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MARKOV RANDOM FIELD MODELS OF 
MULTICASTING IN TREE NETWORKS 

KAVITA RAMANAN * ** AND 
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PARTHA MITRA,* Bell Laboratories, Lucent Technologies 

Abstract 

In this paper, we analyse a model of a regular tree loss network that supports two types 
of calls: unicast calls that require unit capacity on a single link, and multicast calls that 
require unit capacity on every link emanating from a node. We study the behaviour 
of the distribution of calls in the core of a large network that has uniform unicast and 
multicast arrival rates. At sufficiently high multicast call arrival rates the network exhibits 
a 'phase transition', leading to unfairness due to spatial variation in the multicast blocking 
probabilities. We study the dependence of the phase transition on unicast arrival rates, 
the coordination number of the network, and the parity of the capacity of edges in the 
network. Numerical results suggest that the nature of phase transitions is qualitatively 
different when there are odd and even capacities on the links. These phenomena are seen 
to persist even with the introduction of nonuniform arrival rates and multihop multicast 
calls into the network. Finally, we also show the inadequacy of approximations such as 
the Erlang fixed-point approximations when multicasting is present. 

Keywords: Multicasting; unicasting; broadcasting; Cayley trees; Bethe lattice; loss 
networks; blocking probabilities; phase transitions; Erlang fixed-point approximations; 
reduced load approximations; statistical mechanics; spin models; hard core models; 
symmetry breaking 
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1. Introduction 

In this paper, we present and analyse a model of multicast and unicast calls arriving at an 
idealized loss network which has the form of a symmetric tree. 

Multicasting arises in both queueing and loss networks. Instead of having a simple end-to- 
end connection, a transmission is made to a group of individuals from a single site. An example 
of this in the loss network setting is a conference call. In a queueing setting this arises, for 
instance, when multiple copies of a message on the Internet are broadcast from one person to a 
number of sites via a mailing list distribution. In recent years there has been a growing interest 
in multicasting applications that require reliable data delivery such as software distribution and 
news broadcasts. This has given rise to several interesting problems. One major problem is the 
issue of how to construct connections between individuals in a way that makes communication 
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Markov random field models of multicasting in tree networks 59 

efficient and reliable and minimizes demands on network resources. Much effort has been 

expended on this [1], [6], [16]. Before this can be answered, however, we need to be able 
to analyse network performance in the presence of multicast calls, a task that is considerably 
more complex than the performance analysis of a purely unicast network. In this paper we 

study performance in the context of a symmetric loss network in the form of a tree. This is 
a very simple network which nevertheless exhibits interesting behaviour, and raises questions 
about the performance analysis of more complicated networks using traditional techniques and 

approximations. We expect that the insight gleaned here will be useful in more general contexts, 
especially in view of the fact that many of the qualitative properties observed in the case of a 

symmetric network persist even when asymmetry is introduced. 

A general loss network without controls can be described as follows. Let J be the finite 
collection of resources (or links) in the network, and C = {Cj, j E J} where Cj is the capacity 
of resource j. Let R denote the finite set of possible call (or customer) types in the network. 
Calls of each type r E R arrive as a Poisson process of rate Vr and have identically distributed 
holding or service times that we assume, without loss of generality, to have mean 1 (see [5]). 
Each call of type r requires capacity Ajr from resource j E J for the duration of its holding 
time. If one or more of the resources (links) j for which Ajr > 0 does not have sufficient free 
capacity to carry the call of type r, then the call is blocked and considered lost. Otherwise the 
call is accepted. All arrival processes and holding times are assumed to be independent of one 
another. One of the standard measures of performance for a loss system is the probability that 
a call is blocked or lost (the loss, or blocking probability). Loss networks have been widely 
studied, as models of circuit-switched and ATM networks, and in other contexts. Excellent 
introductions to this general model are found in [13] and [17]. 

We confine our attention in this paper to a special kind of symmetric loss network with a 
regular tree structure. Let Too be an infinite tree with q + 1 edges emanating from each node. 
Let SL be the finite spherical subtree of radius L which consists of a single central node and all 
nodes no more than a distance L from it, where the distance between two nodes is the minimum 
number of edges in any path connecting the two nodes. There are q + 1 edges emanating from 
each node in SL except the terminal nodes, which are attached to just one edge. We assume 
that each edge has the same capacity, C. We let E8(T) denote the set of edges in a given tree T 
and use 8 (t) to denote the set of edges that are incident with the node t. For each node t E T, 
we define XA(t) := {t' E T : tt' e 8(t)} to be the set of immediate neighbours of t. We allow 
two types of calls in the network. Single link calls, requiring capacity on just a single edge, 
arrive at each edge as a Poisson process of rate k. Single link calls connect two neighbouring 
nodes. Multicast calls, on the other hand, are centred at a node, and connect that node to all 
of its immediate neighbours. Thus a call centred at an internal node t e SL requires capacity 
on each of the q + 1 edges in JN (t), while a call centred at a terminal node requires capacity 
on just one edge. We assume that multicast calls arrive at each node t as a Poisson process of 
rate vt = v. We will assume that all calls require just a single unit of capacity on each edge 
of their connection. Throughout this paper we will be concentrating on assessing the blocking 
probabilities for large spherical tree networks. Much of the treatment below can be applied 
in the more complex multirate setting, but in order to clarify the presentation we do not do so 
here. 

Although the tree network that we have described here is clearly unrealistic, it is nevertheless 
a useful tool for studying some of the behaviours that multicasting might introduce to a loss 
network. We show below that multicasting can introduce unfairness in the symmetric spherical 
tree that we study, as the blocking probabilities seen by the same call types at different nodes 
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60 K. RAMANAN ETAL. 

may vary considerably. These differences are a consequence of a phase transition effect that 
arises when the arrival rate for multicast calls is sufficiently high and that of unicast calls is 
sufficiently low. Thus we observe that the presence of unicast calls assists in maintaining 
fairness and homogeneity of the blocking probabilities in the system. In addition, we study 
the trade-off between unicast and multicast call arrival rates for a given fixed unicast blocking 
probability. Finally, we also shed some light on approximations of networks with multicasting. 
A commonly made assumption when calculating approximate blocking probabilities is that 
resources (edges or links) behave as though they are blocking independently of one another. 
This assumption underpins approximations such as the Erlang fixed-point approximation, also 
known as the reduced load approximation, and refinements of it-approximations that have been 
widely and very successfully used, even where it is clear that the independence assumption does 
not hold. There is now considerable theoretical justification for the use of these approximations 
(see e.g. [13] for details). However, it seems that when applied to multicast networks, although 
the approximation may still be very good for low values of the multicast arrival rate, it may 
considerably underestimate the point at which phase transition occurs, and cannot be applied 
directly beyond that point. Karvo et al. [10] have also applied the reduced load approximation 
to a multicast network, and after comparing it with simulations comment that it performs worse 
at higher values of the arrival rate. 

The special structure of the tree network greatly simplifies the study of these questions, since 
the removal of any single edge from the tree splits it into two disjoint subgraphs. This in turn 
means that we can very easily develop recursions that give us the exact blocking probabilities. 
The recursions that we obtain in this paper for the blocking probabilities are related to those given 
in [22] and are given in the form developed in the statistical mechanics literature (see e.g. [2]). 

Kelly [12], [13] previously considered the purely multicast tree network model for C = 1 and 
obtained a recursion which gives the probability of a call being accepted. An earlier paper by 
Spitzer [18] also gives results for tree networks that apply to the C = 1 case. Zachary [20], [21] 
analyses the more general tree network, which includes as a special case the model considered 
here with C 

• E U {oo}, but k = 0 (i.e. the pure multicast network with no unicast calls). In 

particular, given a homogeneous Markov specification on the Cayley tree, in [20, Theorem 4.1] 
Zachary establishes a one-one correspondence between Markov chains associated with that 

specification and solutions to an associated recursion problem, which is related to recursions 
considered in this paper. Georgii [8] serves as a good introduction and overview of some of 
these earlier results. More recently, van den Berg and Steif [19] obtain results for general 
bipartite graphs, but again they apply only to the equivalent of the C = 1 and 'k = 0 case in 
our model. Louth [14] has studied a related model on a square lattice, and van den Berg and 
Steif also applied their results to the square lattice (again under a condition equivalent to the 

requirement that C = 1 and k = 0). Brightwell and Winkler [3], [4] have applied the methods 
of graph theory and combinatorics to the tree network with the equivalent of C > 1 and X = 0. 
Observe that in all cases, the conditions placed on these models previously considered in the 
literature are equivalent to assuming that there is no unicast traffic in the network. 

