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My research interests lie in mathematical biology and dynamical systems, specifically in the formation and
stability of spatiotemporal patterns. Motivated by how mathematics can be used to discover and predict
relationships in the natural world, I have applied techniques from dynamical systems and numerical methods
to study patterns related to cardiac arrhythmias, chemical oscillations, and the migration of blue whales.
Summaries of these projects and future directions are below.

1 Summary of Research Projects

Spectral Stability of Spiral Waves: My PhD thesis has focused on using analy-

Figure 1: Rigidly rotat-
ing spiral wave.

tical and computational approaches to understand the dynamics of spiral wave pat-
terns that are observed in cardiac arrhythmias and chemical oscillations. Rigidly ro-
tating spiral waves have constant shape and rotational frequency, and can be framed
as equilibrium solutions in a rotating frame. This setup allows for both numerical
calculation of the waves and a spectral stability analysis of the operator linearized
about the spiral wave. We seek to understand bifurcations from rigidly rotating
spiral waves, and how the spectral properties of these operators are modified by
bounded domains and properties of diffusion. Key findings are summarized below,
with additional details in Section 2.

• Cardiac Arrhythmias and Alternans: Abnormal cardiac electrical activity results in arrhythmias, with
ventricular tachycardia often caused by the electrical activity forming spiral wave patterns. When
the spiral destabilizes, the electrical activity can become chaotic and lead to sudden cardiac death
(SCD). Higher onset rates of SCD have been clinically linked to alternans, a beat-to-beat oscillation in
the action potential duration. Using the two-component Karma Model [1], a simple reaction-diffusion
system known to qualitatively reproduce alternans, we analyzed how alternans rhythms arise spectrally,
their contribution to spiral breakup, and are investigating whether stable alternans patterns exist.

• Line Defects in the Rössler System: The Rössler system qualitatively describes oscillatory interactions
between chemical species, and spiral waves formed in these systems have been observed to exhibit
stationary line defects. It has been hypothesized that these defects emerged from instabilities of the
outer boundary, but has previously not been directly tested [2]. Through a comparison of the full spiral
and boundary spectra, we confirm that that line defects are a result of unstable point eigenvalues from
the boundary.

• Systems with Diffusion-less Components: Theory states that continuous spectra capture the stability
of patterns on infinite domains and proves that eigenvalues of spirals on bounded domains should
accumulate along predictable curves [3]. If all species in the system diffuse, our numerical results
support the theory and predicted convergence. However, if in the limit one or more of the variables
is diffusion-less, as is common in ion channel models, the continuous spectra curves exhibit abrupt
changes and discrete eigenvalues have unexpected accumulation points. We are using techniques from
perturbation theory to investigate the source of the spectral changes.

Time

Figure 2: (Left) Development of alternans in the Karma model, as seen in the changing width of spiral bands, leads
to spiral breakup. (Right) Stationary line defect in the Rössler system.
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A Model for Electrically Excitable Tissue: Due to the dozens of ionic channels that lead to

Figure 3: Voltage traces from experi-
mental (blue) and model (red).

excitable behavior in cardiac cells, conducting experiments on and di-
rect modelling of cardiac tissue are messy. The Cohen Lab at Harvard
University developed isradipine Optopatch Spiking Human Embryonic
Kidney (iOS-HEK) cells, which express only two ionic channels, but
when stimulated, can generate comparable complex electrical spiking
behavior and support traveling waves [4]. In collaboration with Harry
McNamara and Dr. Adam Cohen, we designed a detailed PDE model
for the iOS-HEK cells that reproduces the complex rhythms and dy-
namical transitions observed in experiments [5].

The model output captures how the tissue geometry impacts
the behavior of propagating waves, suggesting that caution needs
to be taken in interpreting results of single cell experiments.
There is a one-to-one relationship between stimuli and voltage
spikes in a single cell, but in spatially extended arrays of cells,
the behavior differs in location near and far from the stimu-
lus.

Migratory Patterns of Blue Whales: As part of the 2018 NSF Graduate Research Internship
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Figure 4: Example simulated track from two-state
model.

Program (GRIP), I started working with Dr. Elliott Hazen
and Dr. Steven Bograd at the NOAA Environmental Re-
search Division on an individual-based movement model of
blue whales in the California current system [6]. Northern
Pacific blue whales are a highly migratory species, spend-
ing winters in Baja California and summer months as far
north as the Oregon-Washington coast, but little is known
about how environmental and prey conditions influence the
migration patterns. Moreover, the population is endangered
and their recovery off the California coast is hindered by in-
creasing ship traffic and changing environmental conditions.
Therefore, understanding drivers of migration and the spa-
tiotemporal distribution of individuals is important for im-

plementing effective conservation policies [7].

We developed a two-state agent-based model, with states describing transit and foraging behaviors. States
are selected based on preferred environmental conditions and prey levels, and associated with each state is
a distribution for step length and turning angle to update whale locations [8]. Both states and locations are
updated every six hours, with ocean conditions simulated from a Regional Ocean Modeling System. The
model accurately captures the northward migration and yearly differences in the spatiotemporal distribution
driven by variations in prey abundance. However, the environmental and prey conditions fail to explain
the southward migration, which has been theorized to be precipitated by bioenergetic demands instead of
external conditions.

