Nathaniel Trask

Contact Information	Division of Applied Mathematics 182 George St.	(508) 685-5155 nathaniel_trask@brown.edu
	Brown University, Providence, RI. 02906	http://www.dam.brown.edu/people/ntrask/index.html
Research Interests	High order numerical method development for computational fluid dynamics and material science, high performance computing, multiphase flows, numerical optimization, graph theory	
Education	Brown University, Providence, RI	
	Visiting professor, Dean's Faculty Fellowship	Spring 2016
	• Designed senior undergraduate course using OpenFOAM to introduce CFD and software design principles for navigating components of a large-scale production code (C++, version control, numerical algorithms for PDE/linear equations, etc).	
	PhD., Division of Applied Mathematics MSc., Division of Applied Mathematics	$2010 - Fall \ 2015$
	• Advisors: Martin Maxey and George Karniadakis • Thesis: Compatible high-order meshless schemes for viscous fluid flows through ℓ_2 -optimization	
	University of Massachusetts, Amherst, MA	
	MSc., Mechanical Engineering Dual BSc., Mechanical Engineering & Mathem	2008 - 2010 paties 2004 - 2008
	Advisor: David SchmidtThesis: Implementation of an Eulerian mo	del to simulate primary atomization
Professional Experience	Self-employed, Providence, RI	
	CFD Consultant	$2011 - { m present}$
	Provided CFD solutions for customers in HVA	C and aerospace industries
	 Developed custom solvers to interface with existing codes (Fluent/OpenFOAM). Typical applications: heat transfer, turbulence modelling, combustion, fuel injection, evaporation 	
	Brown University, Providence, RI	
	Graduate research assistant	2010 - 2015
	Fundamental numerical method development in collaboration with staff scientists at national labo- ratories and professors at academic institutions through DOE grant (Collaboratory on Mathematics for Mesoscopic Modeling of Materials).	
	 Developed several new numerical methods for CFD/material science using optimization techniques to allow high-order, scalable simulation low Reynolds number flows with multiphysics. Implemented massive-scale framework interfacing algebraic multigrid to standard MD codes applicable to general meshless discretizations (scaling to 32k processors with 200M DOFs). 	

• Used new techniques to study challenging problems relevant to geophysical flows, suspension flows, and lithium-ion battery development.

Kobe University/Brown University, Kobe, Japan

Instructor

Organized and led two week summer program in Kobe using team projects to teach graduate students fundamentals of HPC on the Kei supercomputer.

- Led teams of 4-5 students to develop parallel code from scratch, run on a node of the Kei computer, and generate 3D visualizations culminating in presentation to school and government officials.
- Students successfully completed implementation of spectral element method on unstructured grids to simulate incompressible flow and particle implementation of peridynamics to simulate fracture mechanics.

2013 - 2014

University of Massachusetts, Amherst, MA

Graduate research assistant

2008 - 2010

Developed a finite-volume solver for simulating transonic turbulent fuel injection in collaboration with experimental research group at Air Force Research Laboratory.

- Implemented solvers, boundary conditions, and ray-tracing tools using C++ finite-volume library OpenFOAM.
- Coupled Eulerian primary atomization models with stochastic Lagrangian models to develop pipeline for simulating entire fuel injection process.
- Code currently being used to study diesel fuel injection by groups in Amherst and Polytechnical University of Valencia.

SELECTED A high-order monolithic meshfree discretization for simulating electrophoretic mobility of arbitrary colloid shapes

N.Trask, M. Maxey (In preparation)

 ${\cal A}$ mixed meshless quasi-divergence free method for the Stokes equations with applications to colloidal suspensions

N.Trask, M. Maxey (In preparation)

A high-order compatible meshless method for elliptic problems N. Trask, M. Perego, P. Bochev (In review)

Compact moving least squares: An optimization framework for generating high order compact meshless discretizations

N. Trask, M. Maxey, X. Hu (In review)

A scalable consistent second-order SPH solver for unsteady low Reynolds number flows N. Trask, M. Maxey, K. Kim, M. Perego, M.L. Parks, K. Yang, J. Xu - Computer Methods in Applied Mechanics and Engineering 2015

Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media

A.M. Tartakovsky, N. Trask, K. Pan, B. Jones, W. Pan, J.R. Williams - Computational Geosciences 2015

Intercomparison of 3D pore-scale flow and solute transport simulation methods. X. Yang, N. Trask, et al. Advances in Water Resources 2015

Compressible modeling of the internal two-phase flow in a gas-centered swirl coaxial fuel injector N. Trask, D.P. Schmidt, M. Lightfoot, S. Danczyk - Journal of Propulsion and Power 2012

Diesel spray CFD simulations based on the $\Sigma - Y$ Eulerian atomization model J.M. Garcia-Oliver, J.M. Pastor, A. Pandal, N. Trask, E. Baldwin, D.P. Schmidt - Atomization and Sprays 2013

Multidimensional modeling of condensing two-phase ejector flow M. Colarossi, N. Trask, D.P. Schmidt, M.J. Bergander - International Journal of Refrigeration 2012

Skills

- Programming: C, C++, Matlab, Python, bash scripting
- Libraries, codes and commercial packages: MPI, OpenMP, Charm++, OpenFOAM, LAMMPS, Trilinos, NEKTAR, FFTW, GNU Scientific Library, Fluent, ProEngineer, ANSYS workbench
- Languages: English (native), German (conversational)
- Publishing: $\operatorname{IAT}_{E} X 2_{\varepsilon}$