Spiral Waves

= Flow of ions in and out of cardiac cells
creates an electric potential, causing

the heart to beat.

» Spiral wave patterns cause certain
tachycardia rhythms.

» Dangerous rhythms removed with
powerful defibrillators.

Figure: Spiral wave.

The Barkley Model is a reaction-diffusion system for excitable media.
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Parameters a, b, 9, € € R control excitable threshold and fast/slow timescale.

€
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Written as a system in polar coordinates, the model is

U, = DA LU+ F(U), U= (“) (r,¢), D = (é ?;)

U

Rigidly rotating spiral waves, U*(r, 1)), are stationary solutions in rotating polar

frame, (r, ¢) — (r,¢) = (r, ¢ — wt)
0 = DA, U +wU; + F(U).

Goals

The aim of this research is to analyze the termination of pinned spiral waves under
low amplitude forcing which mimics pulses from medical devices [3]|. Steps are:

» Understand and illustrate properties of spiral spectra.
» Center manifold reduction for pinned spirals.
» Dynamic model reduction.

Spectra

Temporal Eigenvalues, A\, describe temporal growth:

LU = DA ,U + wUy + F'(UNU = \U

Spatial Eigenvalues are eigenvalues, v, of the system:

U, =W

W U
W, = —( - D [wU¢+F’(U*)U—)\U]>
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On the plane: On bounded domain:

» Point spectra
« Absolute spectra, Y.

» Limit of point spectra as domain — o0
« Can no longer distinguish stable and
unstable spatial eigenvalues

» Point spectra
» Eissential spectra, e

« (A — L) is not Fredholm
- v € 1R
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Figure: Cartoon of essential and absolute spectra. Inserts show distribution of spatial eigenvalues.

Spectra from Asymptotic Wave Trains

Asymptotic Wave Trains
Us(r,¢0) = Use(hr +4) = U (§),

Stationary solutions of

Uso(§) = Uso(§ + 27)

U, ZIQQDU& + ng -+ F(U)

Using the Floquet Ansatz, U(€) = "V (€), Vaol€ 4+ 2m) = Vio(€), the wave

train eigenvalue problem becomes

(1) AocVie = D (K¢ + Vso)” Vig + (w0s + Vao) Voo + F (Uso) Vio.

Dispersion relation of spiral, \,(vy), and wave train, Ay (Vs ), are related via
Mi(Vi) = Aoo(Vso) — Wl +iwl, L € 7.

» Trace out essential and absolute spectra curves with numerical continuation
« Point spectra requires full curvature of the spiral

Numerical Results, 0 = 0.2

Im(\)
o

== Essential Spectra === Absolute Spectra @ Point Spectra

Figure: Essential, absolute, and point spectra for spiral with parameters 0 = 0.2, a = 0.7,
b= 0.001, e = 0.02. Point spectra from spiral of radius 20.

Results indicate:
= X Dranches meet at oo.
» Point eigenvalues align along >J..

Barkley Model

Results, 0 =0
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Figure: Essential, absolute, and point spectra for spiral with parameters 0 = 0.2, a = 0.7,
b= 0.001, e = 0.02. Point spectra from spiral of radius 20.

» Yes Dranches meet and point eigenvalues cluster at A\, = —1 + 1w.
« Unexpected behavior!

Preliminary Analytic Results
» Using spiral eigenfunctions of the form

Vi(rab:A) = e Vi (ki + ) + O (3) |

-
the spiral eigenvalue problem reduces to exactly (1), except with A, (vy).

» As Ay — —1 +wbw, { € Z, we have v, — 17y, with v € R, v — o0.
» Let £ = vz, a = 1/, and seek eigenfunctions of the form V(z) = (u, w, v)(z),

(W= w
, 5 1 \ W 1
cw = —at fulUso)u + fo(Uso)v — Al AW = 2kw + ul
v = g(v—u+)\*v)
\ W

Using methods from Geometric Singular Perturbation Theory, uw, w — 0, and
we are left with the slow dynamics, given by

i) 0.

wv' = (1

Future Work

« Formalize analytic results for 6 = 0 case.

» Investigate faster and more accurate methods of point eigenvalue calculation.
» Extend numerical and analytical spectral results to pinned spirals.

» Determine which spectra are relevant.

» Investigate additional reaction terms.
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