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Abstract

A generalization of the optimization framework typically used in moving least squares is pre-
sented that provides high-order approximation while maintaining compact stencils and a consis-
tent treatment of boundaries. The approach, which we refer to as compact moving least squares,
resembles the capabilities of compact finite differences but requires no structure in the underlying
set of nodes. An efficient collocation scheme is used to demonstrate the capabilities of the method
to solve elliptic boundary value problems in strong form stably without the need for an expensive
weak form. The flexibility of the approach is demonstrated by using the same framework to both
solve a variety of elliptic problems and to generate implicit approximations to derivatives. Fi-
nally, an efficient preconditioner is presented for the steady Stokes equations, and the approach’s
efficiency and high order of accuracy is demonstrated for domains with curvi-linear boundaries.

Keywords: Compact moving least squares, CMLS, optimization, Compact finite difference,
meshless method

1. Introduction

Meshless methods have long presented a promising Lagrangian framework for simulating
flows with complex moving geometries and moving interfaces, but have failed to gain traction
as a high-order method due to a lack of efficient quadrature rules for rational functions, the large
support of high-order basis functions, and deficiencies in approximation near boundaries. The
current work stems from an attempt to extend the flexibility of low-order meshless approaches
to solve Lagrangian hydrodynamics [8] to high order using the the moving least squares (MLS)
framework [7]. MLS provides a simple and rigorous approach to achieve high-order reconstruc-
tion, but the previous list of challenges prevent their stable and efficient application to standard
pressure projection schemes. The modified framework that we present here, which we refer to
as compact moving least squares (CMLS), remedies these issues while generalizing classical
compact finite difference schemes.

Classical compact finite difference methods (CFDM) achieve accuracy competitive with
spectral/hp-element methods by exploiting symmetry in the stencil and knowledge of deriva-
tives of the underlying function, obtained either by tailoring the reconstruction to incorporate
information from the PDE [16] or by developing implicit formulas for derivatives[10]. We recall
fundamental properties of these classes of schemes in Section 2. By exploiting this additional
information, high-order polynomial reproduction can be obtained using a small number of neigh-
bors per particle, but these schemes require equispaced neighbors to analytically derive stencils
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from Taylor series. For a general distribution of nodes, multivariate interpolation of nodal data
is in general not possible and moving least squares (MLS) and radial basis functions (RBF) have
emerged as the two leading methods for robust high-order meshless approximation on general
datasets[12]. For lower order approximation, smooth particle hydrodynamics (SPH) has been
established as the oldest meshless method for a variety of problems, despite technical challenges
regarding numerical instabilities and a lack of even zeroth order consistency in some formula-
tions of the method [8, 6].

The current approach will present an optimization framework that introduces a regularization
to incorporate Hermite data into the MLS process, generalizing the CFDM method to arbitrary
particle distributions. The stencils generated using this approach behave in a manner identical to
CFDM: we will demonstrate that, provided a solution to the optimization problem can be stably
computed, for problems with smooth solutions the discretization is consistent and convergence is
obtained up to the order of polynomial used in the MLS reconstruction and easily preconditioned
with standard techniques. In comparison to SPH methods, we demonstrate that for the support
typically used to discretize the Laplacian when simulating viscous flow [37], the CMLS method
is able to attain a sixth order discretization. This is relevant to a recent trend in which implicit
projection methods are used to simulate Lagrangian hydrodynamics in the incompressible SPH
(ISPH) methods (see e.g. [1, 2, 3, 4, 5]), where our new discretization can be used to achieve
substantially higher order convergence while avoiding challenges associated with consistent en-
forcement of boundary conditions.

In the RBF community, generalizations of the finite difference radial basis function method
(RBF-FD) employ a similar strategy using information gleaned from the underlying PDE to
achieve compact discretizations (e.g. [39, 9, 38, 42]). While our approach is similar in broad
strategy, posing the reconstruction as an `2-optimization allows a flexible framework that can
make use of the wealth of information regarding stable solution of least squares problems in the
literature [41, 21] and a simplified analysis; assuming that for a given particle distribution a local
polynomial reconstruction exists, the existence of an MLS reconstruction follows from standard
convex optimization arguments[12, 13]. We will show that an optimization framework allows
boundary conditions to be enforced locally via equality constraints without introducing global
penalty parameters. While for simplicity in this work we present a polynomial reconstruction,
in principle the reconstruction space can be enriched with any test functions (possibly singular).
Additionally, although RBF-type approaches have successfully generalized CFDM schemes re-
sembling [16], to our knowledge the current approach marks the first method that allows implicit
formulas for differential operators generalizing Lele-type schemes[10]. To this end, we claim
that this approach is therefore more flexible, and we provide evidence that we are able to obtain
O(N) results for both implicit approximation of derivatives and for the monolithic solution of the
steady Stokes equations.

We begin by providing a brief review of compact finite difference methods in Section 2 and
of classical moving least squares in Section 3 before introducing the CMLS method in Section
4. We demonstrate recovery of original Lele-type implicit derivatives in Section 5 and procede
in Section 6 by presenting simple examples to demonstrate how the method can be used to solve
Poisson and Helmholtz problems in 1D and 2D. We then demonstrate the necessity of our novel
boundary condition approach in performing Helmholtz decompositions as would be used in a
projection method for solving fluid mechanics problems. We finally use the framework to solve
the monolithic Stokes equations in Section 7 and present a block preconditioner that is able to
solve the resulting system with O(N) complexity while recovering optimal convergence. We
provide a comparison to results obtained using SPH to demonstrate that despite the overhead of
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block preconditioning, the accuracy gains of the current approach lead to better answers faster
when compared to an explicit method.