In Section 2, we introduce the basic model and provide an explicit expression for the 
stationary distribution on a finite tree. In Section 2.1, we derive a recursion to calculate 
the normalization constant, and in Section 2.2, we provide expressions for the unicast and 
multicast blocking probabilities. In Section 3, we study these quantities for the collection of 
nodes located deep within a large network. In Sections 3.1 and 3.2, we calculate the stationary 
distribution and blocking probabilities for these core nodes. In Section 3.3, we specialise to the 
case C = 1 and study the trade-offs between unicast and multicast arrival rates. In Section 3.4, 
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Markov random field models of multicasting in tree networks 61 

we consider the case C = 2, and comment on the general C case in Section 3.5. We analyse 
the Erlang fixed-point approximation for this network in Section 4 and show that it provides an 
inadequate description of the network when multicasting is present. In Section 5, we show that 
phase transitions persist even for generalizations of the model that allow multihop multicast 
calls and heterogeneous arrival rates. In contrast, as discussed in the conclusions in Section 6, 
it is conjectured that heterogeneity destroys phase transitions for integer lattice networks [19]. 

2. Model description 

As explained in the introduction, we consider a loss network that has the structure of a 
spherical Cayley tree (see, for example, Figure 2 below). The radius of such a tree is defined 
to be the distance (or number of edges) between the central node and any terminal node. The 
nodes in a tree can be divided into even and odd lattices in the following fashion. Designate 
an arbitrary node as being 'even'. Then all nodes at an even distance from it belong to the 
even lattice, and those at an odd distance from it belong to the odd lattice. For a finite tree, the 
reference node is often taken to be one of the terminal nodes. 

The resources in the network T are its edges 8 (T), each of which has capacity C. Note that 
the capacity C may also be even or odd. The total number of types of calls in any Cayley tree 
T is given by MT := IT I + 18(T)I, comprising multicast calls that arrive at each node t with 
Poisson rate v (and require unit capacity from each edge incident to that node), and unicast 
calls that arrive at an edge with Poisson rate X (and require unit capacity from that edge for the 
period of its holding time). Let Z := {0, 1 ...., C}. The set of feasible configurations on T 
(subject to the blocking constraint) is given by 

O2 := {n E 
•T 

: nt, + nt + ntt, < C for every t', t E T, t' E N(t)}. (2.1) 

The dynamics of the model can then be described by a Markov process n(s), where for each s e 
[0, 9o), n(s) := {nt(s), ne(s), t E T, e e 8(T)} E 2T and nt(s) and ne,(s) are, respectively 
the random variables whose distributions describe the number of multicast and unicast calls in 
progress at node t and edge e at time s. Under the assumptions stated above, it is well known 
[13] that the process n (s) has a stationary distribution 7r, which has the truncated product form 

1 Vnt h ne 
7r(n) = H-y 

nt- nnH 
fnET, (2.2) 

Z 
tenT et (T) 

where Z, is the normalizing constant 

z= > ZH nt+ H ne (2.3) 
nE2 tET tET eEE(T) 

e 

2.1. Recursion relation 

As discussed above, we have an explicit expression (2.2) for the stationary distribution 
of interest. However, this expression is not always very useful because the calculation of the 
normalization constant in (2.3) often becomes infeasible for networks of realistic size. Note that 
the stationary distribution w defines a Markov random field on T (see [22] for a discussion on 
the connection between loss networks and Markov random fields). Therefore, not surprisingly, 
analogous problems of calculating normalization constants of the form (2.3) often arise in 
statistical mechanics in the calculation of Gibbs measures for Markov random fields. From 
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62 K. RAMANAN ETAL. 

root node 

FIGURE 1: A rooted (2,3) Cayley tree. 

the statistical mechanics perspective, the network model described above (with X = 0) can be 
interpreted as a 'spin model' on the Cayley tree with hard constraints [2], [15], and is analogous 
to the hard-core models studied in [19]. Given a tree T, and n E T, the weight of the 
configuration n for this model takes the form 

W(n) := Hg(nt) h(nt, nt, nt), 
tET tt'E&9(T) 

where 

Vi ;k 
g(i) := h(i, j, k) := x(C - (i + j + k)), 

i!' 'k! 
and 

x(X : 0 if x < 0, 

1 otherwise. 

The weight is proportional to the probability of a configuration. The normalization constant 
defined in (2.3) can be expressed in terms of the weight as Z, = EnEn, W(n), and is referred 
to in the physics literature as the partition function. 

In order to simplify the calculation of the stationary distribution, we introduce another 
subgraph Tm, which we refer to as a rooted (q, m) Cayley tree. The graph Tm is a tree of size 
m which comprises a distinguished node or root O, internal nodes, and terminal nodes that 
are a distance m from the root O. The distinguished node has q edges emanating from it, the 
terminal nodes have just one, and all other nodes are incident to q + 1 edges (see Figure 1). 
(We will also use Tm to denote the set of nodes of this finite subgraph.) In order to derive a 
recursion relation which characterizes the stationary distribution, we exploit the property that 
the removal of any internal edge splits the tree Tm into two disjoint trees. Let 2m := 2Tm 
denote the set of feasible configurations on the tree Tm as defined in (2.1). For i e Z, we define 
Zm (i) to be the weighted sum of all feasible configurations in Tm that have i multicast calls at 
the root node O. More precisely, 

V nt 
Xnne 

Zm(i) := n e n!tn 
e- 

nEam:no=i tETm eEE(Tm) " 
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Markov random field models of multicasting in tree networks 63 

Then the configuration vector (Zm+l (i), i E Z) for the tree Tm+l can be expressed in terms of 
that for Tm as follows: 

i 
C-i 

Xj 
C-i-j q 

Zm+1(i)-i! 
• 

LJ j Zm(k) . (2.4) 
j=0 k=O 

Since a spherical tree of radius L can be decomposed into a central node with q + 1 edges, and 
q + 1 rooted trees each of size L - 1, the normalization constant (or partition function) Z, for 
the tree SL is given by 

C 

Z, = ZrZ(i), (2.5) 
i=0 

where 

iC-i 
jC-i-j q+1 

Zr 

r(i)-•' 

;,- 1= 

=0 

ZL-1(k)) (2.6) 
j=0 k=0 

Thus for a finite spherical tree SL, given boundary conditions for the external nodes, the 
partition function Z, can be calculated from the iteration (2.4) and expressions (2.5) and (2.6). 
Free boundary conditions correspond to setting 

Vi 
Zo(i) = , 

for i = 0, ..., C. The problem of computing the stationary distribution 7r on a finite tree T is 
thus reduced to that of analysing the recursion relation (2.4). 