To investigate drivers of southward migration, we expanded the two-state model into a four-state model with
additional states representing southward behavior. We tested the impact of prey satiation and proportion of
time foraging on southward migration by incorporating these variables into the state transition probabilities.
Each strategy leads to contrasting migration behavior, and we are working to compare model results with
blue whale observations. The model provides insight into the dynamic behavior of blue whales and opens the
door for investigation into other aspects of blue whale behavior, including communication between individual
whales and testing robustness of foraging strategies to anomalous conditions.
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2 Spectral Stability of Spiral Waves

My research has focused on examining properties of spiral waves found in systems modelled by reaction-
diffusion systems of the form

∂tU = D∆U + F (U), U ∈ Rn, D ∈ Rn×n, (1)

where U is a vector of species which diffuse at rates given by the elements of the diagonal matrix D. Using
the rotational symmetry of rigidly rotating spirals, we consider a polar coordinate frame with origin at the
spiral center and rotating with frequency ω. In this set up, spiral waves, U∗ = U∗(r, ψ), are stationary
solutions of the system

∂tU = D∆r,ψU + ω∂ψU + F (U). (2)

Moreover, in the asymptotic limit as r → ∞, the 2D spiral limits to a 1D periodic traveling wave. That
is, U∗(r, ψ)→ U∞(κr − ωt) = U∞(ξ), where the wave number κ and frequency ω are selected by the spiral
through a nonlinear dispersion relation. Both spiral waves and asymptotic wave trains are numerically
calculated by phrasing them as equilibrium solutions and using Newton’s Method.

Stability is analyzed by examining the spectrum of the operator L∗ created by linearizing (2) about the
spiral wave solution

L∗V = D

(
∂rr +

1

r
∂r +

1

r2
∂ψψ

)
V + ω∂ψV + F ′(U∗)V

and considering the resulting eigenvalue problem L∗V = λV for eigenvalues λ ∈ C. When the spiral is set on
an unbounded domain, stability properties are captured by the continuous essential spectrum and discrete
eigenvalues of the point spectrum. On bounded domains, discrete eigenvalues converge to asymptotic limits
given by the absolute spectrum as the domain size tends to infinity [9]. The main portions of my thesis
involve studying the essential, absolute, and point spectra to investigate instabilities observed in rigidly
rotating spiral waves.

Unexpected Spectral Behavior in Systems with Diffusion-less Components: Many reaction-
diffusion systems describing biological systems, such as ion channel models, have one or more species

Figure 5: Spiral spectra for δ > 0 and δ = 0.

which do not diffuse. Often, unphysical diffusion is
added to these components, but the effect this addi-
tion has on the spectral properties has not been stud-
ied. We test the impacts of removing diffusion from
one species in the Barkley model, a two-component
reaction-diffusion system of the form

ut =∆u+ f(u, v) (3)

vt =δ∆v + g(u, v)

where u = u(x, y, t), v = v(x, y, t) and v diffuses at the
slow rate of 0 < δ � 1. Numerically, as δ → 0 we find
that the continuous spectra of a spiral wave solution changes from having infinite to finite limits, with the
change occurring sharply at δ = 0 (Figure 5). Furthermore, when δ = 0 the point eigenvalues converge to
end points of the essential spectrum instead of the predicted absolute spectrum.

The continuous spectra depend only on the far-field dynamics and are computed by considering solutions of
the form V (r, ψ) = eνrV∞(κr−ψ), V∞(ξ+ 2π) = V∞(ξ) to the eigenvalue problem in the limit that r →∞,
i.e. V∞ are periodic solutions of

λV = D (κ∂ξ + ν)2 V + ω∂ξV + F ′(U∞)V (4)

[3, 9, 10]. The essential spectrum is characterized by setting ν = iγ, γ ∈ R in (4), and along the curves
|γ| → ∞. Dividing (4) by γ2 and defining α = 1/γ, we use methods from perturbation theory to analyze
how the eigenfunctions and eigenvalues change as α→ 0. The results are summarized in the theorem below.
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Theorem 1. Consider a spiral wave solution U∗(r, ψ) with associated asymptotic wave train U∞(ξ) to a two-
component reaction-diffusion system of the form (3), and assume the linearization gv(U∞(ξ)) is constant.
Then, when δ = 0, the essential spectrum limits to λ0 = gv(U∞)+iωn, n ∈ Z as |γ| → ∞. Moreover, around
this limit point, we have the following expansions for the eigenvalues and eigenfunctions, where α = 1/γ

u(ξ;α) = α2fv(U∞(ξ))einξ +O(α3)

v(ξ;α) = einξ + αeinξ +O(α2)

λ(α) = λ0 +
α2

2π

∫ 2π

0
gu(U∞(s))fv(U∞(s))ds+O(α3).

A key outcome from the analysis is that periodicity of the eigenfunctions enforces the finite limit points,
with the specific values selected by the v-equation.

