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§ 1. Introduction

It was 46 years ago that Arnold discovered an amazing link between Euler’s
equation for incompressible non-viscous fluid flow and geodesics in the group of
volume-preserving diffeomorphisms SDiff(Rn) under the L2-metric [1]. One goal in
this paper is to extend his ideas to a large class of Riemannian metrics on the group
DiffS(N) of all diffeomorphisms decreasing suitably to the identity of any finite-
dimensional manifold N . The resulting geodesic equations are integro-differential
equations for fluid-like flows on N determined by an initial velocity field. In previous
papers [2]–[4], we looked at the special case where N = Rn and the metric is a sum
of Sobolev norms on each component of the tangent vector, but here we develop
the formalism to work in a very general setting.

The extra regularity given by using higher-order norms means that these met-
rics on the group of diffeomorphisms can induce a metric on many quotient spaces
of that group modulo a subgroup. This paper focuses on the space of subman-
ifolds of N diffeomorphic to some M , which we denote by B(M, N). DiffS(N)
acts on B(M, N) with open orbits, one for each isotopy type of embedding of M
in N . The spaces B may be called the Chow manifolds of N by analogy with the
Chow varieties of algebraic geometry, or non-linear Grassmannians because of their
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analogy with the Grassmannian of linear subspaces of a projective space. The key
point is that the metrics we study will descend to the spaces B(M,N) so that the
map DiffS(N)→B(M,N) (given by the group action on a base point) is a Rieman-
nian submersion. Geodesics from one submanifold to another may be thought of as
deformations of one into the other realized by a flow on N of minimal energy.

In the special case where M is a finite set of points, B(M, N) is called the
space of landmark point sets in N . This has been used extensively by statisticians
for example and is the subject of our previous paper [4]. The case B(S1, R2) is
the space of all simple closed plane curves and has been studied in many metrics;
see [5]–[7] for example. This and the case B(S2, R3) of spheres in 3-space have had
many applications to medical imaging, constructing optimal warps of various body
parts or sections of body parts from one medical scan to another [8], [9].

The high point of Arnold’s analysis was his determination of the sectional curva-
tures in the group of volume-preserving diffeomorphisms. This has had considerable
impact on the analysis of the stability or instability of incompressible fluid flow.
A similar formula for the sectional curvature of B(M, N) may be expected to shed
light on how stable or unstable geodesics are in this space, for example, whether
they are unique and effective for medical applications.

Computing this curvature required a new formula. In general, the induced inner
product on the cotangent space of a submersive quotient is much more amenable to
calculations than the inner product on the tangent space. The first author found
a new formula for the curvature tensor of a Riemannian manifold which uses only
derivatives of the former, the dual metric tensor. This result, Mario’s formula, is
proved in § 2. In that section we also define a new class of infinite-dimensional
Riemannian manifolds, robust Riemannian manifolds, to which Mario’s formula
and our analysis of submersive quotients applies. We also obtain a transparent new
proof of O’Neill’s curvature formula. This class of manifolds builds on the theory
of convenient infinite-dimensional manifolds; see [10]. To facilitate readability, this
theory is summarized in an appendix.

In § 3, we describe the diffeomorphism groups of a finite-dimensional manifold N
consisting of diffeomorphisms which decrease suitably rapidly to the identity on N
if we move to infinity on N ; only these admit charts and form a regular Lie group.
We shall denote by DiffS(N) any of these groups in order to simplify notation,
and by XS(N) the corresponding Lie algebra of suitably decreasing vector fields
on N . We introduce a very general class of Riemannian metrics given by a positive
definite self-adjoint differential operator L from the space of smooth vector fields
on N to the space of measure-valued 1-forms. This defines an inner product on
vector fields X, Y by

⟨X, Y ⟩L =
∫

N

(LX, Y ).

Note that LX paired with Y gives a measure on N and hence can be integrated
without assuming that N carries any further structure. Under suitable assumptions,
the inverse of L is given by a kernel K(x, y) on N ×N with values in p∗1TN ⊗p∗2TN .
We then describe the geodesic equation in DiffS(N) for these metrics. It is especially
simple when written in terms of the momentum. If φ(t) ∈ DiffS(N) is the geodesic,
then X(t) = ∂t(φ) ◦ φ−1 is a time-varying vector field on N and its momentum is
simply LX(t).
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In § 4 we introduce the induced metrics on B(M, N). We give the geodesic
equation for these metrics also using momentum. One of the keys to working in
this space is to define a convenient set of vector fields and forms on B in terms of
auxiliary forms and vector fields on N . In this way, differential geometry on B can
be reduced to calculations on N . Lie derivatives on N are especially useful here.

In the final § 5, we compute the sectional curvatures of B(M, N). Like Arnold’s
formula, we get a formula with several terms, each of which seems to play a different
role. The first involves the second derivatives of K and the others are expressed in
terms which we call force and stress. Force is the bilinear version of the acceleration
term in the geodesic equation and stress is a derivative of one vector field with
respect to the other, that is, half of a Lie bracket, defined in what are essentially
local coordinates. For the landmark space case, we proved this formula in our
previous paper [4]. We hope that the terms in this formula will be elucidated by
further study and analysis of specific cases.

§ 2. A covariant formula for curvature

2.1. Covariant derivative. Let (M, g) be a (finite-dimensional) Riemannian
manifold. There will be some formulae which are valid for infinite dimensional
manifolds and we will introduce definitions for these below. For each x ∈ M we
also view the metric as a bijective mapping gx : TxM → T ∗

x M . Then g−1 is the
metric on the cotangent bundle as well as the morphism T ∗M → TM . For a 1-form
α ∈ Ω1(M) = Γ(T ∗M), we consider the ‘sharp’ vector field α♯ = g−1α ∈ X(M).
If α = αidxi, then α♯ = αig

ij∂j is just the vector field obtained from α by ‘raising
indices’. Similarly, for a vector field X ∈ X(M) we consider the ‘flat’ 1-form X♭ =
gX. If X = Xi∂i, then X♭ = Xigijdxj is the 1-form obtained from X by ‘lowering
indices’. Note that

α(β♯) = g−1(α, β) = g(α♯, β♯) = β(α♯). (1)

Our aim is to express the sectional curvature of g in terms of α, β alone. It is
important that the exterior derivative satisfies

dα(β♯, γ♯) = (β♯)α(γ♯) − (γ♯)α(β♯) − α([β♯, γ♯]). (2)

We recall the definition of the Levi-Civita covariant derivative ∇ and its basic
properties:

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X)) − Z(g(X,Y ))
− g(X, [Y,Z]) + g(Y, [Z, X]) + g(Z, [X, Y ]), (3)

(∇Xα)(Y ) = Xα(Y ) − α(∇XY ),

g((∇Xα)♯, Y ) = (∇Xα)(Y ) = X(α(Y )) − α(∇XY ) (4)

