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Spiral Waves in Cardiac Arrhythmias

• Cardiac Arrhythmia refers to abnormal electrical activity in the heart.

Ventricular Tachycardia: (VT)
Reentrant spiral waves create self-sustained

oscillations.

Ventricular Fibrillation: (VF) Spiral
wave breakup leads to unorganized
self-sustained electrical activity.

• VF may lead to sudden cardiac death, which is responsible for > 350,000 deaths/year.
• Alternans is a marker for sudden cardiac death.
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Figure: Cartoon of alternans. Membrane voltage exhibits periodic variation in length of action potential
duration and diastolic interval.

Goals

The aim of this research is to investigate what spectral properties can tell us about the
stability of spiral waves in cardiac arrhythmias, in particular alternans instability.
• Understand and illustrate properties of spiral spectra.
• Relate spectral properties to alternans instability observed in spirals.

The Karma Model

A simple reaction-diffusion cardiac model that exhibits alternans.
Et = γ∆E + 1

τE

(
−E + [E∗ − nM ][1− tanh (E − Eh)]

E2

2

)

nt = δ∆n + 1
τn

( 1
1− e−Re

θ (E − En)− n
)

•E(x, t) describes membrane voltage and n(x, t) provides slower dynamics.
•En, Eh, E∗, δ, τE, τn ∈ R control excitable threshold and fast/slow timescale.
•Re ∈ R controls slope of restitution curve.
Written as a system in polar coordinates, the model is

Ut = D∆r,φU + F (U), U =
(
E
n

)
(r, φ), D =

(
γ 0
0 δ

)
.

Rigidly rotating spiral waves, U∗(r, ψ), are stationary solutions in a rotating polar
frame, (r, φ)→ (r, ψ) = (r, φ− ωt)

0 = D∆r,ψU
∗ + ωU∗ψ + F (U∗).

Spirals tend to 1D periodic asymptotic wave trains, U∞, as r →∞
U∗(r, ψ)→ U∞(κr + ψ) = U∞(ξ), U∞(ξ) = U∞(ξ + 2π).

Wave trains are stationary solutions of
Ut =κ2DUξξ + ωUξ + F (U).
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Types of Spectra

Temporal Eigenvalues, λ, describe temporal growth of perturbations
LU = D∆r,ψU + ωUψ + F ′(U∗)U = λU.

Spatial Eigenvalues, ν, describe the spatial growth of eigenfunctions.
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Figure: Cartoon of essential, absolute, and point spectra. Inserts
show distribution of spatial eigenvalues.

On the plane:
• Point spectrum, Σpt
• Essential spectrum, Σess

– (λ− L) is not Fredholm
– ν ∈ iR

On bounded domain:
• Point spectrum, Σpt
• Absolute spectrum, Σabs

– Limit of discrete spectrum
as domain →∞

– No longer separate
stable/unstable spatial
eigenvalues

Dispersion relations of spiral, λ∗(ν∗), and wave train, λ∞(ν∞), are related via
λ∗(ν∗) = λ∞(ν∞)− ων∞ + iω`, ` ∈ Z, ν∗ = κν∞.

Alternans is Preceded by Meandering

• Known that Hopf bifurcation leads to meandering.
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Figure: Spectra and tip motion of spirals in the Karma Model. Point spectrum calculated from spiral on 5 cm
bounded disk, absolute and essential spectrum from wave trains. Additional parameters: Eh = 3, En = 1,
E∗ = 1.5414, τE = 0.0025, τn = 0.25, γ = 1.1, δ = 0.1.

Unstable Eigenfunctions

Re = 1.4

Unstable	Point	Eigenfunction Rightmost	Point	in	Absolute	Spectrum

Re = 1.4, λ = 0.05 + 72.9iRe = 1.4, λ = 2.6 + 75.9i
Re = 1.2

Unstable	Point	Eigenfunction

Re = 1.2, λ = 0.65 + 80.7i

Figure: Absolute value of E-component of unstable eigenfunctions for radius 5 cm spiral.

• Growth toward boundary in Re = 1.2 unstable eigenfunction.
• Unstable point eigenfunction in Re = 1.4 interacts with essential spectrum and has
global behavior.

• Eigenfunctions in absolute spectrum are localized away from spiral core.

Point and Absolute Spectrum Leads to Planar Alternans
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Figure: Spiral breakup due to alternans in the Karma Model on a 16 cm x 16 cm square with Neumann
boundary conditions. Top row shows Re = 1.2, bottom is Re = 1.4. Color-bar indicates the membrane
voltage. Solutions evolved on fourth-order finite-difference spatial grid using Crank-Nicholson and
Adams-Bashforth IMEX scheme.

Conclusions

• Spiral break up occurs as bands collide and form conduction blocks.
• Form of unstable eigenfunctions shows expansion/compression of spiral bands
associated with alternans.

• Alternans instability likely caused by unstable eigenfunctions in the point spectrum.

Future Work

• Use 1D eigenfunctions to learn about and predict
the shape of instabilities.

• Evaluate contributions to spiral break up from
point and absolute spectrum.

• Determine if Hopf bifrucations are super or
subcritical.

• Analyze case when one or more variables are
diffusionless.

• Investigate alternans instability in other cardiac
models.
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Figure: Alternans in 1D Karma Model.
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