2.2. Blocking probabilities 
In this section we derive expressions for the stationary blocking probabilities in SL, the 

spherical tree of radius L. 
We begin with the stationary unicast blocking probabilities. Let s be the central node, s' a 

neighbouring node and aL be the probability that a unicast call arriving at the internal edge 
e = ss' is blocked. Removal of the internal edge ss' partitions the tree into two rooted trees, 
one of size L, with root s, and another of size L - 1, with root s' (see Figure 2). Then the 
weight of a configuration with i multicast calls at node s, j calls at node s' and k unicast calls 
on ss' is 

-ZL(i)ZL-1IQ) k! 

provided i + j + k < C. The probability of call acceptance on the edge ss' is the weighted sum 
of configurations that have one unit of free capacity on the edge ss' divided by the weighted 
sum of all configurations. Therefore, 

1 Y 
(Xk/k!) 01-i=k 01j= 

ki 
ZL(i)ZL-1(j) 

1 -orL - 
= 

(2.7) e 
=0(Xk/k!) IC-k O-k-i ZL(i)ZL-1(j) 

Now consider the stationary multicast blocking probability, fit say, for a call arriving at the 
central node s. Since the node s is central, the spherical Cayley tree can be partitioned into the 
central node s with q + 1 edges emanating from it, and q + 1 rooted Cayley trees of size L - 1, 
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I 
SI 

S 

FIGURE 2: A spherical Cayley tree with radius 4 (q = 2). 

each having as its root one of the nodes adjacent to the node s. Note that if there are i multicast 
calls at node s, then there can be at most C - i unicast calls on each edge emanating from it; 
and if there are then j unicast calls on the edge ss', then there can be at most C - i - j multicast 
calls at node s'. Hence, the weight of a configuration with i multicast calls at node s is 

C-i C-i-J q+1 

i k-ci-j 
ZL-l(k)) 

j=0 k=0 

Consequently, 

L i/0i!) (=O- 
--k=0 

ZL-1(k))q+l 
E- 

. 
(2.8) 

1 - 

C=0 (pi/i!)(LC=l 

(XJ/j!) LCi ZL- (k))+ 

/ -i=O :,l / ?jEO J 

/j/-.k=0 ZL-1 
(k))q+l 

Related expressions for other networks can be found in [22]. 

3. Large networks 

In this section, we examine call distributions and blocking probabilities for the collection of 
nodes that are located deep within the core of a large network. This collection of deep nodes 
in a large spherical Cayley tree is often referred to as the Bethe lattice. In Sections 3.1 and 3.2, 
we study the limit of the recursion and blocking probabilities described in Sections 2.1 and 2.2 
respectively. In Sections 3.3 and 3.4, we consider the special cases of C = 1 and C = 2, 
where some analytical results can be obtained. We present numerical results for higher C in 
Section 3.5. 
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3.1. Limit of the finite tree stationary distributions 

In Section 2.1, we showed that given a boundary condition Zo, we can use the recursion (2.4) 
to calculate the stationary distribution r on any spherical network. Insight into the stationary 
distribution for large networks can be obtained by analysing properties of the recursion (2.4) 
in the asymptotic limit as m oo. 

For i = 1, 
.... 

C, and m > 0, define 

Zm (i) 
(i := and m (m(1) .. m(C)). Zm (0) 

(Note that ?m is well defined since Zm (0) is always strictly positive for any m.) We can then 
express the recursion (2.4) in the more convenient form 

m+1 = 
4V'1WX(m), 

(3.1) 

where for e 
Rc+, 

the two parameter family of mappings v, + : c 
+ 

I v , , > 0, is 
defined by 

4v,(kI( =) = (, 
gv4(•) 

, ( ... I4(.)), such that for k = 1, ..., C, 

vk 
\C-k (/i!)[l 

- 
k-i Sv,h E, =0 + .(3.2) 

k k! =c /i!)[1i + EC- (j)](3.2) 

We will refer to the mappings 4v,k as random field maps, to differentiate them from the Erlang 
fixed point maps f introduced in Section 4. For the case X = 0, related maps associated with a 
general homogeneous Markov specification can be found in [20, p. 899], [21, (2.11)] and [22]. 

Suppose RC is endowed with the usual Euclidean metric and define the compact subset 
K C IRC to be the Cartesian product of the sets [0, vi/i!], i = 1,..., C. Observe that 

Svx(RC) C (Kb) and the functions 4)v, have continuous partial derivatives with respect 
to ?(j), j = 1,..., C. This shows that there exists a continuous function g(v, X) : 2 2 
that is nondecreasing in v with g(0, 0) = 0, which satisfies 

IV4vx(o)- 
_<( 

)l g(v, )OII - 111. 

Let S C IR2 be the open set defined by {x e R2 : g(x) < 11. This implies the following 
theorem, which is related to results of Zachary [20, Theorem 4.2], who showed that there exists 
at least one fixed point to the related map in [20], which is equivalent to the case when X = 0 
here. 

Theorem 3.1. Let Iv'? : IRC -- JcR, v, X > 0, be the family of mappings defined in (3.2), 
and let S C R2 be the associated set defined above. Then for any (v, X) E S, the equation 
4Iv,X(?) = = has a unique solution xv'k E Kv. Moreover, given any initial condition ?o E 

RC, the sequence defined iteratively by In := IvX(?n-1) converges to xv,' and 

lne+l 

- x' |II < g(V I|n - 1 
n+1II. i1 - g(v, ) 

Proof The metric space JRC is complete, and for every v > 0, K( is compact. Moreover, 
the fact that the mappings CV'h are Lipschitz continuous with constant g(v, X) shows that the 
mapping v,. : K( 4 K is strictly contractive on S. The result is then a simple consequence 
of the Banach fixed-point theorem [23, Theorem 1.A]. 
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Theorem 3.1 indicates that for small enough v and k, the sequence of iterates of the map 
(Dv,X has a unique limit that is independent of the initial condition. Consequently, for such 
values of v and X the marginals of the stationary distribution at nodes in the core of sufficiently 
large networks would be almost identical. However, increasing v or k can give rise to phase 
transitions, defined here to be the existence of v, k for which the sequences of iterates of 

v,'X starting at different initial conditions have multiple limit points. Phase transitions destroy the 
spatial homogeneity of the stationary distribution at the core. For a given k, we denote the 
lowest value of v at which a phase transition occurs by vpt (k). As we see from the discussion 
below, for C = 1 the greater the value of k, the greater the value of vpt (k). These phenomena 
are illustrated in more detail for the cases C = 1 and C = 2 in Sections 3.3 and 3.4 respectively. 

Remark 3.1. It is possible to establish a rigourous correspondence between the fixed points of 
the random field maps Iv,k and Markov chains on the infinite tree T that are invariant to tree 
isomorphisms (as defined in [20, p. 895]) or, equivalently, simple invariant Gibbs measures on 
Q2T, the set of feasible configurations on T (see [3, Definition 3.7]). The case k = 0 can be 
deduced from [3], [20]. The proof for the case X > 0, however, is more involved and requires 
the introduction of notation and concepts not central to this work. Hence, we defer the details 
of the proof to a subsequent paper. 

3.2. Limit of the blocking probabilities 

Recall the expression (2.7) that characterizes c L the stationary unicast blocking probability 
of an edge comprising a central node and its neighbour in SL, the spherical Cayley tree of radius 
L. Define ae to be the limiting probability as L -+ 0 o0, so that ae provides an approximation 
for the blocking probability of edges that are deep in the interior of a large Cayley tree network. 
Similarly, recall from (2.8) that 

sL 
is the probability that a multicast call is blocked from the 

central node s of SL, and let ?s be the limit of fsL as L -+ o0. 

Lemma 3.1. For (v, k) such that v < vpt(k), let (* = (*(v, k) be the unique fixed point of the 
map 4Iv,x. Then 

E 
C-1(0.k/k!)[1 

+ 2 C-l-k 
*() 

+ C--k 
C--k-i 1 - a= 

V 

= (3.3) 
1-e =o0(k/k!)[1 + 2 EC-k *(i) + C-k CC-k-i 3(i3) 

and 

=O l(/i!) Lj=iO (/j!)(1 + -k= *(k) 
1)5S -s = (3.4) 

- o(vi/i 
)[ 

=0 ('J/j!)(1 

+ 

•-k=l 

*(k))]+ 

Proof. Using the definition of 4m, we can rewrite (2.7) as 

1 - aL= 

S---(.k/k!)[1 
+ 

-i 
1~C-l01 kL(i)+ 

C.., -kl L-1(j) + 
C -1-kC 1 L (i)(L-1(j)] 

k-• 
C=0- oC(k/k!)[1+ 

_-k L(i) 1•- 
Ck L - () 

-k 

- 

C-k-i L i) L- ) 

(3.5) 
The expression for 1 - ae follows directly from (3.5) and the fact that 

tL - 
>* as L - oc. 

