
AM119: HW3 and OpenFOAM tutorial

Prof. Trask

March 7, 2016

1 Assignment 3: Burgers equation component

In class, we learned how the balance of momentum gives rise to non-linear flux
terms. To obtain an understanding of how this translates to our 1D periodic
example, we’re going to rerun last weeks code solving Burger’s equation instead.
Whereas the advection equation had the form:

∂tu + a∂xu = 0

We will now we solving what is referred to as Burger’s equation:

∂tu + u∂xu = 0

We can write this in conservative form as:

∂tu + ∂x

(
1

2
u2

)
= 0

or
du

dt
+∇ · F = 0

F =
1

2
u2

This code will be identical to your code from HW2, and will only re-
quire the modification of the flux calculation. Whereas previously we treated
the advection flux using upwinding, the upwind direction for Burgers equation
will depend upon whether u is positive or negative. We can write this mathe-
matically via

Vi
un+1
i − un

n

∆t
= −

(
Fi+1/2 − Fi−1/2

)
where Fi+1/2 = f(ui, ui+1) and Fi−1/2 = f(ui−1, ui), where f is calculated via

f(u, v) =

{
F (min(u, v)) if u ≤ v

F (max(u, v)) if u ≥ v
.

For this assignment, implement the new flux term, run your solver to Tfinal =
1.4 and demonstrate that your solution matches the following analytic result.

1



2 Incompressible flow through a pipe

In the notes for Lecture 3 we discussed an example where initially uniform
pipe flow settles into a parabolic velocity profile, and through a mass conserva-
tion argument we derived a relationship between the inlet velocity U∞ and the
downstream velocity profile. Today, we will set up an OpenFOAM simulation
to demonstrate numerically that this relationship is true - we will see later in
the course how to derive the velocity profile analytically.

Before we start, you’ll need to log into Oscar through CCV’s VNC client.
In our last homework assignment we implemented the finite difference method

to solve the 1D advection diffusion equation. Today, we’ve introduced the finite
volume method, which we will use at length for the remainder of the class. For
this assignment, we will be repeating the previous homework but swapping in
a finite volume discretization. This should require minimal changes to the pre-
vious homework assignment. A solution to the previous assignment will be put
on the website tomorrow (3/1) - if you had difficulty completing the previous
assignment feel free to use the solution as a starting point.

3 Get onto Oscar

We’ve gone over this in class but I’ll gather the relevant bits and pieces here
for reference. First download the VNC client from the CCV webpage (https:
//www.ccv.brown.edu/technologies/vnc). You’ll need Java to launch this -
Java is on all of the machines in the CIT, but see me if you need help getting

2

https://www.ccv.brown.edu/technologies/vnc
https://www.ccv.brown.edu/technologies/vnc


this up on your home machine. Once you launch the jar file, you should see a
scene that looks like:

Enter your username and password (case sensitive, and be careful as 5 un-
successful logins will lock your account). Next some configuration options will
pop up. You want the default options, but you might want to play with the
resolution settings to find a desktop that matches your screen resolution best.
For the purposes of this class, there is no benefit to choosing more processors,
and doing so will make your session take longer to load. You might get a mes-
sage that your session hasn’t loaded yet - just keep clicking retry until you’re
successfully logged in.

You should now have a virtual desktop setup - congratulations!!! you are
now remotely logged into the department cluster. What we’ll do now is start
up a terminal - click on the black boxy looking thing in the tray at the bottom
of the screen.

3



This terminal is where we’ll spend all of our time. I’ve included a cheatsheet
of useful Unix commands on the course website. To get warmed up, open a
terminal and run the following set of commands to: look at the contents of your
home directory, move into the data directory, look around there, and move back
home. You should see the following output.

$ l s
$ cd data
$ l s
$ cd ˜

4



If this is your first Unix experience - don’t worry. It’ll take some time to get
comfortable moving around using a command line instead of a GUI, but you’ll
get the hang of it. Next up we’re going to set up the OpenFoam environment.
I’ve stored some useful scripts in the data/classMaterial\verb directory. A
script is just a collection of terminal commands bundled together in a convenient
way. To check them out, move to the classMaterial directory, and take a look
at the setup script

$ cd ˜
$ cd data / c l a s s M a t e r i a l
$ l s
$ g e d i t loadFoamModules . sh

You should be able to see a bunch of commands that this script will execute.

5



To execute the scripts in this directory, enter

$ source ˜/ data / c l a s s M a t e r i a l / in i tFoamDi r e c to r i e s . sh
$ source ˜/ data / c l a s s M a t e r i a l / loadFoamModules . sh

At this point OpenFoam is set up to run! In the future, you only need
to run loadFoamModules.sh - the other script only needs to be run once to
initialize your home directory to be set up with OpenFoam. To get a handle on
how to use OpenFoam applications, we’re going to simulate the fully developed
pipeflow case that we looked at in class. In the data directory you can find a
folder called foamCases. We’re going to copy that into your user directory and
run it. OpenFoam has a bunch of terminal shortcuts to make it easy to jump
around - for example, typing run will take you to your runtime directory.