2. Compact finite differences

In compact finite differences, there are two broad strategies which we will refer to as Weinan-
type schemes[16] and Lele-type schemes[10]. We will later show that the CMLS schemes gen-
eralize both of these approaches for unstructured stencils and arbitrary order.

In the Weinan-type schemes, the PDE is used together with exact expressions for truncation
error to achieve fourth-order compact stencils. Consider the solution of the Poisson problem
u′′ = f on a periodic domain in 1D. To discretize the second derivative a standard centered
difference is used

u′′i ≈ Dxxu =
ui+1 − 2ui + ui−1

h2 = u′′i + Ch2u′′′′i + O(h4) (1)

where C is a constant that can be calculated exactly using Taylor series. The PDE can be used to
eliminate the second order term in the truncation error

Ch2u′′′′i = Ch2 f ′′i ≈ Ch2Dxx f + O(h4) (2)

and after reorganizing, a fourth order expression for the second derivative is obtained with the
same bandwidth as the centered difference.

Dcompact
xx ui = Dxxui −Ch2Dxx fi = u′′i + O(h4) (3)

This approach requires that C be calculable, which is trivial for uniform grids. In Lele-type
schemes, implicit expressions for derivatives are sought of the form

N∑
j=−N

α ju′i+ j =

∑M
j=1 a j

(
ui+ j − ui− j

)
h

+ O(hQ+1) (4)

The coefficients
{
α j, a j

}
are obtained by enforcing that the expression is exact for polynomials

of order Q. Calculating these coefficients is again trivial on a uniform mesh using Taylor series,
and once they are available, derivatives may be calculated by solving a well-conditioned global
matrix for

{
u′i

}
given known values of {ui} on the right hand side. For three point stencils (M =

N = 1) a fourth order discretization is obtained similar to the Weinan-scheme.

3. Collocated MLS

3.1. Classical MLS
In this work we follow the framework presented in [12]. Given a set of particles in a

compact domain Xh = {xi}i=1,...,N ⊆ Ω ⊆ Rd, we seek an approximate reconstruction of
a function u ∈ C∞(Ω) from its values ui = u(xi) over the domain. This approximation
uh(x) =

∑
j f j(x)u j is called a local polynomial reproduction of order m if for some family of

functions
{
f j

}
< ∞ with compact support ε, the approximation is exact for all polynomials of

order m, i.e. ∀p ∈ πm(Rd), ph = p. The question of what conditions are necessary on Xh such
that a local polynomial reproduction exists is technical and discussed in [12], and for the sake of
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simplicity in this paper we will informally assume a “well behaved pointset” in the sense that all
particles are separated by a finite distance, maintain polynomial unisolvency (see [12]) and are
characterized by the fill distance

hXh,Ω = sup
x∈Ω

min
1≤i≤N

||x − x j|| (5)

(i.e. the radius of the largest ball that can fit between data sites). If such an approximation exists
then the following pointwise approximation result holds.

|u(x) − uh(x)| ≤ Chm+1
Xh,Ω
|u|Cm+1(Ω) (6)

where the seminorm on the right hand side |u|Cm+1(Ω) = max
|α|=m+1

||Dαu||L∞ . For the purposes of this

work we will drop the dependence of the fill distance on the pointset unless relevant (h = hXh,Ω).
The basis for the moving least squares method is to seek such an approximation as the solution

of an optimization problem uh(x) = p∗(x), where p∗ is the minimizer of

min
p∈πm(Rd)


N∑

j=1

[
u(x j) − p(x j)

]2
W(||x − x j||)

 (7)

for a fixed point x, and where W(r) is any positive radially symmetric kernel with support ε. The
convergence rate of the discretization is independent of choice of W; however if in the limit as ε
approaches zero W approximates a Dirac delta function, the approximation will interpolate the
nodal data while becoming increasing poorly conditioned. In the current work we take W(r) =(
1 −

(
r
ε

)4
)
+
. By defining a basis P =

{
φ1, . . . , φQ

}
such that span(φ1, . . . , φQ) = πm(Rd), we can

pose this as finding an optimal coefficient vector c such that p∗ = cᵀP. The optimal coefficient
vector solving Equation 7 is given by

c(x) = M(x)−1
∑

j

Pᵀ
j W(||x − x j||)u j (8)

where
M(x) =

∑
k

Pᵀ
k W(||x − xk ||)Pk (9)

The MLS approximation is therefore given by uh(x) = Pᵀ(x)c. To use this approximation to
attain estimates of derivatives of u, a direct application of Dαu(x) ≈ Dαuh(x) requires taking
matrix derivatives of M−1, due to the implicit spatial dependence c coming from the W(||x − x j||)
terms. For high-order derivatives this is prohibitively expensive.

In the diffuse derivative approximation, the spatial dependence of c is neglected and derivatives
are applied directly to the polynomial basis, i.e.

Dα
h u(x) = (DαP(x))ᵀ c (10)

Mirzaei has shown [13] that this approximation yields the following error estimate

||Dαu − Dα
h u||L∞(Ω) ≤ C(m)hm+1−|α|

Xh,Ω
||u||Wm+1,p(Ω) (11)

which, in comparison to results analyzing the full derivative [14][15], demonstrates that the dif-
fuse derivative assumption preserves the optimal m + 1 − |α| convergence rate.

4



If one only evaluates these derivatives at the particle locations, then this provides an efficient
means to estimate derivatives for all xi ∈ Xh. Selecting at node i as a local polynomial basis Pi(x)
the Taylor monomials scaled by the kernel support ε for conditioning purposes (using multi-index
notation)

φα(x) =
1
α!