Ongoing Research: Theorem 1 provides insight into the shifting limits of essential spectrum, but it is
still unclear what causes the additional observed spectral changes. We are currently extending the above
methods to learn about the unexpected convergence of point eigenvalues.

Period-Doubling Instabilities in Spiral Waves: Alternans and line defects can be considered period-
doubling instabilities as new spiral wave must undergo two rotations before returning to the original state.
Despite similarities in temporal behavior, we find the mechanisms driving the instabilities are quite different.
Using the above framework, we compute the spectra of rigidly rotating spiral waves formed in the Karma
and Rössler models at the onset of instability. The focus is on bounded domains where the spiral spectrum
is a union of eigenvalues originating from the core region, asymptotic wave trains, and outer boundary, but
the essential spectrum also plays a key role in determining the shape of point eigenfunctions [11].
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Figure 6: Spectra and unstable point eigenfunc-
tion for the (left) Karma and (right) Rössler
models.

In the Karma model, we find that the essential spec-
trum destabilizes first, followed by a complex-conjugate pair
of eigenvalues with imaginary part near 3ω/2. Alternans
and meandering appear as the eigenvalue pair becomes un-
stable. Moreover, the eigenvalue pair crosses the essen-
tial spectrum, meaning that to first order, the associ-
ated eigenfunction is given by V (r, ψ) = eiγrU ′∞(κr − ψ)
[11]. The unstable eigenfunction shape, and hence form
of the instability, is dominated by the derivative of the
wave train, which is highest at wave fronts and backs.
Therefore, the growing and shrinking bandwidth associated
with alternans emerges from this interaction of the point
eigenvalues with the continuous spectrum, and the single
pair of eigenvalues suggests the instability is due to the
core.

In contrast, results from the Rössler system show that an infinite number of point eigenvalues with imaginary
parts at nω/2 destabilize, followed by branches of essential spectrum. Localization of the eigenfunctions near
the boundary, and the infinite number of point eigenvalues is indicative of instabilities from the boundary
conditions, as was hypothesized in [2].

To further test contributions from the core and far-field in the instabilities, we formulated the time periodic
1D asymptotic wave trains on a half-line as a two-dimensional spatiotemporal pattern. This pattern has the
same asymptotic wave trains and outer boundary condition as the spiral, but does not contain a core.
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Figure 7: Rössler system

Comparing the spectra of the far-field and full spirals, the absolute spec-
trum align as expected in each system. Both sets of spectra in Rössler
contain the eigenvalues responsible for the line defect instabilities, indicat-
ing the instability is caused by the boundary. Alternans eigenvalues are
only present in the full spiral, further justifying alternans emerge from the
core.

Ongoing Research: Line defects emerge in a supercritical bifurcation, but
this property is unknown for alternans. We are working to determine if stable
alternans patterns exist by using symmetry properties of the spiral to calculate
the bifurcating spiral as a 3D pattern formulated on a disk and periodic in
time.

3 Future Research Directions

Pattern Formation and Stability in Reaction-Diffusion Systems: There are two natural directions
to broaden my thesis work on spiral waves. The first is to extend the results from qualitative systems
to medically applicable settings by considering more realistic models and tissue properties, and there are
several questions that can be investigated here. For example, is the interaction of the point and essential
spectrum that creates alternans in the Karma model responsible for alternans across all systems? With
the added dynamics in realistic models also comes increased complexity and number of variables, making
full 2D spectral calculations computationally expensive. If the continuous spectrum can be attributed to
formation of alternans, the 1D computation of the essential spectrum provides a more tractable tool for
analysis. Additionally, spiral tips are known to pin to defects in the cardiac tissue, leading to the question
of how the spectral properties are impacted by an inhomogeneous material.

A second direction is to look at mechanisms for controlling spiral waves and the arrhythmic patterns they
induce. In recent years, there have been a number of methods proposed to terminate arrhythmias with
external forcing from a series of electrical pulses [12], but there is no formal understanding of when these
methods effectively work. By considering how external forcing impacts the stability of spirals in qualitative
and then realistic models, I hope to provide the foundation for a rigorous explanation of these methods.

Furthermore, the numerical and analytical techniques that I have applied in my thesis work can be extended
to patterns formed in reaction-diffusion systems across a wide variety of applications. I am interested in
pursuing additional problems in pattern-forming systems in biology, social systems, and ecology.

Investigating Animal Movement with Agent-Based Models: In addition to exploring drivers of
southward migration for blue whales, I am interested in testing environmental factors that can be used as
a proxy for prey and using satellite data as input. Although prey is a key driver, there is currently no
way to measure prey density across wide spatial areas and instead simulated data is relied upon. Using
measurable drivers and current satellite observations would increase the model usefulness by allowing for
real-time predictions of whale distributions. Moreover, I would like to test how the seasonal distributions
and migrations will be altered with climate change predictions and other anomalous conditions.

The blue whale model highlights the utility of agent-based models to test drivers and understand spatiotem-
poral distributions of migratory and dynamic animals, both in the marine and terrestrial settings. I want
to continue using techniques from agent-based models to investigate questions related to ecology and how
systems will respond to a changing climate.
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