= Xg(α♯, Y ) − g(α♯,∇XY ) = g(∇Xα♯, Y ) =⇒

∇X(α♯) = (∇Xα)♯,

Xg−1(α, β) = g−1(∇Xα, β) + g−1(α,∇Xβ), (5)

∇α♯β −∇β♯α = g[α♯, β♯] = [α♯, β♯]♭.
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From this follows

2(∇α♯β)(γ♯) = 2g−1(∇α♯β, γ) = 2g((∇α♯β)♯, γ♯) = 2g(∇α♯β♯, γ♯)

= α♯g−1(β, γ) + β♯g−1(γ, α) − γ♯g−1(α, β)

− g−1(α, [β♯, γ♯]♭) + g−1(β, [γ♯, α♯]♭) + g−1(γ, [α♯, β♯]♭)

= α♯β(γ♯) + β♯γ(α♯) − γ♯β(α♯) − α([β♯, γ♯]) + β([γ♯, α♯]) + γ([α♯, β♯])

= β♯γ(α♯) − α([β♯, γ♯]) + γ([α♯, β♯]) − dβ(γ♯, α♯)

= α♯γ(β♯) − β♯α(γ♯) + γ♯α(β♯) + dα(β♯, γ♯) − dβ(γ♯, α♯) − dγ(α♯, β♯).
(6)

2.2. Theorem (Mario’s Formula). Assume that all 1-forms α, β, γ, δ ∈ Ω1
g(M)

are closed. Then curvature is given by

g
(
R(α♯, β♯)γ♯, δ♯

)
= R1 + R2 + R3,

R1 =
1
4
(
−α♯γ♯δ(β♯) + α♯δ♯β(γ♯) + β♯γ♯δ(α♯) − β♯δ♯α(γ♯)

− γ♯α♯δ(β♯) + γ♯β♯δ(α♯) + δ♯α♯β(γ♯) − δ♯β♯α(γ♯)
)
,

R2 =
1
4
(
−g−1(d(γ(β♯)), d(δ(α♯))) + g−1(d(γ(α♯)), d(δ(β♯)))

)
,

R3 =
1
4
(
g([δ♯, α♯], [β♯, γ♯]) − g([δ♯, β♯], [α♯, γ♯]) + 2g([α♯, β♯], [γ♯, δ♯])

)
.

For the numerator of the sectional curvature we get

g
(
R(α♯, β♯)β♯, α♯

)
= R1 + R2 + R3,

R1 =
1
2
(
α♯α♯(∥β∥2) − (α♯β♯ + β♯α♯)g−1(α, β) + β♯β♯(∥α∥2)

)
=

1
2
(
α♯β([α♯, β♯]) − β♯α([α♯, β♯])

)
,

R2 =
1
4
(
∥d(g−1(α, β))∥2 − g−1(d(∥α∥2), d(∥β∥2))

)
,

R3 = −3
4

∥∥[α♯, β♯]
∥∥2

g
.

Recall that the sectional curvature is then

k(α♯, β♯) =
g
(
R(α♯, β♯)β♯, α♯

)
∥α∥2 ∥β∥2 − g−1(α, β)2

.

Proof. We shall need that for a function f we have

(∇β♯γ)♯f = df
(
(∇β♯γ)♯

)
= g−1(df,∇β♯γ) = β♯g−1(df, γ) − g−1(∇β♯df, γ)

= β♯γ♯f −∇β♯df(γ♯) = β♯γ♯f − 1
2
β♯df(γ♯) +

1
2
df ♯γ(β♯) − 1

2
γ♯β(df ♯)

=
1
2
df ♯γ(β♯) +

1
2
[β♯, γ♯]f =

1
2
d(γ(β♯))(df ♯) +

1
2
[β♯, γ♯]f. (7)
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For the three summands in the curvature formula, by multiple uses of formulae
(2), (6) and the closedness of α, β, γ, δ, a straightforward calculation gives us:

4(∇α♯∇β♯γ)(δ♯) =

= 2α♯(∇β♯γ)(δ♯) − 2(∇β♯γ)♯δ(α♯) + 2δ♯α((∇β♯γ)♯) − 2d(∇β♯γ)(δ♯, α♯)

= 2α♯(∇β♯γ)(δ♯) − d(γ(β♯))(d(δ(α♯)♯) − [β♯, γ♯]δ(α♯)

+ 2α♯(∇β♯γ)(δ♯) + 2(∇β♯γ)([δ♯, α♯]) = · · ·
· · · = −g−1

(
d(γ(β♯)), d(δ(α♯))

)
+ g

(
[δ♯, α♯], [β♯, γ♯]

)
+ 2α♯β♯γ(δ♯)

− 2α♯γ♯δ(β♯) + α♯δ♯β(γ♯) − [β♯, γ♯]δ(α♯) + δ♯α♯β(γ♯),

and similarly

− 4(∇β♯∇α♯γ)(δ♯) = +g−1
(
d(γ(α♯)), d(δ(β♯))

)
− g

(
[δ♯, β♯], [α♯, γ♯]

)
,

− 2β♯α♯γ(δ♯) + 2β♯γ♯δ(α♯) − β♯δ♯α(γ♯) + [α♯, γ♯]δ(β♯) − δ♯β♯α(γ♯),

− 2(∇[α♯,β♯]γ)(δ♯) =

= −[α♯, β♯]γ(δ♯) + γ♯δ([α♯, β♯]) − δ♯γ([α♯, β♯]) − d[α♯, β♯]♭(γ♯, δ♯)

= −[α♯, β♯]γ(δ♯) + g
(
[α♯, β♯], [γ♯, δ♯]

)
.

We can now compute the curvature (remember that dα = dβ = · · · = 0):

4g
(
R(α♯, β♯)γ♯, δ♯

)
= 4δ

(
R(α♯, β♯)γ♯

)
= 4δ

(
∇α♯∇β♯γ♯ −∇β♯∇α♯γ♯ −∇[α♯,β♯]γ

♯
)

= 4
(
∇α♯∇β♯γ −∇β♯∇α♯γ −∇[α♯,β♯]γ

)
(δ♯)

= −g−1
(
d(γ(β♯)), d(δ(α♯))

)
+ g−1

(
d(γ(α♯)), d(δ(β♯))

)
+ g

(
[δ♯, α♯], [β♯, γ♯]

)
− g

(
[δ♯, β♯], [α♯, γ♯]

)
+ 2g

(
[α♯, β♯], [γ♯, δ♯]

)
− α♯γ♯δ(β♯) + α♯δ♯β(γ♯) + β♯γ♯δ(α♯) − β♯δ♯α(γ♯)

− γ♯α♯δ(β♯) + γ♯β♯δ(α♯) + δ♯α♯β(γ♯) − δ♯β♯α(γ♯).