( x − xi

ε

)α
(12)

we note that the derivative operator is only nonzero when the multi-index of the derivative is the
same as that of the monomial, i.e.

DβPi = êβε−β (13)

where êβ is the canonical basis vector consisting of zeros with a one in the entry corresponding
to multi-index β. Finally, we see that after constructing and inverting the correction matrix

Mi =
∑

k

Pi(xk)ᵀWikPi(xk) (14)

all of the diffuse derivatives become available at node i by performing a single inner product
between the row corresponding to α and Pi:

Dα
h ui = ε−αêᵀαM−1

i

∑
j

Pi(x j)Wi ju j (15)

where Wi j = W(||xi − x j||).
The use of the Taylor monomials as a basis is efficient but the spectrum of the resulting nor-

mal equations matrix (Equation 14) resembles the well-known poorly conditioned Hilbert matrix,
which typically requires special care to invert. To handle this ill-conditioning, QR or SVD de-
composition can be used to invert this matrix stably or the Moore-Penrose pseudo-inverse may
be used to stabilize nearly singular values[21, 13]. For high-order polynomial reconstruction
this ill-conditioning can be avoided by selecting instead the tensor product of the Legendre basis
scaled by the kernel support length.

φα(i, j)(x, y) = Pi(
x − xi

ε
)P j(

y − yi

ε
) (16)

where α = 1, · · · ,m2 and Pi(x) denotes the ith order 1D Legendre polynomial. This stabilizes the
correction matrices but requires more neighbors relative to the Taylor basis. For the remainder of
this work unless otherwise noted, the Taylor monomials have been found to be sufficiently stable
for up to 6th order polynomial reconstruction and are used for efficiency reasons.

3.2. Collocation
Because the MLS process generates rational basis functions, a lack of efficient quadrature

rules make Galerkin-type schemes, such as the element-free Galerkin method[30], expensive and
motivate the use of a collocation framework. Variations of the moving least squares approach
used in this setting can be found in the literature under various names (e.g. generalized finite
differences[31], finite point method[32], and others[33, 34]).

For each particle, we construct, invert, and store the following correction matrix for each point
xi:

Mi =
∑

k

Pi(xk)ᵀWikPi(xk) (17)
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Derivatives are then reconstructed via

Dα
h ui = Dα

h Pᵀ
i M−1

i

∑
j

Pi(x j)Wi j

(
u j − ui

)
(18)

In order to use this to discretize a linear boundary value problem on ΩL1u = f , if x ∈ Ω

L2u = g, if x ∈ ∂Ω
(19)

we can simply distribute a “well-behaved” pointset XΩ and solve the following equation for each
particle xi Lh

1u(xi) = f (xi), if x ∈ Ω

Lh
2u(xi) = g(xi), if x ∈ ∂Ω

(20)

where the linear operators Lh
1 and Lh

2 are discretized using Equation 18. In general the resulting
linear system will be sparse but asymmetric and can be solved with standard Krylov subspace
methods such as BiCGSTAB or GMRes [21]. While this approach is efficient and applicable to
general pointsets and complicated geometries, it suffers several drawbacks common to meshless
methods. First, maintaining invertible correction matrices will require having a sufficiently large
number of neighbors that Equation 7 has a solution. This necessitates the use of large stencils,
increasing the cost of iterative methods and in practice limiting the feasibility of this approach to
second or fourth order. Second, as with standard finite difference methods, near the boundaries
the approximation becomes one-sided. Although this does not affect the convergence rate, the
magnitude of error is concentrated at boundaries. A final and more subtle drawback is that this
approach, like most finite difference-type methods, does not maintain any mimetic properties of
the continuous PDE (for example ∇ · ∇ × ·u , 0). Splitting schemes commonly used in Galerkin
formulations (see e.g. [22]) often rely on these properties and when implemented in this context
suffer in terms of accuracy. It is therefore desirable to either develop mimetic discretizations
(which often requires reintroducing a mesh)[24] or to use a high-order discretization to better
approximate the continuous operators. Further, near boundaries Galerkin methods provide a
compatibility condition between the governing PDE and the boundary conditions via integration
by parts. For finite difference methods these relations generally only have an interpretation in
terms of linear algebra [23]. These challenges render an application of this method to solve the
steady Stokes equations challenging.

4. Compact moving least squares

4.1. Optimization framework

Rather than take a larger stencil to achieve high-order, the strategy of the CMLS approach is to
use Hermite data to obtain a high-order reconstruction while maintaining compact stencils. With
the intention of solving the boundary value problem in Equation 19, we pose the following least
squares problem for the optimal polynomial reconstruction at each node i:

min
p∈πm(Rd)

∑
j

{[(
u j − p j

)2
+ ε1

(
f j − L1 p j

)2
+ 1x j∈∂Ωε2

(
g j − L2 p j

)2
]

W(||xi − x j||)
}

(21)
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Here ε1 and ε2 are regularization parameters and 1x j∈∂Ω is an indicator taking unit value for
boundary particles and zero value elsewhere. The three competing penalty terms reflect (from
left to right): how close the reconstruction is to an interpolant, how faithful it is to the PDE, and
how faithful it is to the boundary conditions for nearby points. The choice of the regularization
parameters ε1 and ε2 provide control over the relative importance of these three competing ob-
jectives, and must scale with ε such that each term is of comparable magnitude as resolution is
increased. For particles lying on the boundary, we add the constraint that the boundary condition
is satisfied exactly,

L2 pi = gi (22)

so that the boundary condition is satisfied exactly at the point i and approximately at the points j
through the third penalty term.