Analogous calculations yield the expression for 1 - 
s.s 
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3.3. The case C = 1 

In this section, we analyse the performance of the model for the case C = 1. As mentioned 
earlier, the limiting stationary distribution for C = 1 with k = 0 was obtained in [12], [13]. 
Here we are also interested in studying the trade-off between unicast blocking and the capacity 
to support multicast calls. 

3.3.1. The recursion for C = 1. For C = 1, (3.2) reduces to the one-dimensional recursion 

(m+l - (1 + , + ?m)q 

The critical curve Lcr in (v, X)-space of bifurcation points of the two-parameter family of 
mappings 4v,k (see e.g. [7]) is defined by the relation 

(*) --= 1, 

8n (v,,k)ELcr 

where, as in the previous section, =* = *(v, k) is the fixed point for the mapping 4v,). Since 

S(1 + 
- 

+ 
)+-)q+1 

and 
* = , (3.6) 

(1 + X + 
?*)q 

simple algebraic manipulations show that, at criticality, the fixed point is 

1+' 

q-1 

and hence the critical curve Lcr is described by the set of points (vcr(X), X3) where 

vcr(P) = (1 + q)q+l. (3.7) 
(q - 1)q+1 

The value of the critical points of bifurcation for the family of mappings 
v,,' 

for C = 1 was 
obtained in the absence of unicast calls (,k = 0) in [12], [13]. We define the subcritical region 
to be the set of points (v, 3) that satisfy v < vcr(,k) and the supercritical region to be the set 
of points that satisfy v > vcr(X(). To see that bistable behaviour cannot exist in the subcritical 
region, consider the iterated map 4v,a o v,rx(?). Then it is straightforward to check that (a) 

)v,'1 ovX(0) > 0; (b) 4V'' o 4v,' (.) is increasing in ; (c) v,' o v,'(.) has apoint of inflection 
(i.e. its second derivative vanishes and changes sign) at ? = [v(q - 1)/(1 + X)]l/q - (1 + )); 
and finally (d) for v < vcr, 0 vd, o 

4v,'x()/Iaj 
< 1. From (d) we can conclude that, for 

v < vcr, laDv,' 
o 'v,'(?)/?j < 1 for all ?, and hence that the iterated map has a unique fixed 

point for v < 
vcr. 

This yields the following result. 

Theorem 3.2. For C = 1, the region where there is no phase transition is precisely the 
subcritical region {(v, X) e 2 

)2 v < vcr ()}, where vcr(() is given by (3.7). 

In Section 4, we will show that the critical point for the Erlang fixed-point approximation is 
2 vcr, which provides evidence of the inadequacy of this approximation in this context, although 
we note that for v < vcr the approximation is still very good. 
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Note that in the asymptotic regime as q - +c, for the case of a pure multicast network 

(k = 0) we have 
e 

lim vcr " lim - = 0. 
q--oo q-4ooq 

This suggests that in pure multicast networks with a higher degree of connectivity, heteroge- 
neous multicast blocking probabilities in the network will arise at lower arrival rates. 

Beyond the critical point, an orbit of period 2 appears, and there is no longer a unique limit 
point for the sequence of iterates of the map Iv,x. Let the points of this orbit be denoted by 
and *. Then we observe that 

,)( 
? 

) 
= 

1 2 and 
'I~,(*) =_ 

(3.8) 

and so, for i = 1, 2, 
4IV,Xk 0 cIVX(*)= 

Spitzer [18, Theorem 9] and Zachary [20, Theorems 4.1 and 4.3] showed that given any 
homogeneous Markov specification on a regular Cayley tree, there exists an associated recursion 
map such that the existence of a 2-period orbit (that is not a fixed point) for the map is equivalent 
to the existence of a Markov chain that is not invariant under isomorphisms of the tree, but that 
is invariant under isomorphisms that map the even and odd lattices onto themselves. Thus, vcr 
denotes the point at which there appears a Markov chain on the infinite tree that is not translation 
invariant, but has an alternating pattern on the even and odd lattices. 

3.3.2. Blocking v. capacity trade-offsfor C = 1. We now calculate the trade-off in the subcritical 
region between the volume of multicast and unicast calls that can be supported in the network 
for a given blocking probability for unicast calls. For simplicity of notation, we let a = ae be 
the unicast blocking probability. Then for (v, X) in the subcritical region, from the expression 
(3.3) it follows that 

1 
1-a= 1 + + 2* 

where '* is the unique fixed point of the map 4v,X. Rearranging the above equation yields 

a * 
2(1 - a) 2 

Using the fact that '* satisfies the fixed point equation (3.6), for (v, k) in the subcritical region 
we obtain 

S= 1 + + - (3.9) 
( 

2(1 
- a) 2)( 2(1 - a) 2+ 

The above equation is plotted for different values of a for the case q = 2 in Figure 3. In the 
subcritical region, the curves characterize the trade-off between multicast and unicast arrival 
rates for fixed a and are marked as solid curves, whereas in the supercritical region the curves 
no longer have this physical interpretation, and are thus marked with dashed lines. 

It is intuitively clear that as the unicast arrival rate decreases, the multicast arrival rate must 
increase in order for the unicast blocking probability to be maintained at a. Indeed, as illustrated 
in Figure 3, the v-X trade-off curves are monotone. In addition they are also convex, which 
means that, for every fixed a, the rate of increase of the multicast arrival rate decreases with 
decrease in the unicast arrival rate. Let X = X(a) be the point at which 

v/8a• 
becomes zero, 
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FIGURE 3: Trade-off between unicast and multicast calls (C = 1, q = 2). 

and let 
- 

= Vi(a) be the corresponding value of v at which this happens. Let 0 = a/(1 - a), 
and note that 

a 1 q ' k qq-1 
( -1 1+2+ +)(+-4 ) 1 2 + 

a- 2 2 2 4 2 2 

Then by the above equation we conclude that 

S (q - 1) 2 

q+1 q+l' 

and substituting this back in (3.9), we see that 

(9 + 1)q+l 
(q + 1)q+1l 

Since 

1+ 
- (q-1)( +1) q+1 

it follows that Vi satisfies 
qq 

(q 
- 

1)q+1 

Comparing this with (3.7), we see that the locus of points (k(a), 
i(a)) 

for a E (0, 1) coincides 
with the critical phase transition curve 

Lcr. 
Thus we note the remarkable feature that (at least for 

the case C = 1) phase transitions occur precisely at points (k, Vi) at which the rate of increase 
of the multicast arrival rate with decrease in the unicast arrival rate (for a fixed unicast blocking 
probability) is zero. 
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Now, for (v, X) beyond the critical curve, let •, , be the two period orbit defined in (3.8). 
Taking L - o in (3.5), it can be seen that the blocking probability a in the supercritical region 
is given by 

1 
I-a=- 1 + X + 2 + *2 

Thus, although there is a bifurcation of solutions for large enough values of (v, X), the unicast 
blocking probabilities are still homogeneous throughout the tree. Moreover, we observe that 
since the two points ?* and ?2* move in a continuous fashion away from the fixed point as the 
critical curve is crossed, the unicast blocking probabilities change continuously through the 
phase transition. As we show later, this is not the case when the link capacity C = 2 (and, more 
generally, for even link capacities C), where we could have an abrupt change in the unicast 
blocking probabilities at certain values (v, X) in the subcritical region of the parameter space 
(i.e. where the fixed point is still locally stable). 