For the sectional curvature expression, this simplifies (as always, for closed 1-forms)
to the expression in the theorem. The two versions of R1 correspond to each other,
using dα = 0 and dβ = 0.

2.3. Mario’s formula in coordinates. The formula for sectional curvature
becomes especially transparent if we expand it in coordinates. Assume that α =
αidxi, β = βidxi, where the coefficients αi, βi are constants, whence α, β are closed.
Then α♯ = gijαi∂j , β♯ = gijβi∂j . Substituting these in the terms of the right-hand
side of Mario’s formula for sectional curvature, we get

2nd deriv. terms = 2R1 = 2α♯α♯(∥β∥2) + 2β♯β♯(∥α∥2) − 2(α♯β♯ + β♯α♯)g−1(α, β)

= 2αig
is(αjg

jt(βkβlg
kl),t),s + 2βig

is(βjg
jt(αkαlg

kl),t),s

− 2αig
is(βjg

jt(βkαlg
kl),t),s − 2βig

is(αjg
jt(αkβlg

kl),t),s

= 2(αiβk − αkβi)(αjβl − αlβj)gis(gjtgkl
,t ),s,

1st deriv. terms = 4R2 = ∥d(g−1(α, β))∥2 − g−1
(
d(∥α∥2), d(∥β∥2)

)
= (αiβjg

ij),sg
st(αlβkgkl),t − (αiαjg

ij),sg
st(βkβlg

kl),t

= −1
2
(αiβk − αkβi)(αjβl − αlβj)gij

,sgstgkl
,t ,
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Lie bracket = [α♯, β♯] =
(
αig

is(βkgkt),s − βig
is(αkgkt),s

)
∂t

= (αiβk − αkβi)gisgkt
,s ∂t,

Lie bracket term = 4R3 = −3g
(
[α♯, β♯], [α♯, β♯]

)
= −3(αiβk − αkβi)(αjβl − αlβj)gisgkp

,s gpqg
jtglq

,t .

Hence we have the coordinate version for the three terms in sectional curvature:

g
(
R(α♯, β♯)β♯, α♯

)
= (αiβk − αkβi)(αjβl − αlβj)

(
Rijkl

1 + Rijkl
2 + Rijkl

3

)
,

Rijkl
1 =

1
2
gis(gjtgkl

,t ),s, Rijkl
2 = −1

8
gij

,sgstgkl
,t ,

Rijkl
3 = −3

4
gisgkp

,s gpqg
jtglq

,t .

Note that the usual contravariant metric tensor gij occurs in only one place, every-
thing else being derived from the covariant metric tensor gij . Note that the first
term R1 can be split into a pure second derivative term R11 = gisgjtgkl

,st plus a first
derivative term R12 = gisgjt

,s gkl
,t .

There is also a version of Mario’s formula which is, in a sense, intermediate
between the coordinate-free version and the coordinate version. The main thing
that coordinates allow you to do is to take derivatives using the associated flat
connection. In the case of this formula, this introduces auxiliary vector fields Xα

and Xβ playing the role of ‘locally constant’ extensions of the values of α♯ and β♯ at
the point x ∈ M where the curvature is being calculated and for which the 1-forms
α, β appear to be locally constant too. More precisely, assume we are given Xα and
Xβ such that:

1) Xα(x) = α♯(x), Xβ(x) = β♯(x);
2) then α♯ −Xα is zero at x and hence has a well-defined derivative Dx(α♯ −Xα)

lying in Hom(TxM, TxM); for a vector field Y we have Dx(α♯ − Xα).Yx =
[Y, α♯ − Xα](x) = LY (α♯ − Xα)|x; the same holds for β;

3) LXα(α) = LXα(β) = LXβ
(α) = LXβ

(β) = 0;
4) [Xα, Xβ ] = 0.
Locally constant 1-forms and vector fields satisfy these conditions. Using these

forms and vector fields, we then define

F (α, β) :=
1
2
d(g−1(α, β)),

a 1-form on M called the force, and

D(α, β)(x) := Dx(β♯ − Xβ).α♯(x) = d(β♯ − Xβ).α♯(x),

a tangent vector at x called the stress.
Then, in the notation above,

g
(
R(α♯, β♯)β♯, α♯

)
(x) = R11 + R12 + R2 + R3,

R11 =
1
2
(
L2

Xα
(g−1)(β, β) − 2LXα

LXβ
(g−1)(α, β) + L2

Xβ
(g−1)(α, α)

)
(x),

R12 = ⟨F (α, α),D(β, β)⟩ + ⟨F (β, β),D(α, α)⟩ − ⟨F (α, β),D(α, β) + D(β, α)⟩,
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R2 =
(
∥F (α, β)∥2

g−1 −
⟨
F (α, α)), F (β, β)

⟩
g−1

)
(x),

R3 = −3
4
∥D(α, β) −D(β, α)∥2

gx
.

The reformulation of R1 follows from the calculation

α♯α♯(∥β∥2)(x) = Xαα♯(∥β∥2)(x) = XαXα(∥β∥2)(x) + Xα(α♯ − Xα)(∥β∥2)(x)

= LXαLXα(g−1(β, β))(x) + ⟨Dx(α♯ − Xα).Xα(x), d∥β∥2)(x)⟩

= L2
Xα

(g−1)(β, β)(x) + ⟨Dx(α♯ − Xα).Xα(x), d∥β∥2)(x)⟩,

and similar result for the other terms. The reformulation of R3 comes from the
calculation

[α♯, β♯](x) = (Xα ◦ β♯)(x) − (Xβ ◦ α♯)(x)

= (Xα ◦ (β♯ − Xβ))(x) − (Xβ ◦ (α♯ − Xα)(x)

= Dx((β♯ − Xβ).Xα(x) − Dx(α♯ − Xα).Xβ(x).

2.4. Infinite-dimensional manifolds. The main focus of this paper are the
infinite-dimensional manifolds of diffeomorphisms of a finite-dimensional N , of the
embeddings of one finite-dimensional M into another N and of the set of subman-
ifolds F of a manifold N . These are infinite-dimensional and can be realized in
multiple ways depending on the degree of smoothness imposed on the diffeomor-
phism/embedding/submanifold. The first two have realizations as Hilbert mani-
folds but the last has not. Moreover, the group law on the Hilbert manifold version
of the group of diffeomorphisms is not differentiable. If one desires to carry over
finite-dimensional techniques to the infinite-dimensional setting, it works much more
smoothly to use the Fréchet space of C∞ functions decreasing rapidly at infinity as
the base vector space for charts of these spaces. But then its dual is not Fréchet, so
one needs a bigger category for charts on bundles. The best setting has been devel-
oped by one of the authors and his collaborators [10] and uses ‘c∞-open’ subsets
in arbitrary ‘convenient’ locally convex topological vector spaces for charts. This
theory and some of the reasons why it works are summarized in the appendix. For
our purposes, complete locally convex topological vector spaces (which are always
convenient) suffice and, on them, ‘c∞-open’ just means open.