As this is still a least squares problem, the resulting algorithm closely mirrors the process from
the previous section; first construct and invert a single correction matrix for each particle i,

Mi =
∑

j

(
P jPᵀ

j + ε1(L1P j)(L1Pᵀ
j ) + 1x j∈∂Ωε2(L2P j)(L2Pᵀ

j )
)

Wi j (23)

which can be used to compute the optimal coefficients,

ci = M−1
i

∑
j

(
Pᵀ

j u j + ε1L1Pᵀ
j f j + 1x j∈∂Ωε2L2Pᵀ

j g j

)
Wi j (24)

and estimate derivatives using the diffuse derivative concept as

Dα
h u(x) = (DαP(x))ᵀ c (25)

To enforce the boundary condition constraint, the correction matrices are augmented to han-
dle an additional degree of freedom for a Lagrange multiplier and the optimal coefficients are
extracted from the solution of the system M̂iĉi = b̂i, where

M̂i =

[
Mi L2Pi

L2Pᵀ
i 0

]
(26)

ĉᵀi =

[
c λ

]
(27)

b̂ᵀ
i =

[ ∑
j

(
Pᵀ

j u j + C1L1Pᵀ
j f j + C2L2Pᵀ

j g j

)
Wi j gi

]
(28)

At this point the PDE can be discretized at all points, including the boundary, as

Lh
1u(xi) = f (xi),∀xi ∈ Ω ∪ ∂Ω (29)

since the boundary conditions have already been enforced naturally when building the recon-
struction and do not need to be enforced as an additional equation in contrast to Equation 20.

By incorporating the PDE into the approximation process, the amount of information per node
at each point is substantially increased. For interior points, the correction matrices are invertible
with roughly half as many neighbors, allowing high-order reconstruction with a compact stencil
and small bandwidth in the resulting discretized linear system. For boundary points, the extra
information coming from the third penalty term in Equation 21 alleviates the one-sidedness of
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the approximation near boundaries, while the constraint ensures compatibility between the PDE
and the boundary condition along the boundary.

In comparison to standard MLS, the current compact approach asymptotically requires no
additional work, and for a given order polynomial reconstruction will be shown to actually be
faster. The compact scheme requires only the addition of two additional terms in Equations 23
and 24 compared to Equations 17 and 18, but the more compact support leads to fewer terms
in the sums of each equation. Therefore, at worst the construction of stencils for each point
is perhaps two times more expensive, but the process is entirely local. Meanwhile, the more
compact stencil leads to a sparser global linear system and ultimately a faster method in addition
to being more accurate. For parallel implementations, this is ideal; the increased ratio of global
to local work with less communication due to sparsity leads to a more scalable algorithm. We
present performance results highlighting this in Section 6.

The idea of incorporating the PDE into the reconstruction process has been utilized previously
in a finite difference context in the two schemes discussed in Section 2. Both of these approaches
require a uniform mesh or exact estimates of the truncation error which are impractical to obtain
for general particle distributions. For the current approach, no information is necessary other
than the underlying PDE. This new framework is also flexible in the sense that additional prop-
erties can be built into the scheme by applying additional constraints. For example, Seibold
[19][20] was able to achieve an M-matrix structure in the Poisson problem by applying inequal-
ity constraints and adopting an L1 minimization. The approach can be extended to give even
more compact stencils by using Hermite nodal data following [17] [18].

4.2. Truncation error comparison
To demonstrate the behavior of the truncation error in this process, we artificially generate a

discretization that would correspond to solving a pressure Poisson equation with Neumann data.

∇2 p = f (30)

∂n p = g (31)

This corresponds to taking L1 = ∇2, L2 = ∂n, p = sin(x)cos(y), f = ∇2 p, and g = ∂n p. To
ensure equal magnitude across the three penalty terms in the optimization problem we select
penalty parameters to match the dimensions of the Poisson and first derivative operators squared,
i.e. ε1 = Cε4 and ε2 = Cε2 for C = 0.001. We discretize a rectangle of width W and height H
with a circle and square of radius H/2 removed from its interior to demonstrate error behavior
near curved and corner geometries (See Figure 1). For a spacing of dx = H/N, a Cartesian grid
of particles are generated within the rectangle and particles lying outside of the domain or on
the boundary are removed. Boundary particles are then introduced with spacing dx. The interior
particles are then perturbed by uniform random variable ∼ [−χ, χ]×[−χ, χ] to demonstrate a lack
of sensitivity to particle anisotropy. The kernel cutoff radii used in both methods for increasing
polynomial order are presented in Table 1. Because we will use a uniform kernel size for all
particles, the results are overly conservative; only particles near boundaries where a one-sided
approximation is formed need this large cutoff. In the interior where the approximation resembles
a centered difference with twice as many available particles, a cutoff of approximately half this
size could be used.

By increasing the number of particles N, Figure 2 demonstrates the expected algebraic conver-
gence for MLS and CMLS. Although both methods demonstrate the same convergence rate for a
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m 2 3 4 5 6 7 8 9

ε/dx (MLS) 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
ε/dx (CMLS) 1.5 2.5 2.5 3.5 3.5 4.5 4.5 5.5

Table 1: Cutoff radii for MLS and CMLS for increasing order of polynomial space πm(RD). For a given order, MLS
requires roughly twice the support of CMLS.

Figure 1: p (top) and truncation error ||∇2 p−∇2
h p|| (bottom) using 7th order polynomial space. H×L geometry discretized

with initially uniform Cartesian particles H/dx = 12 for χ = 0.2dx.

given polynomial order, CMLS achieves accuracy several orders of magnitude smaller with half
the stencil size until saturating near machine precision. Taking values of χ ∈ [0 ∗ dx, 0.4 ∗ dx]
give nearly identical results. Plots of the truncation error in Figure 1 show that the error is con-
centrated near gradients in the underlying function and not near boundaries or corners.