$ run
$ pwd
$ cp ˜/ data / foamCases/ channelCase . −r
$ l s

Now you’ve got a copy of the tutorial case in your run directory that you can
mess around with. This case is set up to run the channel flow problem we went
over in class. We’ll explore the settings for this case, but first let’s run the
incompressible fluid flow solver and take a look what the flow looks like. We’ll
run the solver (icoFoam), convert the output to a file format that works with
the CCV setup (Ensight), and open a post-processing tool (paraview)

$ icoFoam
$ foamToEnsight
$ paraview
$

Paraview will start up, and we’ll load the case output by going to File > Load

and opening Ensight/icoTest.case.

6



If you click the green button that says “Apply”, the geometry will load.
We’re looking at a 0.1 × 0.1 box, with a specified uniform flow coming in for
the left and walls at the top and bottom. What you’re looking at right now is
the initial value (t = 0) of the pressure - you can move to different timesteps
or switch between the velocity and pressure field by playing with the options
circled in red below.

7



Let’s make a plot of the downstream velocity profile. Select from the menu
Filters > Alphabetical > Plot over line, enter values for the endpoints

of the line as (0.1, 0, 0.005) and (0.1, 0.1, 0.005), and click apply. The velocity
profile that you get should look pretty parabolic. Let’s see how well it matches
up with our theoretical profile. We know from the derivation in class that the
velocity profile should satisfy

u(y) =
6U∞
L2

y (L− y)

Let’s punch that into the calculator to generate a field we can compare to, and
plot how that matches up with what we expect.

Looks good! Now, for the rest of the tutorial, what we’re going to do is
explore the case directory and I’ll show you how you can tweak the case setup
so that you can tackle the questions in HW3. You can go ahead and close
paraview. Let’s take a look at the directory - you’ll see: some numbered folders
corresponding to timesteps, a folder called constant where we specify physical
parameters, and a folder called system where we setup the case. To start with,
lets go into the system folder and take a look at all of the files. We’ll start with
blockMeshDict.

$ l s
$ cd system
$ l s
$ g e d i t blockMeshDict

This is where we specify the geometry for our case. In general, making a mesh
can be a pretty intense job. blockMesh is an OpenFoam utility for handling very

8



simple geometries. We do this by defining the vertices of blocks and explaining
how to stitch them together. I’ll explain the details of this on the board.

To rebuild the mesh according to any changes we make in the blockMesh
dictionary, we’ll drop back down to the case directory and run the utility

$ cd . .
$ blockMesh

If you pop open the other dictionaries in the system folder, you’ll see that con-
trolDict is where we specify timestepping parameters, fvSchemes is where we
specify which sort of fluxes we want to use, and fvSolution is where we specify
how to solve linear systems (we haven’t talked about the last one in class yet).
For HW3, we’ll only need to play with the geometry settings so I won’t discuss
those guys, other than to say they control the foam solver in much the same
way as your 1D solver parameters did.

Next up, we’ll dig into the constant/transportProperties dictionary. You can
see that the only thing there is a definition of the viscosity coefficient. You can
tweak this to change the viscosity of the fluid in the simulation.

Finally, one of the numbered directories in the case directory is called 0.
This is the initial condition. When you run the solver, it’ll make a bunch of
other numbered folders saving the output of the simulation at the corresponding
times. We initialize the flow by going into the initial condition directory and

9



specifying the initial values and boundary conditions there. If you go into this
directory, you’ll see a file called U and another called p, corresponding to the
velocity and pressure fields. If you pop open the velocity field, you can see the
components of what we call a field in OpenFoam. A field is a list of values at
cell centers in the interior of the domain (internalField) and a list of values at
face centers on the boundary of the domain (boundaryField). You can see that
this case is set up so that the velocity on the interior is initially at rest. At
the inlet we impose a uniform unit velocity. The walls maintain what’s called a
no-slip boundary condition, and at the outlet we enforce a zeroGradient bound-
ary condition, which meants that ∂nu = 0 for each component of the velocity
vector. We’ll get into the details of boundary conditions later in the class, but
for HW3 you’ll be tweaking the inlet velocity.

4 Assignment 3: Foam component

This exercise is going to be pretty informal, and should be completed in the lab
session following lecture today. It turns out that for this problem, the distance
downstream that it takes for the velocity to settle into a parabolic profile is
roughly inversely proportional to the viscosity. Your job is to:

• Change the viscosity from 0.01 to 0.0005

• Run the solver again - if we generate the plot we can see that at the outlet
we’re still pretty far from the parabolic downstream profile.

• Double the resolution. Convince me that your answer is refined enough
that you trust your answer.

• Get into the blockMesh dictionary and extend the domain. Do some
experimenting - if you make it too long the code will get progressively
more expensive. Give me a bunch of plots showing me that you can
characterize (roughly) the point downstream where the profile is pretty
much parabolic.

• Play with the boundary conditions: use our formula relating the down-
stream flow to the inlet velocity to show that we get the correct answer
when you change the inlet from U = 1 to U = 2 or U = 3.

10


	Assignment 3: Burgers equation component
	Incompressible flow through a pipe
	Get onto Oscar
	Assignment 3: Foam component

