ ) ∀ (τ , q) ∈ M̂d

k × Pk,

(∇ · σh, v) = f∗(v) ∀v ∈ Dd
k.

The well-posedness, the a priori estimate, and the standard H(div)×L2
0×L2 error

estimates have been done in the previous sections.
With Z = Y, the following condition ((3.38) on p. 306 of [24] or (4.10) of [16])

(5.7) lim
h→0

‖T − Th‖L(Z,X) = 0

implies ((3.37) on p. 306 of [24] or (4.9) of [16])

(5.8) lim
h→0

‖(T − Th)g‖X = 0 ∀g ∈ Y.

The next theorem shows that the operators T and Th satisfy condition (5.8) and
estimates the error bound in the ‖ · ‖X norm.
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Theorem 5.2. For any (g∗, f∗) ∈ Y, let (σ, p,u) = T (g∗, f∗) and (σh, ph,uh) =
Th(g∗, f∗) be the solutions of (5.4) and (5.6), respectively. Then

(5.9) lim
h→0

‖T − Th‖L(Z,X) = 0.

Moreover, assume that (σ, p,u) ∈ Hr(Ω)d×d×Hr(Ω)d×Hr(Ω)d for 1 ≤ r ≤ k+1,
then there exists a positive constant C independent of h such that

(5.10) ‖T (g∗, f∗)− Th(g∗, f∗)‖X ≤ C hr−α
(
‖σ‖r,2 + ‖p‖r,2 + ‖u‖r,2

)
,

with α = d/6.

Proof. The theorem can be proved by using arguments similar to the proof of
Theorem 5.2 in [16] for the pseudostress-velocity formulation. �

5.2. A branch of nonsingular solutions. Let Λ ⊂ (0,∞) be a compact interval.
Given (g, f) ∈ Y, for any (ν, φ) = (ν, (σ, p,u)) ∈ Λ ×X, define F : Λ ×X → X
by

(5.11) F (ν, φ) = φ+ TG(ν, φ).

Consider the following nonlinear problem: find (ν, φ(ν)) ∈ Λ×X such that

(5.12) F (ν, φ) = 0.

The set {(ν, φ(ν))| ν ∈ Λ} is called a branch of solutions of (5.12) if F (ν, φ(ν)) = 0
for ν ∈ Λ and the map ν �→ φ(ν) is a continuous function from Λ into X. If, in
addition, the Fréchet derivative DφF (ν, φ(ν)) of F with respect to φ is an isomor-
phism from X onto X for all ν ∈ Λ, then the branch of solutions {(ν, φ(ν))| ν ∈ Λ}
is called nonsingular. Approximations of (5.12) are to find (ν, φh(ν)) ∈ Λ × Xh

such that

(5.13) Fh(ν, φh) ≡ φh + ThG(ν, φh) = 0.

It is easy to see, by (5.2), that the Fréchet derivative of the operator F with
respect to φ is
(5.14)

DφF (ν, φ)[ψ] = ψ + TDφG(ν, φ)[ψ] = ψ + T

(
0,

1

ν
(u · (τ + qδ) + v · (σ + pσ))

)
for any ψ = (τ , v) ∈ X.

Lemma 5.3. Let (g, f) ∈ Y. Then (σ, p,u) ∈ X is a solution of (4.3) if and only
if (ν, φ) = (ν, (σ, p, u)) is a solution of (5.12) with the operators T and G defined
in the respective (5.3) and (5.1).

Proof. Rewrite problem (4.3) as follows:⎧⎪⎪⎨⎪⎪⎩
(σ + p δ, τ + q δ) + (∇ · τ ,u) = g(τ ) ∀ (τ , q) ∈ Ĥ(div; Ω)d × L2(Ω),

(∇ · σ, v) =
(
1

ν
u · (σ + pδ)− f ,v

)
∀v ∈ L2(Ω)d.
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By the definitions of the operators of T in the previous section and G in (5.1), it is
equivalent to

φ = (σ, p, u) = −T

(
−g,

1

ν
u · (σ + p δ)− f

)
= −TG(ν, φ).

That is, F (ν, φ) = 0. �

Remark 5.4. Similarly, (σh, ph,uh) is a solution of (4.8) if and only if (ν, φh) =
(ν, (σh, uh)) is a solution of (5.13) with the operator Th defined in (5.5).

Theorem 5.5. For (g, f) ∈ Y, assume that ν > ν0(Ω; f ,g). Then (5.12), with
the operators T and G defined in the respective (5.3) and (5.1), has a branch of
nonsingular solutions.