We now consider the multicast blocking probability. For C = 1, from (3.4) we have, for 
(v, k) in the subcritical region, 

1 1 
1-B= 

v 1+ [1 + k + ,*]q+1 v[1 + (1 + = + (*)/(*]' 

where the last equality follows from the fixed-point equation (3.6). Rearranging, we find that 

v(A + 1)(1 - P) 
1 - 2v(1 -) ' 

and therefore 

(1 + 
X) (1 - v(1 -P)) 

1 - 2v(1 - P) 

Note that the above two equations imply that, in the subcritical region, 1 - 2v(1 - P) > 0. 
Substituting the last two displays into the fixed point equation (3.6), we see that 

S- ( -)-1 
- 2v(1 - P) 

[1 - v(1 - f)]q/(q+1) 

Analogous to the trade-off curves for fixed unicast blocking probabilities, here too it is clear that 
with a decrease in the multicast arrival rate, to maintain the same multicast blocking probability, 
the unicast arrival rate should increase. In this case, however, beyond the phase transition curve, 
the multicast blocking probabilities bifurcate, and take on different values depending on whether 
the node lies on the 'even' or 'odd' lattice. 

3.4. The case C = 2 

In this section, we analyse the performance of the model for the case where the capacity 
of each edge (link) is C = 2. As we will see below, this map displays behaviour that is not 
found for the C = 1 case. In particular, it is possible to observe a discontinuous change in the 
blocking probabilities with a change in parameter values. As discussed in Section 3.5, maps 
with even link capacity C seem to behave like C = 2, while maps with odd link capacity C 
behave like C = 1. 
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3.4.1. The recursion for C = 2. For C = 2 the recursion defined in (3.1) yields the following 
two-dimensional map: 

[ 1+X+((1) 1 

, + + 1) 2 + (1 + k)X(1) + ( (2) 
v2 q 

2 2 1 + + 12 + (1 + )((1) 

Setting ? (1) = and ? (2) = qr, and computing partial derivatives of the map, we see that the 
Jacobian at (1, 7j) is given by 

-qv__ 
_ _ _ _ 

[(1-++-)q-l(+ 1)2-k) 
(1?+ 

(1 + 
. 
+ 1j)2 (1 + 

. + r (l 
+ + 

+1.) qvl 
? (I + 1 

Now we know from Theorem 3.1 that the map has a unique fixed point 

(? * 9*) =(=*(*v, )), 0 *(V, X)) 

for all sufficiently small v and X. At the fixed point, the Jacobian has the value 

S*() 

-+- 
1d'2 - r*) -q 2 

J(t*, n*) = -+q1?+X* 

J(, 
17) + ) + j)2 + (1 

+• 

)* + s 
1 

"1 

+ 

) 

2 7*(1 + ,) 7* 
Thus the eigenvalues at the fixed point (1*, 7 *) are given by 

q 

2[11 
+ •+ 2 'X 

1 + +( X)* + 17*] 
F 

-*(1 
+ X) + (*X(1 + ) ) 

S1 +X) + * 

(17*(l + _) + _*(1_ + ))2 4[?*r*2 + ?*r* + *21r* + ?*r1*X(1 + ~*+ 1))] 
+ 4?2. 

(1 + 

. 

+ (*)2 1 + 
. 
+ 

•* 
In the pure multicast case, when X = 0 the eigenvalues are given by 

q_ 17__* 17*2 
4 

*7*2 
-, 

+ + 4?*r* . 
2(1+ 

* + 17*) 1+* (1+ *)2 1 * 

We know from Theorem 3.1 that for small v the fixed point (1*, rl*) is globally stable in the 
sense that, starting from any initial condition, the iterates converge to that fixed point. In order to 
determine when this fixed point loses its local stability, it is necessary to calculate the bifurcation 
point Vcr, which is the point at which IRe(K)l = 1, where K is the eigenvalue of the Jacobian. 
Since in this case the eigenvalues are real, this corresponds to finding the point at which K I = 1. 
If $*, 9* could be expressed as a function of v, then by setting the absolute value of the above 
expression equal to 1, we could determine Vcr. However, since such an explicit expression does 
not seem feasible, we use numerics and approximations to discern the behaviour of the map. 
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222/V2 

globally 
stable 

fixed point 

V< Vf 

252/lV2 22Iv/2 stable 
two-cycle 

marginally unstable all stable unstable stable locally two-cyle two-cycle locally 
two-cycle stable two-cycle stable 

fixed point fixed point 

v=Vf V>Vf 

FIGURE 4: First-order phase transitions (C = 2, k = 0). 

For large v, it is easy to see that the fixed point is approximately given by (v, lv2-q). Thus, 
as v -* oc, the absolute value of both eigenvalues tends to zero-implying that locally the 
fixed point becomes extremely stable, and thus that there is no finite vcr. However, although the 
fixed point maintains its local stability for arbitrary large values of v, it loses global stability at 
a point vf when a marginally stable two-period orbit appears in addition to the locally stable 
fixed point. As v becomes large, the marginal two-cycle splits into a stable and an unstable 
cycle. The domain of attraction of the unstable two-cycle defines the boundary between the 
basins of attraction of the fixed point and the stable two-cycle. This phenomenon is reminiscent 
of what is referred to as a first order transition in statistical physics, in which (at v = vf) a 
new stable state appears whose orbits are far away from the prior stable state described by the 
fixed point (refer to Figure 4). Hence for C = 2, the phase transition point vpt coincides with 

vf. In contrast, recall that for the case C = 1 the phase transition occurs at Vcr, the value at 
which the stable fixed point loses even its local stability and bifurcates into a stable two-cycle 
whose orbits lie close to the fixed point. Such gradual transitions are referred to as second-order 
transitions in the statistical mechanics literature. 

3.5. Higher link capacity 
We have examined the cases C = 1 and C = 2 with some care. Clearly, in a realistically 

sized network, C will be considerably larger. However, we conjecture that in some respects the 
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FIGURE 5: Plot of vpt for varying q and C values (k = 0). 

qualitative behaviour will be similar. In particular we conjecture that for odd C, entry to the 
phase transition region will be with a second order phase transition (vpt = Vcr), as with C = 1; 
while for even C, the entry to the phase transition region will be accomplished via a first order 
phase transition (vpt = vf). (Recall that vpt is defined to be the lowest value of v at which a 
phase transition occurs.) Numerical results seem to indicate that for higher C there will be a 
number of phase transitions, corresponding to modes of the distribution where, say, nodes in 
the even lattice carry i calls and nodes in the odd lattice carry j calls, with i + j = C. In 
Figure 5, we plot numerically obtained values for Vpt for X = 0 and varying C and q. We see 
that these numerical results indicate that, as q increases, the phase transition point decreases, 
and that vpt is of a lower order of magnitude for odd C, when compared to even C, particularly 
for small q. The latter behaviour may be linked with our conjecture about the differing nature 
of the phase transitions for odd and even C. 

4. The Erlang fixed-point approximation 

We have observed in previous sections that, for (v, X) in the region prior to phase transition, 
the blocking probability in the centre of SL converges as L -- oo to the fixed point of a map, 
and that link blocking probabilities in the centre of the tree are homogeneous. This suggests 
that the natural formulation of the Erlang fixed-point (EFP) approximation, at least initially, is 
one where the blocking probability on every link is the same, assuming that the tree is infinite. 
This then gives the blocking probability, B, for a single link as a fixed point of the map 

fv',(B) 
= E(X + 2v(1 - B)q, C), (4.1) 

where E(v, C) := 
(E•o 

'i/i!)-'vc/C! is the Erlang-B blocking formula [13], [17]. Thus, 
each link sees a reduced load of X + 2v(1 - B)q offered to it. Recall that X is the arrival rate 
or load of unicast calls at every link, and there are also two streams of multicast calls offered 
to every link, each centred at one end of the link, each arriving at rate v and thinned by a factor 
of (1 - B)q. 
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It would, of course, also be possible to consider the Erlang fixed-point approximation to 
the blocking probabilities at the centre of finite trees, as they become large, without a priori 
assuming that they are the same on every link. For the tree SL, this involves finding the fixed 

point of an L-dimensional map. Numerical results indicate that, for (v, X) in the subcritical 
region of the map (4.1), the approximation to the blocking probability of a central link in SL 
obtained from the full L-dimensional map converges to the fixed point of (4.1). We therefore 
confine our attention to (4.1) for the rest of this section. We note, however, that our numerical 
results indicate that beyond the critical point of the EFP map, the single-link blocking probability 
corresponding to that of the central link for the L-dimensional EFP approximation converges 
to the unstable fixed point of the map (4.1). 