To extend Mario’s formula to infinite-dimensional manifolds then, let (M, g) be
a so-called ‘weak Riemannian manifold’ [10]: a convenient manifold M and a smooth
map

g : TM ×M TM −→ R

which is a positive-definite symmetric bilinear form gx on each tangent space TxM ,
x ∈ M . For a convenient manifold we have to choose what we mean by 1-forms
carefully. For each x ∈ M the metric defines a mapping gx : TxM → T ∗

x M (which
we denote by the same symbol gx). In the case of a Riemannian–Hilbert manifold,
this is bijective and has an inverse but otherwise is only injective, whence the term
‘weak metric’. The image g(TM) ⊂ T ∗M is called the g-smooth cotangent bundle.
Then g−1 is the metric on the g-smooth cotangent bundle as well as the mor-
phism g(TM) → TM . Now define Ω1

g(M) := Γ(g(TM)) and α♯ = g−1α ∈ X(M),
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X♭ = gX are as above. The exterior derivative is now defined by

dα(β♯, γ♯) = (β♯)α(γ♯) − (γ♯)α(β♯) − α([β♯, γ♯]).

We have d : Ω1
g(M) → Ω2(M) = Γ(L2

skew(TM ; R)) since the embedding g(TM) ⊂
T ∗M is a smooth fibre-linear mapping. Note that on an infinite-dimensional mani-
fold M there are many choices of differential forms but only one of them is suitable
for analysis on manifolds. These are discussed in [10, § 33]. Here we consider sub-
spaces of these differential forms.

Further requirements need to be imposed on (M, g) for our theory to work. Since
it is an infinite-dimensional weak Riemannian manifold, the Levi-Civita covariant
derivative might not exist in TM . The Levi-Civita covariant derivative exists if
and only if the metric itself admits gradients with respect to itself in the following
senses. The easiest way to express this is locally in a chart U ⊂ M . Let VU be the
vector space of constant vector fields on U . Then we assume that there are smooth
maps grad1g and grad2g from U × VU to VU , quadratic in VU such that

Dx,Zgx(X, X) = gx(Z, grad1 g(x)(X, X))
Dx,Xgx(X, Z) = gx(grad2 g(x)(X, X), Z)

for all Z. (8)

(If we express this globally we also get derivatives of the vector fields X and Z.)
This allows to use (3) to get the covariant derivative. Then the rest of the derivation
of Mario’s formula goes through and the final formula for curvature holds in both
the finite- and infinite-dimensional cases. There are situations where the covariant
derivative exists but not both gradients; see [11] and the corresponding extension
[12, Appendix] to the real line.

Some constructions to be done shortly encounter a second problem: they lead to
vector fields whose values do not lie in TxM , but in the Hilbert space completion
TxM with respect to the inner product gx. To manipulate these as in the finite-
dimensional case, we need to know that

∪
x∈M TxM forms a smooth vector bundle

over M . More precisely, choose an atlas (Uα, uα : Uα → E) of M , where the sets
Uα ⊂ M form an open cover of M , each uα : Uα → E is a homeomorphism of Uα

onto the open subset uα(Uα) of the convenient vector space E which models M ,
and uαβ = uα ◦ u−1

β : uβ(Uα ∩ Uβ) → uα(Uα ∩ Uβ)) is a smooth diffeomorphism.
The mappings x 7→ φαβ(x) = duαβ(u−1

β (x)) ∈ L(E, E) then form the cocycle of
transition functions φαβ : Uα ∩Uβ → GL(E) which define the tangent bundle TM .
We then assume that the local expressions of each Riemannian metric gx on E are
equivalent weak inner products and hence define Hilbert space completions which
are quasi-isometric via extensions of the embeddings of E (in each chart). Let
us call one such Hilbert space H. We then require that all transition functions
φαβ(x) : E → E extend to bounded linear isomorphisms H → H and that each
φαβ : Uα ∩ Uβ → L(H,H) is again smooth.

These two properties will be sufficient for all the constructions we need so we
make them into a definition.

Definition. A convenient weak Riemannian manifold (M, g) will be called
a robust Riemannian manifold if the following conditions hold.

1) The Levi-Civita covariant derivative exists. Equivalently, the metric gx admits
gradients in the above two senses.

2) The completions TxM form a vector bundle as described above.
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Note that a Hilbert manifold is automatically robust. We can make the rela-
tionship between robust manifolds and Hilbert manifolds more explicit if we intro-
duce another definition, that of a pre-Hilbert manifold similar to the notion of
a pre-Hilbert topological vector space.

Definition. A robust Riemannian manifold (M, g) is said to be pre-Hilbert if
there exists an atlas (Uα, uα : Uα → E) for which:

1) each uα(Uα) is contained in the Hilbert norm interior of its closure in H, which
we denote uα(Uα)H;

2) all chart-change maps uαβ extend to smooth mappings between the open sub-
sets uα(Uα)H and hence define a completion M ⊂ MH which is a Hilbert manifold.

Note that in this definition the atlas must be properly chosen: for example its
open sets Uα must be open in the weak topology defined by path lengths. More pre-
cisely, for any weak Riemannian manifold M , the inner products gx assign a length
to every smooth path in M and we get a distance function d(x, y) as the infimum of
lengths of paths joining x and y (which might however be zero for some x ̸= y). The
topology defined by path lengths is usually much weaker than the strong topology
given by the definition of M .

These distinctions are well illustrated by the spaces we will discuss below. Firstly,
manifolds of smooth mappings like Emb(M,N) with their canonically induced
Sobolev metrics of order s > dim M/2 do admit completions Embs(M,N) to Hilbert
manifolds and hence are pre-Hilbert; see [10, § 42.1] for the explicit chart changes.
But their quotient manifolds B(M, N) = Emb(M, N)/ Diff(M) are only robust in
general because the second condition fails. The extensions of the chart-change maps
are homeomorphisms but not differentiable. This is due to the fact that the Sobolev
completions Diffs(M) of Diff(M) of order s > dim M/2 are smooth manifolds them-
selves, but only topological groups: right translations are still smooth, while left
translations and inversions are only continuous (and not even Lipschitz). So the
action of Diffs(M) on Embs(M, N), after Sobolev completion, has aspects which
are only continuous, and thus Bs(M, N) = Embs(M, N)/Diffs(M) is only a topo-
logical manifold in general. This phenomenon also appears in the chart changes of
the canonical atlas of B(M, N); see [10, § 44.1] for an explicit formula of the chart
change and the role of inversion in Diffs(M) in it.