Alternatively, we may fix the number of particles N = 12 and increase the order of the
polynomial reconstruction. For this relatively coarse discretization (Figure 1) there are only a
couple particles across the gap between the circle and square and the outer boundary. We see
spectral-like convergence for both the gradient and Laplacian (Figure 3) in the sense that the
error decreases exponentially with polynomial order, although the support increases with m and
is therefore not exactly spectral. For a fair comparison between MLS and CMLS, we compare
accuracy for a given stencil size. For example, for ε = 4.5dx we compare 4th order MLS with 7th

order CMLS to see an increased accuracy of three orders of magnitude. Computationally, this
p-refinement approach is preferable to the h-refinement, in the sense that this increased accu-
racy is achieved only by inverting larger matrices at every particle. This process is entirely local
and provides better parallel scaling as compared with the domain decomposition approaches that
would be necessary in h-refinement.
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Figure 2: Truncation error for gradient operators (left) and Laplacian operators (right) for standard MLS (dashed lines)
and CMLS (solid lines).
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Figure 3: Spectral-like convergence for fixed resolution H/dx = 12 and increasing polynomial order.
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5. Lele-type derivatives

While the approach in the previous section more closely resembles the Weinan-type scheme
discussed in Section 2, there are many scenarios in which a derivative needs to be computed but a
PDE is unavailable. For these problems, a Lele-type approach is preferable, where the derivatives
are determined by solving a global problem to relate nodal function values to derivatives.

To calculate a derivative Dαu, we select L1 = Dα,L2 = 0, ε1 = Cε2|α|, ε2 = 0, fi = Dαui

and generate a local reconstruction in the same manner as the previous sections. This gives the
following expression for the reconstruction

uh(x; xi) = Pᵀ(x)
∑

j

(
ε1DαP(x j)Wi jDαu j + P(x j)Wi ju j

)
. (32)

If we then require that the diffuse derivative matches the nodal data, we obtain a stencil of the
form

Dαui = Dαuh(xi; xi) =
∑

j

(
αi jDαu j + ai ju j

)
(33)

where for simplicity we have lumped the terms in Equation 24 into the coefficients αi j and ai j to
obtain a stencil of the same form as Equation 4. Further, since the optimization problem Equation
21 exactly reproduces polynomials, we have obtained a scheme of order m + 1.

To highlight the similarity between this and Lele’s approach, we use a symbolic computation
library to solve for the coefficients αi j and ai j analytically for a simple 1D case. We consider
either three or five point stencils with uniform spacing h and obtain the following result for a
choice of C = 1 and W = 1.

u′i+1 + 4u′i + u′i−1 = 3
(ui+1 − ui−1

h

)
+ O(h4) (34)

6u′i+2 + 96u′i+1 + 216u′i + 96u′i−1 + 6u′i−2 =
25 (ui+2 − ui−2) + 160 (ui+1 − ui−1)

h
+ O(h8) (35)

CMLS MLS
m 4 6 8 2 4 6
ε/dx 2.5 4.5 6.5 2.5 4.5 6.5

H
dx

8 3.71E-2 4.99E-3 1.38E-3 8.40E-2 2.93E-2 1.06E-2
16 8.75E-4 4.58E-5 3.91E-6 2.13E-2 1.75E-3 1.95E-4
32 3.34E-5 6.59E-7 1.70E-8 5.44E-3 1.10E-4 2.76E-6
64 1.53E-6 8.11E-9 2.99E-9 1.37E-3 6.80E-6 4.33E-8

Conv. rate -4.442 -6.344 -8.464 -1.972 -3.996 -5.996

Table 2: Truncation error for gradh sin x sin y for Lele-type CMLS and standard MLS with identical support. Conver-
gence rate for 8th order reconstruction is calculated before error saturates around 10−7.

For this choice of weights, Lele’s original formulas [10] for tridiagonal and pentadiagonal
schemes for the first derivative are exactly recovered, and different choices of C and W will yield
a family of solutions that are optimal in the sense of Equation 21. Because the coefficients of
the stencil are generated as the solution of an optimization problem however and require no a
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Figure 4: Necessary CPU time to obtain a given truncation error for varying order reconstruction. Standard MLS given
by dashed lines while compact MLS given by solid lines.

priori calculation, the current approach is applicable to one-sided stencils near boundaries and
on general pointsets. We revisit the case discussed previously (Figure 1) and present the resulting
truncation error when Equation 33 is used to calculate the gradient of the function u = sin x sin y
in Table 2 and compare to the truncation error using standard MLS.

Because no special treatment is used near the boundary (i.e. ε2 = 0) a slightly larger sten-
cil size is required than in the previous section. Also this approach was found to be more
sensitive to the poor conditioning of Equation 14 and the Legendre basis was used to achieve
high-order reconstruction. The resulting global system of equations were found to be extremely
well-conditioned; when using GMRes with diagonal preconditioning to solve the problem[21],
for a given order reconstruction the above results all converged to a fixed solver tolerance in a
roughly constant number of iterations indepedent of the degrees of freedom in the global system.
Therefore, while for standard compact finite differences the banded structure of the discretized
system allows application of direct solvers in O(N) time, the current approach is able to main-
tain the same algorithmic complexity using an iterative solver. Figure 4 demonstrates that even
with the additional global solve, the compact formulation is faster than standard MLS since both
methods spend more time computing the correction factors than solving the global system; for
all results presented here less than 1% of the time was spent solving the global system.