Let B*(v, ,) be the unique fixed point of the mapping (4.1), which is guaranteed to exist 
for small enough X and v (by analogy with Theorem 3.1). As in Section 3.3, by definition the 
values (v, X) on the critical curve Mcr of bifurcation points of the family of mappings fvx (see 
e.g. [7]) must satisfy 

(B*) = 1. aB (VX)EMcr 
When C = 1, 

(B) + 2v(1 - B)q 
fv,1(B) 

=- 1 + X + 2v(1 - B)q 
so that 

afV), _ 2qv(1 - 
B)q-1 

aB (1 + X + 2v(1 - B)q)2' 

and at the fixed point B* = B*(v, X) we obtain 

1 - B* =1 
1 + X + 2v(1 - B*)q 

Together these show, after simple algebraic manipulations, that at criticality 

B* 1 + Aq cr q(1 + X))' 

and the critical curve LEFP for the EFP map is described by the set of points (vEFP(X), X), where 

1 -1- (1 + 
.)q+l 

VEFP( 1\-(q+ 2q q) 

which is equal to exactly half the expression (3.7) for vcr (W) of the random field map (Dv, found 
in Section 3. 

Figure 6 illustrates the attracting solutions to the various maps for the case C = 1, with X = 0, 
q = 2 and v ranging between 0 and 6. Figure 6(a) gives the multicast blocking probabilities 
6 for the random field maps Qv,O (which when C = 1 can be found in Section 3.3), as well 
as exact blocking probabilities at the centre of SL, when the radius L = 10, 11 (o10 and f11) 
and when the radius L = 40, 41 (/40 and ~41). These all assume free boundary conditions. 
We note that as the radius L increases, the blocking probabilities at the centre of SL approach 
those of the random field map, following either the upper or lower branch, depending on 
whether L, the radius of the tree, is odd or even. Figure 6(b) gives the multicast blocking 
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FIGURE 6: Comparison of blocking probabilities for the random field and EFP maps (k = 0, C = 1, 
q = 2): (a) multicast blocking probability, P, obtained from the random field map, (b) multicast blocking 

probability, 1 - (1 - B*)3, obtained from the EFP approximation. 
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FIGURE 7: Comparison of phase transitions for the random field and EFP maps (X = 0, q = 2). 

probabilities obtained from the Erlang fixed-point approximation below criticality of that map 
(for comparison purposes the blocking probabilities obtained for the maps Qv,o have also been 
plotted in Figure 6(b)). Note that if B* is a fixed point of the EFP map, then the multicast 
blocking probability is given by 1 - (1 - B*)q+ . We observe that the family of random field 
maps Qv,o bifurcates at v = 4, while the family of EFP maps fv,o bifurcates at v = 2, in 
agreement with the results of this section and those of Section 3. 

For higher C too, there are inadequacies in the EFP approximation. The most striking is 
that the bifurcation point for the EFP approximation occurs at much lower values than for the 
random field map tv,O, particularly for even C. Figure 7 shows Vpt, the lowest value of v for 
which a phase transition occurs, for both the random field maps Dv,o and the EFP maps fv,o 
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when q = 2, and for C ranging from 1 to 10. We note that, unlike the case of the random field 
map, for the EFP map this increases monotonically with C, and no difference is apparent in the 
behaviour for odd and even values of the link capacity C. In addition, for values of v past the 
bifurcation point for the EFP maps (i.e. v > vEFP), the stable solution to the map fvx in (4.1) 
is a two-cycle. However, we have shown in Section 3.3 that single-link blocking probabilities 
are homogeneous in the centre of the tree even past criticality, and do not oscillate. It appears 
that beyond the critical region, approximations to the single-link blocking probabilities should 
be obtained from the unstable fixed point of the EFP approximation, but it is no longer clear 
how this can be used to approximate the multicast blocking probabilities. 

5. Some generalizations 

A simple symmetric network such as the one we have studied above is, of course, unrealistic. 
The model could be generalized in many ways. Two of these we study in greater detail below. 
The first is to allow longer multihop calls into the system. This is a natural extension of the 
model, and essentially only complicates the formulation of normalizing constants, blocking 
probabilities etc. The second generalization that we study breaks the symmetry of the model by 
allowing heterogeneous v. The interest here is in seeing whether phase transitions still occur. 
Van den Berg and Steif [19] have conjectured that if arrival rates at odd and even nodes on the 
cubic lattice Zd are not equal, then the model has a unique Gibbs measure, and they give a 
partial proof of this conjecture. However, we find that on a tree network, phase transitions can 
still occur with heterogeneous v. 

5.1. Multihop multicast calls 

In this section, we indicate how to generalize this model to multicasts beyond nearest 
neighbours on the tree. For simplicity, we consider a model where there are no unicast 
calls (X = 0), but only multicast calls with the property that a multicast call originating at 
a node t is broadcast to all its nearest neighbours t' e N(t) and next-nearest neighbours 
t"/ E 

,N2(t) 
:= Ut'EV(t) NV(t') \ t. The number of calls originating at a node t is denoted nt, as 

usual, and the total number of types of calls is MT = IT I, the number of nodes in the tree T. 
The set of feasible configurations is then 

T 
= 

nE IMTr 
: for each (t1t2) 

E&(T), 
nt < C 

tE.V(tl)U. (t2) 

Once more, the stationary distribution 7r has the truncated product form 

1 v nt 

ZI nt! teT 

for n 2Tr, where Z, is the normalizing constant 

tTvnt 
nE~?T teT 

As before, we calculate Zz in terms of some partial sums, to be defined below, and then 
derive recursion relations for these partial sums. To show how to derive the recursion relations 
for this model, we restrict ourselves to the case C = 1 and q = 2. Let to be the central node in a 
spherical tree, and let t-1, tl and t2 be its neighbours, with t-2 and t-3 being neighbours of t_1 
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t-1 / 

t2 

(a) (b) 

(c) (d) 

o empty node * node with 1 call o node either empty or full 

FIGURE 8: Multihop multicasting on S3 (C = 1, q = 2): (a) augmented trees of size 4 and 3 and 
configuration with weight AL-1AL; (b) AL-IFL; (c) AL FL-1; (d) ALBL-11v. 

(see for example Figure 8). There are only two possible types of configurations of calls on 
these sites: either there is no call on any site, or there is only one call originating from exactly 
one of these six sites. These possibilities give us seven different configurations. 

We can find a rooted tree Tm for some m, such that Tm is rooted at to. Without loss of 
generality, we could assume that tl, t2 E Tm. Now we define 

Zm(i-1, io, i1, 
i2) 

: 
1 

nE?m:nta=ia, tETm 

a=-1,...,2 

so that Zm is the weighted sum of all configurations in the graph comprising the rooted tree Tm 
with root to, augmented by the node t_1. As shown in Figure 8(a), any spherical tree of radius 
L with central node to can be decomposed into two overlapping augmented trees of sizes L 
and L - 1 with roots to and t_1 respectively. Then Z, can be expressed as a weighted sum 
of the seven configurations on the six nodes t-3, t-2, t-l, to, ti, t2, corresponding to the empty 
configuration with no calls on any of the nodes, and the six configurations associated with a call 
on one of the nodes. Introducing the notation Am = Zm (0, 0, 0, 0), Bm = Zm (1, 0, 0, 0), Im = 
Zm(0, 0, 1, 0) = Zm(0, 0, 0, 1), Am = Zm(0, 1, 0, 0), it is clear that ALAL-1 represents the 
weight for the empty configuration shown in Figure 8(a), AL-11L and AL FL-1 represent the 
weights for the configurations given in Figures 8(b) and 8(c) respectively. Likewise, AL BL L- 1/ 
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corresponds to the weight of the configuration in Figure 8(d), where the dividing factor v arises 
due to the fact that the occupied node to lies in both augmented trees. Arguing similarly for the 
remaining configurations, it follows that the normalization constant Z, is given by 