2.5. Covariant curvature and O’Neill’s formula: finite-dimensional case.
Let p : (E, gE)→ (B, gB) be a Riemannian submersion between finite-dimensional
manifolds, that is, for each b∈B and x∈Eb := p−1(b) the gE-orthogonal splitting

TxE = Tx(Ep(x)) ⊕ Tx(Ep(x))⊥ =: Tx(Ep(x)) ⊕ Horx(p)

has the property that Txp : (Horx(p), gE) → (TbB, gB) is an isometry. Each vector
field X ∈ X(E) is decomposed as X = Xhor + Xver into horizontal and vertical
parts. Each vector field ξ ∈ X(B) can be lifted uniquely to a smooth horizontal field
ξhor ∈ Γ(Hor(p)) ⊂ X(E). O’Neill’s formula says that for any two horizontal vector
fields X, Y on E and any x ∈ E, the sectional curvatures of E and B are related by

gp(x)

(
RB(p∗(Xx), p∗(Yx))p∗(Yx), p∗(Xx)

)
= gx

(
RE(Xx, Yx)Yx, Xx

)
+

3
4
∥[X, Y ]ver∥2

x.

Comparing Mario’s formula on E and B gives an immediate proof of this fact. We
start with a lemma.
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Lemma. If α ∈ Ω1(B) is a 1-form on B , then the vector field (p∗α)♯ is horizontal
and we have Tp◦(p∗α)♯ = α♯◦p. Therefore (p∗α)♯ equals the horizontal lift (α♯)hor .
For each x ∈ E the mapping (Txp)∗ : (T ∗

p(x)B, g−1
B ) → (T ∗

x E, g−1
E ) is an isometry.

Proof. All this holds because for Xx ∈ TxE we have

gE((p∗α)♯
x, Xx) = (p∗α)x(Xx) = αp(x)(Txp.Xx) = αp(x)(Txp.Xhor

x )

= gE((p∗α)♯
x, Xhor

x ),

gB

(
Txp(p∗α)♯

x, Txp.Xx

)
= gE((p∗α)♯

x, Xhor
x ) = αp(x)(Txp.Xx)

= gB(α♯
p(x), Txp.Xx).

More generally we have

g−1
E (p∗α, p∗β) = gE((p∗α)♯, (p∗β)♯) = gB(α♯, β♯) ◦ p = p∗g−1

B (α, β).

Consequently, we get for 1-forms α, β on B:

d∥p∗α∥2
g−1

E

= dp∗∥α∥2
g−1

B

= p∗d∥α∥2
g−1

B

,

(p∗β)♯∥p∗α∥2
g−1

E

= (p∗d∥α∥2
g−1

B

)((α♯)hor) = p∗(β♯∥α∥2
g−1

B

).

In the following computation we use

∥[(p∗α)♯, (p∗β)♯]hor∥2
gE

= p∗∥[α♯, β♯]∥2
gB

.

We take Mario’s formula (§ 2.2) and apply it to the closed 1-forms p∗α, p∗β on E,
where α, β are closed 1-forms on B. Using the results above, we get

4gE

(
R((p∗α)♯, (p∗β)♯)(p∗β)♯, (p∗α)♯

)
= ∥d(g−1

E (p∗α, p∗β))∥2
g−1

E

− g−1
E

(
d(∥p∗α∥2

g−1
E

), d(∥p∗β∥2
g−1

E

)
)

− 3∥[(p∗α)♯, (p∗β)♯]hor∥2
gE

− 3∥[(p∗α)♯, (p∗β)♯]ver∥2
gE

+ 2(p∗α)♯(p∗α)♯(∥p∗β∥2
g−1

E

) + 2(p∗β)♯(p∗β)♯(∥p∗α∥2
g−1

E

)

− 2((p∗α)♯(p∗β)♯ + (p∗β)♯(p∗α)♯)g−1
E (p∗α, p∗β)

= p∗∥d(g−1
B (α, β))∥2

g−1
B

− p∗g−1
B

(
d(∥α∥2

g−1
B

), d(∥β∥2
g−1

B

)
)
− 3p∗∥[α♯, β♯]∥2

gB

− 3∥[(p∗α)♯, (p∗β)♯]ver∥2
gE

+ 2p∗
(
α♯α♯(∥β∥2

g−1
B

)
)

+ 2p∗
(
β♯β♯(∥α∥2

g−1
B

)
)
− 2p∗

(
(α♯β♯ + β♯α♯)g−1

B (α, β)
)

= 4p∗gB

(
RB(α♯, β♯)β♯, α♯

)
− 3∥[(p∗α)♯, (p∗β)♯]ver∥2

gE
,

which is a short proof of O’Neill’s formula.

2.6. Covariant curvature and O’Neill’s formula. Let p : (E, gE) → (B, gB)
be a Riemann submersion between infinite-dimensional robust Riemann mani-
folds, that is, for each b ∈ B and x ∈ Eb := p−1(b), the tangent mapping
Txp : (TxE, gE) → (TbB, gB) is a surjective metric quotient map, so that

∥ξb∥gB
:= inf

{
Xx ∈ TxE : Txp.Xx = ξb

}
. (9)

The infimum need not be attained in TxE but will be in the completion TxE. The
orthogonal subspace {Yx : gE(Yx, Tx(Eb)) = 0} has therefore to be taken in TxE.
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If αb = gB(α♯
b, ) ∈ gB(TbB) ⊂ T ∗

b B is an element in the gB-smooth dual, then
p∗αb := (Txp)∗(αb) = gB(α♯

b, Txp ) : TxE → R is in T ∗
x M but in general it is not

an element in the smooth dual gE(TxE). It is, however, an element of the Hilbert
space completion gE(TxE) of the gE-smooth dual gE(TxE) with respect to the norm
∥ · ∥g−1

E
, and the element g−1

E (p∗αb) =: (p∗αb)♯ is in the ∥ · ∥gE
-completion TxE

of TxE. We can call g−1
E (p∗αb) =: (p∗αb)♯ the horizontal lift of α♯

b = g−1
B (αb) ∈ TbB.

In the following we discuss the manifold E and write g instead of gE . The metric
gx can be evaluated at elements of the completion TxE. Moreover, for any smooth
sections X, Y ∈ Γ(TE) the mapping g(X, Y ) : M → R is still smooth. Indeed, this
is a local question, so let E be c∞-open in a convenient vector space VE . Since
the evaluations on X ⊗ Y form a set of bounded linear functionals on the space
L2

sym(VM ; R) of bounded symmetric bilinear forms on VM which recognize bounded
subsets, it follows that g is smooth as a mapping M → L2

sym(VM ; R), by the smooth
uniform boundedness theorem; see [10].

Lemma. If α is a smooth 1-form on an open subset U of B with values in the
gB-smooth dual gB(TB), then p∗α is a smooth 1-form on p−1(U) ⊂ E with values
in the ∥ · ∥g−1

E
-completion of the gE-smooth dual gE(TE). Thus also (p∗α)♯ is

smooth from E into the gE-completion of TE , and it has values in the subbundle
gE-orthogonal to the vertical bundle in the gE-completion. We may continuously
extend Txp to the ∥ · ∥g−1

E
-completion, and then we have Tp ◦ (p∗α)♯ = α♯ ◦ p.