6. Compact moving least squares for scalar PDE

To actually solve PDEs using this discretization we first solve simple 1D elliptic problems.
A Helmholtz decomposition problem is then used to illustrate how the compatibility of the dis-
cretization provides better answers for fluid mechanics problems.

12
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6.1. 1D example
We begin by demonstrating the convergence of the CMLS method for solving the Poisson and

Helmholtz problems with either Dirichlet or Neumann boundary conditions in a one-dimensional
context. To solve the Poisson equation on the interval [0, 2π],

∂xxu = −2 sin x (36)

we take for the first penalty operator L1 = ∂xx and f = −2sin(x) with ε1 = Cε4 and C = 0.001.
For Neumann or Dirichlet boundary conditions we take either: L2 = I, g = sin(x), and ε2 = 1 or
L2 = ∂n, g = n̂ · cos(x), and ε2 = C · h2, respectively. To solve the Helmholtz equation

u − ∂xxu = −sin(x) (37)

we lump the first term on the left hand side into f as follows: L1 = −∂xx and f = −sin(x)−u with
ε1 = Cε4 and C = 0.001 and handle the boundary conditions identically as with the Poisson case.
Both equations have as an exact solution uex = sin(x). For all problems the kernel radii from
Table 1 are used. For this simple 1D problem, LU decomposition with partial pivoting can be
used to solve the global system of equations directly. All combinations of the Poisson/Helmholtz
and Neumann/Dirichlet problems provide the expected algebraic convergence (Figure 5).

6.2. Helmholtz decomposition
In all projection methods for solving the Stokes or Navier-Stokes equations, at some point

in the scheme a Helmholtz decomposition is performed to decompose a velocity field u into a
13



divergence-free part u∗ and a gradient of a potential scalar field.

u = u∗ + ∇p (38)

Either taking the divergence or taking the dot product with the normal provides a Poisson
problem or Neumann boundary conditions, respectively.

∇ · ∇p = ∇ · u (39)

∂n p = n̂ · (u − u∗) (40)

Discretizing this by taking the composition of the discrete divergence and gradient operators
will provide a vector field with discrete divergence equal to zero. In practice, compatibility is
required between the vector and potential reconstruction to avoid spurious solutions. Approxi-
mating Equation 39 with the discrete Laplacian circumvents this issue, but the resulting vector
field is only divergence-free up to the truncation error of the discretization, since ∇2

h , ∇h ·∇h for
finite difference type schemes. These two approaches are referred to as exact and approximate
projections in the literature. Although classical MLS can be used to solve the Poisson problem
accurately, the resulting error in the divergence from performing the approximate projection in-
troduces large errors in the divergence near the boundary. To illustrate this, we discretize the
circle and square channel geometry from the previous section with a classical MLS reconstruc-
tion and plot the resulting concentration of error in Figure 6, taking as an initial divergence-free
velocity

u∗ = 〈sin x cos y,− cos x sin y〉 (41)

and
u = u∗ + 〈sin x, 0〉 . (42)

Although the pressure converges optimally, we present in Table 3 the convergence of the RMS
errors for the velocity and the divergence. The error concentrated near boundaries (See Figure
6) contaminates the overall convergence rate and suboptimal convergence is obtained. For high-
order polynomial spaces, the problem is poorly conditioned and doesn’t converge to a meaningful
solution.

m 2 4 6
For Laplacian h/dx - MLS 2.5 4.5 6.5
For divergence calculation h/dx - MLS 2.5 4.5 6.5
velocity RMS error level 1 0.459968 0.0603222 crash

level 2 0.0295923 0.00273707 crash
level 3 0.0102574 0.000132552 crash

Order convergence -1.53 -4.35 n/a
divergence RMS error level 1 1.13786 0.353851 crash

level 2 0.144321 0.0116065 crash
level 3 0.0973838 0.00117144 crash

Order convergence -0.57 -3.32 n/a

Table 3: Convergence of Helmholtz projection for classical MLS. Results for the sixth order case are unavailable because
the iterative solver failed to converge.
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m 2 4 6
For Laplacian h/dx - CMLS 1.5 2.5 3.5
For divergence calculation h/dx - MLS 2.5 4.5 6.5
velocity RMS error level 1 0.0724882 0.0118253 0.00327502

level 2 0.0164781 0.000652156 4.95633e-05
level 3 0.00392025 3.88768e-05 7.12517e-07

Order convergence -2.03 -4.07 -6.11
divergence RMS error level 1 0.101949 0.0177057 0.00485005

level 2 0.0265572 0.00106521 6.95958e-05
level 3 0.00672531 6.53083e-05 1.05734e-06

Order convergence -1.97 -4.02 -6.05

Table 4: Convergence of Helmholtz projection for CMLS with ε1 = 0.001h4 and ε2 = 0.001h2.

m 2 4 6
For Laplacian h/dx - CMLS 1.5 2.5 4.5
For divergence calculation h/dx - CMLS2 1.5 2.5 4.5
velocity RMS error level 1 0.0675608 0.00441102 0.0035661

level 2 0.0153701 0.000241528 6.04593e-05
level 3 0.0036496 1.40698e-05 7.84013e-07

Order convergence -2.03 -4.10 -6.26
divergence RMS error level 1 0.0980297 0.00956967 0.00560728

level 2 0.0249954 0.000460916 8.98542e-05
level 3 0.00628819 2.90169e-05 1.263e-06

Order convergence -1.97 -3.99 -6.15

Table 5: Convergence of Helmholtz projection for CMLS with ε1 = 0.001h4 and ε2 = 0.001h2. Divergence is calculated
with compact Lele-type MLS discretization using C = 0.01.

m 2 4 6
For Laplacian h/dx - MLS 2.5 4.5 6.5
For divergence calculation h/dx - MLS 2.5 4.5 6.5
velocity RMS error level 1 0.0936412 0.0196564 0.408108

level 2 0.0284358 0.000917299 7.29934e-05
level 3 0.0328767 4.80272e-05 1.27732e-06

Order convergence -1.18 -4.25 -5.84
divergence RMS error level 1 0.141367 0.0310297 1.91815

level 2 0.0174174 0.00149609 0.00030176
level 3 0.00752521 0.000102156 6.0867e-06

Order convergence -1.18 -3.86 -6.13

Table 6: Convergence of Helmholtz projection for CMLS with ε1 = 0 and ε2 = 0.