Z, = AL-1AL + 2(FL-1AL + AL-1FL) + V-1(BL-1AL + AL-1BL) 

for a spherical tree of radius L. 
It is easy to see that the recursion relations are: 

Am+1 = (Am + 2Fm)2, 

Bm+l 
= 

vAm, 

Fm+l = AmAm, 

B2 
Am+1 = 

The free boundary condition is imposed by taking A0 = 1, Fo = 0, B0 = A0 = v. 
As usual, the recursion relations are homogeneous in Am, Bm, Fm, Am, and we could instead 

obtain recursions on the three ratios im = Bm/Am, Ym = Im/Am, Sm = Am/Am as follows: 

(1 + 2ym)2 
' 

sm 
Ym+I - (1 + 2Ym)2' 

Sm+l = v(1 + 2Ym)2 

Once more, for small v, these recursion relations lead to a unique fixed point. At large v, there 
is a four-cycle leading to a phase transition. This corresponds to an ordered state which breaks 
homogeneity (i.e. translational symmetry). 

5.2. Heterogeneous v 

In this section, we consider the model with heterogeneous v. We assume that multicast calls 
arrive at either rate vl or v2 at each node, and that these arrival rates alternate across the tree. In 
particular, we assume that in the spherical tree, nodes at a distance m from the nearest terminal 
node have arrival rate vl if m is odd and v2 if m is even, and that terminal nodes have arrival 
rate v2. Thus, each link has multicast streams of rate vl and of rate v2 offered to it. 

The expressions obtained in Section 3 then need to be modified in the obvious fashion. The 
recursions (3.1) now become ?m+1 = (IVl'X($m) if m + 1 is odd and ?m+1 = (IV2,'(m) if 
m + 1 is even. Let 4* and * be fixed points for the recursions 

~lv,' o i'2,X and ~v2,' 0vI,X 

respectively. (Note that due to Theorem 3.1, they certainly exist and are globally stable for 
vl = v2 = v sufficiently small.) Then in the subcritical region the limiting link blocking 
probability in (3.3) satisfies 

1-a• 

1C-- (0 
k/k!)[1- /1-k' 

1 1-k 1l-k 

C 
1-k-i 1 

Ec =Olk ( k/ k!) [1 + 
- 

k 
1 

) -lk 

a 
( 

C k 
- 
C k-i 1 
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We note that this is symmetric in * and ?2*, thus implying that even with these heterogeneous 
multicast arrival rates, the link blocking probabilities are homogeneous. The limiting multicast 
call acceptance probabilities in the subcritical region are now given by 

-i=O (vI// i!)[ -i/j=O 
(.J/j!)(1 

+ E 'k=l 
- 

2 (k))]q+l 1 - il = 

/=0 ( /i!)[-j=O-i !) =1 2C-i-j 
=o1/_i!j)[ 

(XJ/j!)(1 + 
•EZ= 

k (k))]q+l 

for odd nodes, and 

C - (V/i!)[C-l-iJ (/j!)(1 + 
1C--i-' *(k))]q+l 1 - 82 = 

1!)[E CC-i-j *,(k))]q+l 
S=o(/i (J/j!)(1 + EZ (7kk=l ))] 

for even nodes. 
When C = 1, these equations are particularly simple. We use c1 and (D2 to denote 

)Vli,O and Q>v2,0 respectively, and define QD := (1 o (2. Then note that by the definition given above, 
4j* is a fixed point of Q. The recursions reduce to 

Vl v2 
1(() = and 4I2(4•) (1 + 1) + a)q (1 + -+ +_)q 

which together then yield 
V1 

(1 + v2/(1 + )q4) 

The limiting acceptance probabilities are then given by 

1 
1-a= 1 + ? + M*(1) + (1)' 

1 
1 - ll 

= 

1 
1 - f12 = 9 2 I l* )+1' V2 + (+1 + .+ 

(1))q+1 

One question of interest here is whether the phase transition (i.e. the existence of multiple 
limit points for a sequence of iterates of D) that we saw with homogeneous v can also occur 
when vl :A v2. The following theorem shows that indeed it can. 

Theorem 5.1. For C = 1 there exists an open set 0 such that, for (vl, v2) E 0, there exists a 

sequence of iterates of the map (D = Co1 '0 o 0o2,0 
that has multiple limit points. 

Proof Assume that vl, v2 > 0. Note first that D (.) has first and second derivatives 

d q2vlv12 1 

d( (1 + v2/(1 + 
4)q)q+l 

(1 + )q+1 ' 

and 
d2 _-q2(q + 1)vPv2 v2(q - 1) 
d =2 (1 + 4 + v2/(1 + 4)q-1)q+2 (1 + 

')q 
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FIGURE 9: Blocking probabilities with heterogeneous v (k = 0, C = 1, q = 2, vl = 6): (a) multicast 
(node) blocking probability, (b) unicast (link) blocking probability. 

Thus ((0) = vi/(l + v2)q > 0, lim,,oo (4) = 
vm 

and V'(4) > 0 for 4 > 0. When v2 < 
1/(q - 1), V"(4) < 0 for 4 > 0, and so there is a unique fixed point for the map (. When 

v2 > 1/(q - 1), however, ("(0) > 0, and Q(.) has a single point of inflection at the point S 
= (v2(q - 1))l/q - 1, which is increasing in v2. (Note that the point of inflection 4 is such that 

( is convex for < and concave for 4 > 4.) At the point of inflection 4(D) = vi (1 - l/q)q, 
which does not depend on v2, and 1'(4) = vi(q - 

1)q-1/q/(v/4qqq-1). 
If V'(4) < 1, then a 

single fixed point is guaranteed, since the derivative is greatest at the point of inflection 4. 
If 4 is also a fixed point of ((-), then simple algebra shows that 4 = [v2(q - 1)]1/q - 

1 = vi(q - 1)/q, and V'(4) = q/(1 + qq/(vI(q - 1)q)) = q - q/[v2(q - 1)]1/q. Moreover, 

V'(?) > 1 if and only if 
vm 

> qq/((q - 1)q+m) (or, equivalently, v2 > qq/((q - 1)q+1)), and in 
this case 4 is clearly an unstable fixed point. The properties of ( described above then imply that 
there also exist two stable fixed points 4* :< < < . Thus, given any vi > qq/(q - 1)q+1, by 
continuity it is clear there exists an open interval (al, a2) around v2 = 

(vm 
(q - 1)/q + 1)/(q - 1) 

(i.e. the value at which 4 is a fixed point) such that there are two stable points *: <4 < (~ and 
an unstable fixed point e (, ). In additio, due to the form of the function 4, it is clear 
that for v2 < al the unique fixed point <* < $, and for v2 > a2, the unique fixed point 4* > 4. 

We illustrate the above theorem with an example. Figure 9(a) gives the limiting blocking 
probabilities for multicast calls at odd nodes and even nodes (f1i and 82 respectively) for fixed 

vm 
= 6.0, and v2 varying from 0.0 to 8.0, with C = 1 and X. = 0. Figure 9(b) gives the 

link blocking probability for the same range of parameters. Again, all of these were obtained 
numerically under the assumption of free boundary conditions. We note that, as v2 increases, 
the blocking probability for multicast calls at odd nodes, ,1, increases. However, the blocking 
probability for multicast calls at even nodes, f2, is very close to 1.0 when v2 is 0 and then 
decreases initially as v2 increases. The explanation for this is that increasing v2 from 0 breaks 
the packing symmetry for the odd calls, thus giving a slightly lower blocking probability for 
the even calls. We note that this initial decrease does not occur for small vl (e.g. less than 0.1). 
There is evidence of bistable behaviour (i.e. multiple solutions for 01, 92 and a) over a range 
of values of v2, including the point v2 = 6.0. 
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6. Conclusions 

In this paper we developed a framework in which to analyse the effect of multicast calls 
in large unicast tree networks. Although most of our analysis is carried out for the case of 

single-hop multicast calls in a regular tree network with uniform arrival rates throughout the 
network, we showed in Section 5 that the qualitative phenomena observed persist even in the 
case of multihop calls and asymmetrical arrival rates, and are thus of relevance to more general 
networks. 