Moreover, the Lie bracket of two such forms, [(p∗α)♯, (p∗β)♯], is defined. The exte-
rior derivative d(p∗α) is defined and is applicable to vector fields with values in the
completion, like (p∗β)♯ .

That the Lie bracket is defined is also a non-trivial statement: we have to differ-
entiate in directions which are not tangent to the manifold.

Proof of the lemma. This is a local question, and so we may assume that
U = B and p−1(U) = E are c∞-open subsets in convenient vector spaces VB and VE ,
respectively, so that all tangent bundles are trivial. By definition, α♯ = g−1

B ◦α : B →
B × VB is smooth. We have to show that (p∗α)♯ = g−1

E ◦ p∗α is a smooth mapping
from E into the ∥ · ∥gE -completion of VE . By the smooth uniform boundedness
theorem (see [10]) it suffices to check that the composition with each bounded linear
functional in a set S ⊂ V ′

E is smooth, where S ⊆ V ′
E is a set of linear functionals

on VE which recognizes bounded subsets of VE . For this property, functionals of
the form gE(v, · ) for v ∈ VE suffice. But

x 7→ (gE)x(v, (p∗α)♯|x) = p∗α|x(v) = α|x(Txp.v)

is obviously smooth.
We can continuously extend the metric quotient mapping Txp to the ∥ · ∥gE

-
completion and get a mapping Txp : TxE → TbB, where b = p(x). For a second
form β ∈ Γ(gB(TB)), we then have

gB(β♯|b, Txp.(p∗α)♯|x) = (βb(Txp.(p∗α)♯|x) = (p∗β)|x((p∗α)♯|x)

= g−1
E ((Txp)∗β, (Txp)∗α) = gB(βb, αb) = gB(β♯|b, (α♯ ◦ p)(x)),

which implies that Tp ◦ (p∗α)♯ = α♯ ◦ p.
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For the Lie bracket of two such forms, [(p∗α)♯, (p∗β)♯], we can again assume that
all bundles are trivial. Then

[(p∗α)♯, (p∗β)♯](x) = d((p∗β)♯)(x)((p∗α)♯) − d((p∗α)♯)(x)((p∗β)♯),

d((p∗β)♯)(x)((p∗α)♯) = d(g−1
E ◦ (Tp)∗ ◦ β ◦ p)(x)((p∗α)♯)

= d(g−1
E ◦ (Tp)∗ ◦ β)(b).Txp.(p∗α)♯ = d(g−1

E ◦ (Tp)∗ ◦ β)(b).α♯(p(x)).

So the Lie bracket is well defined.

By assumption, the metric g = gE admits gradients with respect to itself as in (8)
§ 2.4. In a local chart we have

Dx,Zgx(X,X) = gx(Z, grad1 g(x)(X,X))
Dx,Zgx(Z, X) = gx(grad2 g(x)(Z, Z), X)

(10)

for X, Z ∈ VE . We can then take X ∈ VE in the upper left expression of (10) and
thus also in the right hand side. Then the upper right term allows to take Z ∈ VEM
also. This carries over to the lower expression.

Thus the local expressions of the Christoffel symbols of the Levi-Civita covariant
derivative extend to sections of the completed tensor bundle TE, and therefore
the Levi-Civita covariant derivative extends to smooth sections of TE which are
differentiable in directions in TE like (p∗α)♯. Thus expressions like ∇E

(p∗α)♯(p∗β)♯

make sense and are again of the same type so that one can iterate. Thus the
curvature expression gE

(
R((p∗α)♯, (p∗β)♯)(p∗α)♯, (p∗β)♯

)
makes sense. Moreover,

all operations used in the proof in § 2.2 work again, so this result holds. The proof
in § 2.5 works and we can conclude the following result.

Theorem 2.1. Let p : (E, gE) → (B, gB) be a Riemann submersion between
infinite-dimensional robust Riemann manifolds. Then for 1-forms α, β ∈ Ω1

gB
(B)

O’Neill’s formula holds in the form

gB

(
RB(α♯, β♯)β♯, α♯

)
= gE

(
RE((p∗α)♯, (p∗β)♯)(p∗β)♯, (p∗α)♯

)
+

3
4
∥[(p∗α)♯, (p∗β)♯]ver∥2

gE
.

§ 3. The diffeomorphism group DiffS(N)

3.1. Diffeomorphism groups. Let N be one of the following manifolds.
1) N is a compact manifold. Then let Diff(N) be the regular Lie group [10, § 38]

consisting of all smooth diffeomorphisms of M .
2) N is Rn. We let DiffS(Rn) denote the group of all diffeomorphisms of Rn

which decay rapidly towards the identity. This is a regular Lie group (for n = 1
this is proved in [3, § 6.4]; the proof there works for arbitrary n). Its Lie algebra is
the space XS(Rn) of rapidly decreasing vector fields, with the negative of the usual
bracket as Lie bracket.

3) More generally, (N, g) is a non-compact Riemannian manifold of bounded
geometry; see [13]. It is a complete Riemannian manifold and all covariant deriva-
tives of the curvature are bounded with respect to g. Then there is a well-developed
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theory of Sobolev spaces on N . Let H∞ denote the intersection of all Sobolev spaces,
which consists of smooth functions (or sections). Even on N = R the space H∞ is
strictly larger than the subspace S of all rapidly decreasing functions (or sections),
which can be defined by the condition that the Riemannian norm of all iterated
covariant derivatives decreases faster than the inverse of any power of the Rieman-
nian distance. There is almost no information available on the space S for a general
Riemannian manifold of bounded geometry. For the following we let S denote
either H∞ or the space of rapidly decreasing functions. We let DiffS(N) denote the
group of all diffeomorphisms which decay rapidly towards the identity (or differ
from the identity by H∞). It is a regular Lie group with Lie algebra the space
XS(N) of rapidly decreasing vector fields with the negative of the usual bracket. In
[3, § 6.4] this was proved for N = R, but a similar proof works for the general case
discussed here.

In general, we need to impose some boundary conditions near infinity for groups
of diffeomorphisms on a non-compact manifold N : the full group Diff(N) of all
diffeomorphisms with its natural compact C∞-topology is not locally contractible,
so it does not admit any atlas of open charts.

For uniformity of notation, we shall denote by DiffS(N) any of these regular Lie
groups. Its Lie algebra is denoted by XS(N) in each of these cases, with the negative
of the usual bracket as Lie bracket. We shall also denote by O = C∞∩S ′ the space of
smooth functions in the dual space S ′ (to be specific, this is the space OM in the
sense of Laurent Schwartz when N = Rn).