Proof. Let (σ, p,u) be the unique solution of (4.3), by Lemma 5.3, (ν, φ) =
(ν, (σ, p,u)) is a branch solution of (5.12). To prove that (ν, φ) is nonsingular,
i.e., DφF (ν, φ) is an isomorphism from X onto X, it suffices to show that for ev-
ery ω = (ζ, s, w) ∈ X, there exists a unique ψ′ = (τ ′, q′, v′) ∈ X such that
DφF (ν, φ)[ψ′] = ω. By (5.14), this becomes

ω − ψ′ = T

(
0,

1

ν
(u · (τ ′ + q′ δ) + v′ · (σ + p δ))

)
.

By the definition of T , this is equivalent to finding a unique ψ = (τ , q, v) =
(ζ − τ ′, s− q′, w − v′) ∈ X such that
(5.15)⎧⎪⎨⎪⎩

(τ + q δ, ξ + t δ) + (∇ · ξ,v) = 0 ∀ (ξ, t) ∈ Ĥ(div; Ω)d × L2(Ω),

(∇ · τ , z)− 1

ν
(u · (τ + q δ) + v · (σ + p δ), z) = − 1

ν
(f∗, z) ∀ z ∈ L2(Ω)d,

where f∗ = u · (ζ + s δ) +w · (σ + p δ). It is easy to check that the corresponding
velocity-pressure formulation of (5.15) is to find (v, t) ∈ H1

0 (Ω)
d ×L2

0(Ω) such that
(5.16)⎧⎪⎨⎪⎩

(∇v,∇z)− (t,∇ · z) + 1

ν
(u · ∇v + v · ∇u, z) =

1

ν
(f∗, z) ∀ z ∈ H1

0 (Ω)
d,

(∇ · v, r) = 0 ∀ r ∈ L2
0(Ω).

Under the assumption that ν > ν0(Ω; f ,g), it is proved in Chapter IV of [24]
that (5.16) has a unique solution (v, t) ∈ H1

0 (Ω)
d × L2

0(Ω). Since u ∈ H2(Ω)d,
then f∗ − u · ∇v − v · ∇u belongs to L2(Ω)d. By the H2 regularity of the Stokes
equation, we have that (v, t) is in H2(Ω)d × H1(Ω). Now, a similar argument as
that of Lemma 4.4 shows that (5.15) has a unique solution and, hence, (ν, φ) is a
branch of nonsingular solutions. �

5.3. Error estimates.

Theorem 5.6. Let (f ,g) ∈ Y. Assume that ν > ν0(Ω; f ,g) and that (ν, φ(ν)) =
(ν, (σ(ν), p(ν), u(ν))) is a branch of nonsingular solutions of (5.12). Then for h
sufficiently small, there exist a neighborhood O of the origin in X and a unique
C 2 function ν → φh ∈ Xh such that {(ν, φh(ν))|ν ∈ Λ} is a branch of nonsingular
solutions of (5.13) and that φ(ν)− φh(ν) ∈ O for all ν ∈ Λ.
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Moreover, assume that (σ(ν), p(ν), u(ν)) ∈ Hr(Ω)d×d × Hr(Ω) × Hr(Ω)d for
1 ≤ r ≤ k + 1. Then there exists a constant C > 0, independent of h, such that

‖σ(ν)− σh(ν)‖0,3 + ‖p(ν)− ph(ν)‖0,3 + ‖u(ν)− uh(ν)‖0,3

≤ Chr−α
(
‖σ(ν)‖r,2 + ‖p(ν)‖r,2 + ‖u(ν)‖r,2

)(5.17)

for any ν ∈ Λ.

Proof. To show the validity of the first part of the theorem, we simply verify the
assumptions in Theorem 3.3 of [24] or Theorem 4.1 of [16]. First, it is easy to
check that the operator G satisfies the hypothesis (2) of Theorem 4.1 of [16]. The
hypotheses (1) and (4) of Theorem 4.1 of [16] are proved in Theorems 5.5 and 5.2,
respectively. By the definition of the space Z = Y, now it suffices to show

(5.18) DφG(ν, φ) ∈ L(X,Z).

To this end, for (f ,g) ∈ Y, by Theorem 4.5, the unique solution of (4.3), φ =
(σ, p, u), is in H1(Ω)d×d × H1(Ω) × H1(Ω)d which is continuously imbedded in
L6(Ω)d×d × L6(Ω)× L6(Ω)d. By the triangle and Hölder inequalities, for any ψ =
(τ , q, v) ∈ X, we have

‖u · (τ + q δ) + v · (σ + p δ)‖0,2
≤ ‖u · (τ + q δ)‖0,2 + ‖v · (σ + p δ)‖0,2
≤ ‖u‖0,3(‖τ‖0,3 + ‖q‖0,3) + ‖v‖0,3(‖σ‖0,6 + ‖p‖0,6)
≤ ‖u‖1,2 (‖τ‖0,3 + ‖q‖0,3) + ‖v‖0,3 (‖σ‖1,2 + ‖p‖1,2) .