If instead CMLS is used, the convergence is regular with no concentration of divergence in the
projected velocity field. Figure 7 demonstrates the uniform convergence of both the projected
velocity and its divergence. For this model problem when forming the divergence on the right
hand side we use the standard MLS divergence, although in an actual projection method the
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Figure 6: Concentration of error in divergence for MLS near sharp corners for H/dx = 12,24,48 and m = 4. Even with
high-order polynomial space, error in divergence is first order.

momentum equation could be used to generate compact velocity operators. The convergence of
the velocity and divergence errors using CMLS is presented in Table 4 and demonstrates optimal
convergence. The concentration of error in the MLS results can be attributed to both the one-
sidedness of the non-compact operators and the fact that at the boundary, the boundary conditions
are imposed rather than the divergence free constraint. In finite element methods, the PDE and
boundary conditions are related through Stokes theorems, but for finite difference type methods
there is no compatibility and the divergence error appears to scale as O(h) in Figure 6. In Table
6, we solve the system using the CMLS framework but set the penalty terms to zero. This is
equivalent to using the standard MLS operators, but enforcing the boundary conditions via the
Lagrange multiplier (Equations 26-28) so that the PDE can be enforced at the boundary point
rather than enforcing the boundary condition.

Figure 7: Pointwise error for projected velocity magnitude (left) and divergence (right) for CMLS discretization. In com-
parison to Figure 6, there is no concentration of divergence error near boundaries and uniform convergence is obtained
across domain.
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7. Compact moving least squares for vector PDE - Unsteady Stokes equations

7.1. Discretization
To solve vector valued PDEs, the optimization problem in Equation 21 can be extended for

the approximation of the vector y ∈ Rn as

min
p∈(πm(Rd))

∑
j

{[(
y j − p j

)ᵀ (
y j − p j

)
+

(
f j − L1p j

)ᵀ
ε1

(
f j − L1p j

)
+1x j∈∂Ω

(
g j − L2p j

)ᵀ
ε2

(
g j − L2p j

)]
W(||xi − x j||)

} (43)

where now the penalty terms ε1 and ε2 are diagonal matrices whose entries are used to scale the
three penalty terms appropriately. As an example we consider solutions of the steady Stokes
equations with Dirichlet velocity boundary conditions and pressure boundary condition consis-
tent with the PDE. 

−ν∇2u + ∇p = f , if x ∈ Ω

∇ · u = 0, if x ∈ Ω

u = w, if x ∈ ∂Ω

∂n p − νn̂ · ∇2u = n̂ · f , if x ∈ ∂Ω

(44)

We have introduced a pressure boundary condition here because without a mesh and integration
by parts, there is no way of efficiently ensuring that the divergence at the boundary is consistent
with the velocity boundary conditions. Instead we ensure that the pressure at the boundary is
compatible with the velocity boundary condition and the momentum equation. A discussion of
these issues in a standard finite difference context can be found in [23].

These equations can be put into the form of Equation 43 by taking y = 〈u, p〉ᵀ, L1 =[
−ν∇2

h ∇h

∇h· 0

]
, L2 =

[
I 0

−νn̂ · ∇2
h ∂n

]
, f = 〈 f , 0〉ᵀ, and g = 〈w, n̂ · f 〉ᵀ, and an approxima-

tion at each point is constructed in the usual way:

Mi =
∑

j

(
P jPᵀ

j + ε1(L1P j)(L1Pᵀ
j ) + 1x j∈∂Ωε2(L2P j)(L2Pᵀ

j )
)

W(||xi − x j||) (45)

where now P ∈ Rn×Q =

{(
p1
0

)
, . . . ,

(
pQ

0

)
,

(
0
p1

)
, . . . ,

(
0
pQ

)}
is a vector valued polyno-

mial basis for
(
πm(Rd

)n
. Solution of this least squares problem gives an optimal coefficient

ci = M−1
i

∑
j

(
Pᵀ

j y j + ε1L1Pᵀ
j f j + 1x j∈∂Ωε2L2Pᵀ

j g j

)
W(||xi − x j||) (46)

which can be used to approximate differential operators using the diffuse derivative.

Dα
h yi = (DαPi)ᵀ ci (47)

When used to discretize Equation 44, the penalty term couples the approximation of velocity
and pressure together; for example the approximation to the Laplacian of the velocity gives an
expression of the form

∇2
hui =

∑
j

ai j · u j + bi j p j + ci jf j (48)
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where for simplicity we have compactly expressed Equation 47 in terms of coefficients ai j,bi j

and ci j. As a result the fully discretized form of Equation 44 assumes the following 2 × 2 block
matrix form. [

L G
D P

] [
u
p

]
=

[
f
g

]
. (49)

As when solving the scalar Poisson problem, the pressure in this system is only specified up
to an arbitrary constant. This is resolved by adding a single Lagrange multiplier and requiring
that the pressure have zero mean. This amounts to modifying the block P by padding with an
additional row and column: [