6.1. Phase transitions, fairness and capacity 

Our main finding is that, at high enough multicast call arrival rates, the stationary call distri- 
bution at the core of large networks loses its spatial homogeneity, even though the call arrival 
pattern is homogeneous. For any finite network, the distribution of calls near the boundary of 
the network will clearly be influenced by the boundary conditions (i.e. the distribution of calls 
at the edge of the network). However, as our results show, for small values of the multicast 
arrival rate, v, the stationary distribution at nodes in the core of a large network is insensitive 
to the boundary conditions. In addition, for the core of sufficiently large networks, this unique 
stationary distribution approaches homogeneity, in the sense that the marginal distributions of 
calls at different nodes in the core network approach a common distribution. Higher values 
of v, however, lead to a phase transition or symmetry breaking in the sense that the marginal 
call distribution at a core node now depends on whether the distance of the node from the 
boundary is odd or even. (Thus, for high v, the particular distribution realized in the core of the 
network depends on the network boundary conditions.) This leads to unfairness in the sense 
that even in a symmetric network with uniform loading, calls arriving at even and odd nodes 
in the core may experience different blocking probabilities. This phenomenon is particularly 
relevant in networks with a higher degree of connectivity (i.e. larger q), which manifest this 
phase transition at lower arrival rates, possibly well below the capacity of the network. The 
presence of uncorrelated unicast calls in the network seems to somewhat mitigate this effect as 
it raises the multicast arrival rate at which the phase transition takes place (at least for C = 1). 
Thus, if an operator would like to avoid 'unfairness', it may be desirable to work away from 
the region of phase transition. 

6.2. Networks with tree-like structure v. lattices 

Markov random fields on a Cayley tree behave quite differently from those defined on regular 
lattices, and thus it is instructive to contrast the two structures. A bounded square lattice Zn x Zn 
has n2 points, of which 4n -4 lie on the boundary. A spherical tree SL with coordination number 
q has qL + qL-l boundary nodes and (qL+l + qL - 2)/(q - 1) nodes in total. Note that the 
ratio of the number of boundary nodes to the total number of nodes, in the limit as L -+ o, 
converges to zero for the lattice, but stays finite in the case of the tree. In other words, in the 
thermodynamic limit, regular lattices have negligibly few boundary nodes compared to the total 
number of nodes, whereas the Cayley tree has a nonzero fraction of nodes on the boundary. As 
a result, the Cayley tree system is much more susceptible to boundary conditions than a regular 
lattice. 

To make this more concrete, we consider the particular question of whether there exist 
symmetry broken (i.e. non-translationally invariant) stationary distributions when C = 2 and 
X = 0. The results of Section 3.4 indicate that the answer is affirmative for Cayley trees, 
whereas the results of [11, p. 5] seem to suggest that the answer is negative for lattice models. 
We argue heuristically to provide some intuition as to why this may be the case. For both 
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graphs, we define the odd lattice to be the collection of Vi nodes that lie an odd distance 
away from the terminal nodes and the even lattice to be the collection of V2 nodes that lie an 
even distance from the terminal nodes. Then for large v, it is reasonable to expect that the 
stationary distribution would be dominated by those configurations that sustain the largest total 
number of calls in the network, subject to the capacity constraint. Consider two candidate 
configurations: (i) homogeneous, with one call per site, and (ii) symmetry broken, two calls on 
one sublattice, and no calls on the other. Then the homogeneous configuration has a weight 
v 

VI +V2, while the symmetry broken one (say with calls supported only on the even lattice) has a 
weight (I v2)V2. Let V = V1 + V2 be the total number of nodes in the network. On the regular 
lattice, V1 V2 m V, and thus both configurations have weights with the same power of v. 
However, for all values of v, the weight of the homogeneous configuration is greater because it 
has a larger prefactor. The same configurations on the spherical Cayley tree have very different 
weights. For a tree with q = 3 (which is equal to the coordination number of a regular square 
lattice), since V2 includes the boundaries, it is easy to see that V2 r 3 VI 3 V. Hence, for 
small v the homogeneous configuration has larger weight, while for v large enough such that 
(pI2)3/4 > v, the symmetry broken configuration has greater weight. Consequently, we would 
expect the Cayley tree model (for C = 2) to show a phase transition for large enough v. 

Another difference between lattice and tree models was pointed out in Section 5.2, where it 
was shown that phase transitions can occur on the tree even when the arrival rates on the odd 
and even lattices differ. In contrast, this is not expected to happen in the case of the regular 
square lattice [19]. 

In general, when we analyse the recursion relations for the Cayley tree model, we often find 
fixed points of fixed cycles with particular basins of attraction (as illustrated, for example, in 
Figure 4). These basins of attraction correspond to initial conditions for the recursion relations, 
which in turn correspond to specific boundary conditions. The fact that we find more phases in 
the Cayley tree model than the regular lattice is not surprising. It is due to the strong influence 
of the boundary. In physics models of spin systems, this is often an artefact of the model. 
However, in actual telecommunication networks the connectivity structure is often tree-like, 
especially in the outlying or 'access' regions of the networks, and this may significantly affect 
the performance in the 'core' network. Hence a strong influence of the boundary on the core 
may be a welcome element in a network model. 

6.3. Dependence on parity of network capacity C 

An interesting by-product of our analysis is the dependence of the nature and value of the 
phase transition on the parity of the capacity C. The phase transitions seem to be fundamentally 
different for odd and even C-with odd C showing a second order transition and lower phase 
transition values, and even C showing a first order transition that occurs at higher values. The 
results of [ 11, p. 5] suggest that in lattice models too the nature of phase transitions depends on 
the parity of the capacity. However, in that case, for even C there is no phase transition, as there 
is a unique Gibbs distribution for all values of v, while for odd C there is a phase transition 
leading to multiple Gibbs distributions for large enough arrival rates v. 

6.4. Problems with traditional approximations for multicast networks 

Our analysis indicates that traditional techniques such as the EFP approximation for estimat- 
ing link blocking probabilities may not be very effective in networks supporting multicast calls 
beyond the critical point of the EFP map. This is probably due to the fact that as we approach 
phase transition, the correlations introduced by multicasting seem to seriously undermine the 
independence assumption underpinning such approximations. It would thus be of interest to 
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develop simple and effective approximation methods that can be effectively applied to the 
multicast setting near and beyond the phase transition. Zachary and Ziedins [22] outline a 
general framework for refining the EFP approximation, which could be applied in the multicast 
setting for more general networks provided no controls, such as trunk reservation, are in force. 

6.5. Implications for transient behaviour in finite networks 

We discussed earlier how phase transitions give rise to qualitative differences in stationary 
measures in the core of large networks for different regions of the parameter space. This 
phenomenon of different limiting quantities for different parameter values often also applies to 
transient behaviour. Analysis of dynamic phenomena, even for such a simple model, is rather 
hard. However, the existence of a phase transition suggests that finite networks would exhibit 
transient behaviour that spends large amounts of time in these different phases and decays 
slowly to the equilibrium distribution. This kind of behaviour is reasonably well understood 
for lattice systems, and thus it would be worthwhile to carry out a similar analysis for tree 
networks. 

6.6. Control of the network and future directions 

It would be interesting to study the effect of controls akin to trunk reservation on the phase 
transition effects-in the past trunk reservation has been used to control bistable behaviour (see, 
for instance, [9], [13]), and we believe that it or a related control could be used here to similar 
effect. We would also like to consider more realistic settings in which the arrival rate at each 
node is not uniform (or picked from a set of two), but is instead picked from a distribution. 
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