This proves (5.18) and, hence, the well-posedness of the discrete problem in (5.13)
by Theorem 4.1 of [16] or Theorem 3.3 of [24].

Assume (σ(ν), p(ν),u(ν)) ∈ Hr(Ω)d×d ×Hr(Ω) ×Hr(Ω)d with 1 ≤ r ≤ k + 1.
The error estimate in (5.17) follows from Theorem 5.2. This completes the proof
of the theorem. �

6. Cell-centered finite volume scheme

The mixed finite element method based on the pseudostress-velocity-pressure
formulation usually leads to a larger system of algebraic equations than that re-
sulting from the velocity-pressure formulation. To reduce its size, we eliminate
the pseudostress unknowns through the hybridization technique (see [22, 1]). The
reduced system is corresponding to a cell-centered finite volume scheme that pre-
serves local balance of momentum. This hybridization technique was used in [12]
to derive higher-order finite volume methods for second-order elliptic equations.

In this section, without going through derivation, we simply describe a finite
volume scheme resulting from the rectangular RT element of the lowest order. To
this end, for simplicity, assume that Ω is the unit square (0, 1)× (0, 1) ∈ R2. Let
Th be the partition of Ω into sub-squares with the side length h = N−1:

Ω =
N⋃

i,j=1

Kij with Kij = [xi−1, xi]× [yj−1, yj ] = [(i− 1)h, ih]× [(j − 1)h, jh].
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Following the idea of [1, 12], we use interelement Lagrange multiplier to localize
(hybridize) the mixed finite element problem in (3.6) with the lowest order element:

Xd
k ×Dd

k = (R̂T
2

0 × P0)× P 2
0 .

For any w ∈ RT0 and any e ∈ Eh, note that (w · ne)|e ∈ P0(e). Let

Λ0 = {λ : ∀ e ∈ Eh, λe ∈ P0(e)} and R̃T 0 = {w ∈ L2(Ω)2 : w|K ∈ RT0(K)},

then (3.6) can be localized by seeking a (σh, ph,uh,λh) ∈ R̃T
2

0×P0×P 2
0 ×Λ2

0 such
that for all K ∈ Th,

(6.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σh, τ )K + (phδ, τ )K + (∇ · τ ,uh)K

−ν(τ · n,λh)∂K\∂Ω = ν <τ · n,g>∂K∩∂Ω,

(trσh, q)K + d(ph, q)K = 0,

(∇ · σh,v)K = −(f ,v)K ,∑
K∈Th

<σh · n,μ>∂K\∂Ω= 0,∑
K∈Th

(ph, 1)K = 0

for all τ ∈ RT 2
0 (K), q ∈ P0(K), v ∈ P0(K)2, and μ ∈ Λ2

0. The last equation
in (6.1) followed from the second equation of (6.1) with q = 1 and the condition∫
Ω
trσhdx = 0.
The pseudostress variables σh in (6.1) can be eliminated by diagonalizing the

mass matrix resulting in the inner product (σ, τ )K through an appropriate quad-
rature rule. The Lagrange multiplier introduced in the hybridization process may
be eliminated by employing the consistency relations across the interfaces. The re-
duced system is then a cell-centered finite volume scheme for the Stokes equations
in terms of the degrees of freedom on the velocity and pressure. For a detailed pro-
cedure of derivation, see [12] for elliptic second-order partial differential equations.

Here, we simply present our finite volume scheme obtained through this proce-
dure. To this end, for an interior cell Kc = Kij = [xi−1, xi]× [yj−1, yj ] with i, j �= 1
or N , denote its surrounding (left, right, top, and bottom) elements by Kl. Kr,
Kt, and Kb, respectively (see Figure 1). Denote by ũK = (ũ1,K , ũ2,K ) and p̃K the
constant approximations of u and p on the cell K. Then the cell-centered finite
volume scheme is as follows:

(6.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν
(
4ũ1,Kc

− ũ1,Kl
− ũ1,Kr

− ũ1,Kt
− ũ1,Kb

)
+
h

2
(p̃

Kr
− p̃

Kl
) =

∫
Kc

f1dxdy,

ν
(
4ũ

2,Kc
− ũ

2,Kl
− ũ

2,Kr
− ũ

2,Kt
− ũ

2,Kb

)
+
h

2
(p̃Kt

− p̃Kb
) =

∫
Kc

f2dxdy,

ν

2h

(
(ũ

1,Kr
− ũ

1,Kl
) + (ũ

2,Kt
− ũ

2,Kb
)
)