P 1
1ᵀ 0

]
(50)

where 1 denotes a vector of ones and the other blocks are padded with zeros.
To solve the coupled linear system, we use the preconditioned GMRes method. Here, we

adopt the lower triangular block preconditioners based on the following block factorization of
(49). It is well-known that an efficient and robust preconditioner is crucial for the performance
of the GMRes method for saddle-point problems [26]. Here we adopt the lower triangular block
preconditioner based on the following block factorization of the 2x2 block system (49).[

L G
D P

]
=

[
L 0
D S

] [
I L−1G
0 I

]
. (51)

where S = P − DL−1G is the Schur complement. It is well-known that if we use[
L 0
D S

]
as the preconditioner, the GMRes method converges in three iterations [35]. This requires the
explicit assembly of the Schur complement S however, which involves inverting L explicitly.
This is expensive, particularly for large-scale problems, as the resulting S is dense, making the
preconditioner prohibitively expensive. Therefore, we approximate the Schur complement by
S̃ = P − D diag(L)−1G and the lower triangular block preconditioner is given by[

L 0
D S̃

]
.

To apply the preconditioner, we still need to invert L and S̃, which could be difficult and expen-
sive. In our implementation, we use the AMG method to efficiently solve them both[36].

We use this preconditioner to simulate the so-called Wannier flow of two eccentric rotating
cylinders. For this setup an analytic solution exists[27] and provides a standard benchmark
for evaluating high-order discretizations of curvilinear geometries with strong viscous boundary
layers[28]. For this problem we select as geometric parameters cylinder radii of Rinner = π/10
and Router = π/2 and an eccentricity of e = π/5. The cylinders are set to rotate with an an-
gular velocity of Ωinner = 1 and Ωouter = 1/2. Particles are distributed on an initially uniform
lattice with D/∆x particles per domain diameter, removed if they fall outside of the domain,
and perturbed randomly to remove any misleading accuracy gains from symmetries. Particles
are then distributed along the boundary with spacing ∆x. Figure 8 demonstrates representative
particle distributions and the streamlines of the resulting solution, while Figure 9 demonstrates

18



Figure 8: Particle distributions for resolutions of D/∆x ∈ {12, 24, 48} and streamlines of solution colored by velocity
magnitude.
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Figure 9: Convergence for the Wannier flow case with quadratic and quartic polynomial reconstruction.
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Figure 10: Necessary CPU time to obtain a given RMS velocity error for varying order reconstruction.
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the convergence of the RMS velocity error. After the curvature of the boundary is adequately re-
solved, quadratic and quartic reconstruction achieve 2nd and 4th order convergence, respectively.
To investigate how best to choose the order of polynomial reconstruction, the required CPU time
to achieve a given error tolerance is given in Figure 10. For qualitatively accurate solutions of
O(1%) error the quadratic reconstruction provides the most efficient solution in under one sec-
ond. To obtain several digits of accuracy however the quartic reconstruction is most efficient.
Higher order reconstruction appears to provide diminishing returns however, because the cost
associated with the large dimension of the polynomial basis when inverting the mass matrices
becomes prohibitive.

DOF Number of Iterations Setup Time (s) Solve Time (s) Total Time (s)
576 36 0.026 0.474 0.500

1,296 52 0.033 0.837 0.870
2,304 51 0.060 1.458 1.518
5,184 67 0.104 5.071 5.175
9,216 75 0.182 9.022 9.204

Table 7: Preconditioner performance for stationary Stokes problem with quartic reconstruction (GMRes with stopping
criterion that relative residual is less than 10−6)

Preliminary benchmarking results for the preconditioner performance for the Wannier flow
problem are presented in Table 7. Although the number of iterations to obtain convergence grows
mildly with the total number of particles, the total CPU time grows nearly linearly, demonstrat-
ing the viability of the preconditioner. Development of robust and efficient preconditioners for
saddle-point systems is in general a difficult task, and we leave a more in depth discussion of
performance for future work.

8. Conclusions and future work

A flexible optimization framework for generating high-order compact collocation schemes has
been presented that generalizes compact finite difference scheme to general pointsets. While the
RBF-FD method maintains several similarities to the current approach, the use of an optimization
framework rather than RBF interpolation allows several distinct advantages. We have demon-
strated that boundary conditions may be handled naturally via equality constraints, which allows
a degree of compatibility when considering the Helmholtz problem - a key component of many
splitting schemes for the Navier-Stokes equations. We have shown that the method extends to
vector PDE by solving the steady Stokes equations. To our knowledge, this marks the first time
that a fully meshless method for the Stokes problem has been developed that is able to achieve
O(N) computational complexity while maintaining high-order convergence.

In another work, one of the authors has developed a separate scheme pursuing a similar op-
timization strategy to generalize staggered finite difference methods to general pointsets[43].
Preliminary results have shown that the two methods can be combined to obtain a meshless,
staggered, compact finite-difference approach, similar to standard finite difference methods[44].
The ability to obtain a highly stable meshless method while simultaneously achieving efficient
high-order convergence is very promising.
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Although we have presented a completely meshfree formulation, the optimization framework
can just as easily be applied to attain compact stencils in the finite volume method. Cueto-
Felgueroso et al. demonstrated how standard MLS can be applied to obtain high-order conver-
gence for unstructured problems with curvilinear boundaries[29] and this approach can easily
be modified to incorporate the compact optimization framework in Equation 21. As mentioned
previously, the optimization framework is flexible in the sense that additional constraints can be
added to achieve more theoretical properties (see e.g. [19, 20]). The method is currently being
extended to solve incompressible Navier-Stokes equations in a parallel Lagrangian framework
where the compactness of the operators will lead to improved scalability for problems requiring
high-order resolution.
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