3.2. Riemann metrics on the diffeomorphism group. Motivated by the
concept of robust Riemannian manifolds and by [14, Ch. 12] we will construct
a right-invariant weak Riemannian metric by assuming that we have a Hilbert
space H together with two bounded injective linear mappings

XS(N) = ΓS(TN)
j1 // H

j2 // ΓC2
b
(TN), (11)

where ΓC2
b
(TN) is the Banach space of all C2 vector fields X on N which are

globally bounded together with ∇gX and ∇g∇gX with respect to g, such that
j2 ◦ j1 : ΓS(TN) → ΓC2

b
(TN) is the canonical embedding. We also assume that j1

has dense image.
Dualizing the Banach spaces in equation (11) and using the canonical isomor-

phisms (which we call L and K) between H and its dual H′, we get the diagram

ΓS(TN)
� _

j1

��

ΓS′(T ∗N)

H
� _

j2

��

L // H′
?�

j′
1

OO

K
oo

ΓC2
b
(TN) ΓM2(T ∗N)

?�

j′
2

OO
(12)

Here we have written ΓS′(T ∗N) for the dual of the space of smooth vector fields
ΓS(TN) = XS(N). We call these 1-co-currents as 1-currents are elements in the
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dual of ΓS(T ∗N). It contains smooth measure-valued cotangent vectors on N (which
we will write as ΓS(T ∗N ⊗vol(N))) as well as the bigger subspace of second deriva-
tives of finite measure-valued 1-forms on N , which we have written as ΓM2(T ∗N)
and which is part of the dual of ΓC2

b
(TN). In what follows, we will have many

momentum variables with values in these spaces.
The restriction of L to XS(N) via j1 gives us a positive-definite weak inner

product on XS(N). It may be defined by a distribution-valued kernel, which we
also write as L:

⟨ · , · ⟩L : XS(N) × XS(N) → R

is defined by

⟨X, Y ⟩L = ⟨j1X, j1Y ⟩H =
∫∫

N×N

(
X(y1) ⊗ Y (y2), L(y1, y2)

)
,

where L ∈ ΓS′(pr∗1(T
∗N) ⊗ pr∗2(T

∗N)).
Extending this weak inner product right-invariantly over DiffS(N), we get

a robust weak Riemannian manifold in the sense of § 2.4.
In the case (called the standard case below) when N = Rn and

⟨X,Y ⟩L =
∫

Rn

⟨(1 − A∆)lX,Y ⟩ dx,

we have

L(x, y) =
(

1
(2π)n

∫
ξ∈Rn

ei⟨ξ,x−y⟩(1 + A|ξ|2)l dξ

) n∑
i=1

(dui|x ⊗ dx) ⊗ (dui|y ⊗ dy),

where dξ, dx and dy denote the Lebesgue measure and (ui) are linear coordinates
on Rn. Here H is the space of Sobolev H l-vector fields on N .

Note that given an operator L with appropriate properties, we can reconstruct
the Hilbert space H with the two bounded injective mappings j1, j2.

Construction of the reproducing kernel K. The inverse map K is even nicer as it
is given by a C2-tensor, the reproducing kernel. To see this, note that ΓM2(T ∗N)
contains the measures supported at one point x defined by an element αx ∈ T ∗

x N .
Then j2(K(j′2(αx))) is given by a C2-vector field Kαx on N which satisfies

⟨Kαx , X⟩H = αx(j2X)(x) for all X ∈ H, αx ∈ T ∗
x N. (13)

The map αx 7→ Kαx is weakly C2
b . Thus by [10, Theorem 12.8] this mapping

is strongly Lip1 (that is, differentiable and the derivative is locally Lipschitz, for
the norm on H). Since evy ◦K : T ∗

x N ∋ αx 7→ Kαx(y) ∈ TyN is linear we get
a corresponding element K(x, y) ∈ L(T ∗

x N,TyN) = TxN⊗TyN with K(y, x)(αx) =
Kαx

(y).
Using (13) twice, we have (omitting j2)

βy.K(y, x)(αx) =
⟨
K( · , x)(αx), K( · , y)(βy)

⟩
H = αx.K(x, y)(βy)

so that
1) K(x, y)⊤ = K(y, x) : T ∗

y N → TxN ;
2) K ∈ ΓC2

b
(pr1∗ TN ⊗ pr∗2 TN).
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Moreover, the operator K defined directly by integration

K : ΓM2(T ∗N) → ΓC2
b
(TN), K(α)(y2) =

∫
y1∈N

(K(y1, y2), α(y1)),

is the same as the inverse K of L. In fact, by definition, they agree on sections
in ΓC2(T ∗M) with finite support and these are weakly dense. Hence they agree
everywhere.

We will sometimes use the abbreviations ⟨α|K|, |K|β⟩ and ⟨α|K|β⟩ for the con-
traction of the vector values of K in its first and second variable against 1-forms
α and β. Often these are measure-valued 1-forms so that, after contracting, there
remains a measure in that variable which can be integrated.

Thus the C2-tensor K determines L and hence H and hence the whole metric
on DiffS(N). It is tempting to start with the tensor K, assuming that it is symmetric
and positive definite in a suitable sense. But rather subtle conditions on K are
required in order that its inverse L be defined on all infinitely differentiable vector
fields. For example, if N = R, the Gaussian kernel K(x, y) = e−|x−y|2 does not give
such an L.

In the standard case we have

K(x, y) = Kl(x − y)
n∑

i=1

∂

∂xi
⊗ ∂

∂yi
, Kl(x) =

1
(2π)n

∫
ξ∈Rn

ei⟨ξ,x⟩

(1 + A|ξ|2)l
dξ,

where Kl is given by a classical Bessel function of differentiability class C2l.

3.3. The zero compressibility limit. Although the family of metrics above
does not include the case originally studied by Arnold (the L2-metric on volume-
preserving diffeomorphisms), it does include metrics which have this case as a limit.
Taking N = Rn and starting with the standard Sobolev metric, we can add a diver-
gence term with a coefficient B:

⟨X,Y ⟩L =
∫

Rn

(
⟨(1 − A∆)lX, Y ⟩ + B. div(X) div(Y )

)
dx.

Note that as B approaches ∞, the geodesics will tend to lie on the cosets with respect
to the subgroup of volume-preserving diffeomorphisms. And when, in addition,
A approaches zero, we get the simple L2-metric used by Arnold. This suggests that,
as in the so-called ‘zero-viscosity limit’, we should be able to construct geodesics in
Arnold’s metric, that is, solutions of Euler’s equation, as limits of geodesics for this
larger family of metrics on the full group.

The resulting kernels L and K are no longer diagonal. To L, we must add

B

n∑
i=1

n∑
j=1

(
1

(2π)n

∫
ξ∈Rn

ei⟨ξ,x−y⟩ξi.ξj dξ

)
(dui|x ⊗ dx) ⊗ (duj |y ⊗ dy).