+
1

4

(
4p̃Kc

− p̃Kl
− p̃Kr

− p̃Kt
− p̃Kb

)
= 0.
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Figure 1. Elements

For boundary elements, similar formulae may be obtained. For example, let Kc

be an element whose right edge is on the boundary, and the remaining edges of
the element are interior edges. Denote by Kl, Kt, and Kb the adjacent elements
sharing the left, top, and bottom edges, respectively, then the finite volume scheme
for this cell is as follows:

(6.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν
(
5ũ

1,Kc
− ũ

1,Kl
− ũ1,Kt

− ũ1,Kb

)
+

h

2
(p̃

Kc
− p̃

Kl
)

=
∫
Kc

f1dxdy + 2ν
h2

∫
∂Kc∩∂Ω

g1ds,

ν
(
5ũ

2,Kc
− ũ

2,Kl
− ũ2,Kt

− ũ2,Kb

)
+

h

2
(p̃

Kt
− p̃

Kb
)

=
∫
Kc

f2dxdy + 2ν
h2

∫
∂Kc∩∂Ω

g2ds,

ν

2h

(
−(ũ1,Kc

+ ũ1,Kl
) + (ũ2,Kt

− ũ2,Kb
)
)
+

1

4

(
3p̃Kc

− p̃Kl
− p̃Kt

− p̃Kb

)
= − ν

h2

∫
∂Kc∩∂Ω

g1ds.

The finite volume scheme obtained above may be interpreted as a cell-centered
finite volume scheme for the stabilized Stokes equation{

−νΔu+∇ p = f in Ω,

∇ · u− h2Δp = 0 in Ω
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with boundary condition (1.2). More specifically, integrating the above equations
over the cell Kc = Kij and using the Gauss divergence theorem gives⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ν
∫
∂Kc

∇u1 · n ds+
∫ yj

yj−1
(p(xi, y)− p(xi−1, y))dy =

∫
Kc

f1dxdy,

−ν
∫
∂Kc

∇u2 · n ds+
∫ xi

xi−1
(p(x, yj)− p(x, yj−1))dx =

∫
Kc

f2dxdy,∫
∂Kc

u · n ds− h2
∫
∂Kc

∇p · n ds = 0.

The finite volume scheme is then derived from a standard finite difference approx-
imation of the above equations.

For the stationary Navier-Stokes equations, the derivation of the cell-centered
finite volume scheme is identical. In particular, the stress is solved in terms of the
velocity and the pressure. Hence, the nonlinear term, − 1

ν ũh · (σ̃h + p̃h δ), can be
represented by the velocity and pressure. Let

N(ũh, p̃h) = (N1, N2)
t ≡ − 1

ν
ũh · (σ̃h + p̃h δ).

Then for an interior cell Kc, we have

(
N1

N2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h

2
[ũ

1,Kc
(ũ

1,Kr
− ũ

1,Kl
) + ũ

2,Kc
(ũ

1,Kt
− ũ

1,Kb
)]

−h2

4ν
ũ1,Kc

(p̃Kr
+ p̃Kl

− 2p̃Kc
)

h

2
[ũ

1,Kc
(ũ

2,Kr
− ũ

2,Kl
) + ũ

2,Kc
(ũ

2,Kt
− ũ

2,Kb
)]

−h2

4ν
ũ2,Kc

(p̃Kt
+ p̃Kb

− 2p̃Kc
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A cell-centered finite volume scheme for the stationary Navier-Stokes equations on
an interior cell Kc is as follows:

(6.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν
(
4ũ1,Kc

− ũ1,Kl
− ũ1,Kr

− ũ1,Kt
− ũ1,Kb

)
+N1

+
h

2
(p̃

Kr
− p̃

Kl
) =

∫
Kc

f1dx,

ν
(
4ũ

2,Kc
− ũ

2,Kl
− ũ

2,Kr
− ũ

2,Kt
− ũ

2,Kb

)
+N2

+
h

2
(p̃Kt

− p̃Kb
) =

∫
Kc

f2dx,

ν

2h

(
(ũ

1,Kr
− ũ

1,Kl
) + (ũ

2,Kt
− ũ

2,Kb
)
)

+
1

4

(
4p̃Kc

− p̃Kl
− p̃Kr

− p̃Kt
− p̃Kb

)
= 0.

Schemes for boundary elements can be obtained in a similar fashion.

Remark 6.1. The finite volume schemes derived in this section for the Stokes and
Navier-Stokes equations are identical to the corresponding mixed finite element
methods with numerical integration. Since the numerical integration does not
decrease the order of convergence of the original mixed methods, the finite vol-
ume schemes have the same approximation accuracy as the corresponding mixed
methods.
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