It can be checked that the corresponding kernel K will have the form

K(x, y) = K0(x − y)
n∑

i=1

∂

∂xi
⊗ ∂

∂yi
+

n∑
i=1

n∑
j=1

(KB),ij(x − y)
∂

∂xi
⊗ ∂

∂yj
,

where K0 is the kernel as above for the standard norm of order l, and KB is a second
radially symmetric kernel on Rn depending on B.



124 M. MICHELI, P.W. MICHOR, D. MUMFORD

3.4. The geodesic equation. According to [1], the geodesic equation on any
Lie group G with a right-invariant metric is given as follows. Let g(t) be a path
in G and let u(t) = ġ(t).g(t)−1 = T (µg(t)−1

)ġ(t) be the right logarithmic derivative,
a path in its Lie algebra g. Here µg : G → G is right translation by g. Then g(t) is
a geodesic if and only if

∂tu = − ad⊤
u u,

where the transpose ad⊤
X is the adjoint of adX : g → g with respect to the metric

on g.
In our case the Lie algebra of DiffS(N) is the space XS(N) of all rapidly decreas-

ing smooth vector fields with Lie bracket (we write adX Y ) the negative of the usual
Lie bracket: adX Y = −[X, Y ]. Then a smooth curve t 7→ φ(t) of diffeomorphisms
is a geodesic for the right-invariant weak Riemannian metric on DiffS(N) induced
by the weak inner product ⟨ · , · ⟩L on XS(N) if and only if

∂tu = − ad⊤
u u

as above. Here the time-dependent vector field u is now given by ∂tφ(t) = u(t)◦φ(t),
and the transpose ad⊤

X by

⟨ad⊤
X Y, Z⟩L = ⟨Y, adX Z⟩L = −⟨Y, [X, Z]⟩L.

The inner product is weak; existence of ad⊤
X implies condition 1) for robustness

of the weak Riemannian manifold (DiffS(N), ⟨ · , · ⟩L); it is equivalent to the fact
that the dual mapping ad∗

X : XS(N)′ → XS(N)′ maps the smooth dual L(XS(N))
to itself. We also have L ◦ ad⊤

X = ad∗
X ◦L. Using Lie derivatives, the computation

of ad∗
X is especially simple. Namely, for any section ω of T ∗N ⊗vol and vector fields

ξ, η ∈ XS(N), we have∫
N

(ω, [ξ, η]) =
∫

N

(ω,Lξ(η)) = −
∫

N

(Lξ(ω), η),

whence ad∗
ξ(ω) = +Lξ(ω). Thus the Hamiltonian version of the geodesic equation

on the smooth dual L(XS(N)) ⊂ ΓC2(T ∗N ⊗ vol) becomes

∂tα = − ad∗
K(α) α = −LK(α)α

or, keeping track of everything,

∂tφ = u ◦ φ, ∂tα = −Luα,

u = K(α) = α♯, α = L(u) = u♭.

One can also derive the geodesic equation from the conserved momentum mapping
J : T DiffS(N) → XS(N)′ given by J(g, X) = L ◦ Ad(g)⊤X, where Ad(g)X = Tg ◦
X ◦ g−1. This means that Ad(g(t))u(t) is conserved, and 0 = ∂t Ad(g(t))u(t) leads
quickly to the geodesic equation. It is remarkable that the momentum mapping
exists if and only if (DiffS(N), ⟨ · , · ⟩L) is a robust weak Riemannian manifold.
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§ 4. The differentiable Chow manifold
(alias the non-linear Grassmannian)

4.1. The differentiable Chow manifold as a homogeneous space for
DiffS(N) and the induced weak Riemannian metric. Let M be a compact
manifold with dim(M) < dim(N). The space of submanifolds of N diffeomorphic
to M will be called B(M, N). In the case when m = 0 and N = RD (that is, M is
a finite set of, say p, points in Euclidean D-space), the space B(M,N) is what we
called the space Lp(RD) of landmark points in our earlier paper [4].

B(M,N) can be viewed as a quotient of DiffS(N). If we fix a base submanifold
F0 ⊂ N diffeomorphic to M , then we get a map of DiffS(N) into B(M, N) given by
φ 7→ φ(F0). The image will be an open subset B0(M, N) of B(M,N), which is the
quotient of DiffS(N) by the subgroup of diffeomorphisms which map F0 to itself.
We will study B(M,N) using this approach and without further comment replace
the full space B(M, N) by this component B0(M,N).

The normal bundle to F ⊂ N may be defined as TB⊥ ⊂ TN |B , using an auxiliary
Riemann metric on N . But we want to avoid this auxiliary metric, so we shall
define the normal bundle as the quotient Nor(F ) := TN |F /TF over F . Then
its dual bundle, the conormal bundle, is Nor∗(F ) = Annihilator(TF ) ⊂ T ∗N |F ,
a subbundle not a quotient. The tangent space TF B(M, N) to B(M, N) at F can
be identified with the space of all smooth sections ΓS(Nor(F )) of the normal bundle.

A simple way to construct local coordinates on B(M,N) near a point F ∈
B(M, N) is to trivialize a neighbourhood of F ⊂ N . To be precise, assume we
have a tubular neighbourhood, that is, an isomorphism Φ:

B(M, N)

∪

Nor(F )

∪

UB

∪

Φ // UN

∪

F = 0-section

from an open neighbourhood UB of F in N to an open neighbourhood UN of the
0-section in the normal bundle Nor(F ). Assume moreover that Φ is the identity
on F and its normal derivative along F induces the identity map on Nor(F ). The
map Φ induces a local projection π : UB → F and a partial linear structure in the
fibres of this projection. Then we get an open set UΦ ⊂ B(M, N) consisting of
submanifolds F ′ ⊂ UB which intersect the fibres of π normally at exactly one point.
Under Φ, these submanifolds are all given by smooth sections of Nor(F ) which lie
in UN . If we call this set of sections UΓ, we have a chart

B(M, N) ⊃ UΦ
∼= UΓ ⊂ ΓS(Nor(F )).

We define a Riemannian metric on B(M, N) following the procedure used for
DiffS(N). For any F ⊂ N , we decompose H into

Hvert
F = j−1

2

(
{X ∈ ΓC2

b
(TN) : X(x) ∈ TxF, for all x ∈ F}

)
,

Hhor
F = perpendicular complement of Hvert

F .
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It is then easy to check that we get the diagram

ΓS(TN) � � j1 //

res
����

H � � j2 //

����

ΓC2
b
(TN)

res
����

ΓS(Nor(F )) � � jf
1 // Hhor

F
� � jf

2 // ΓC2
b
(Nor(F ))

Since this is an orthogonal decomposition, L and K take Hvert
F and Hhor

F into their
own duals and, as before, we get

ΓS(Nor(F ))
� _

j1

��

ΓS′(Nor∗(F ))

Hhor
F

� _

j2

��

LF // (Hhor
F )′
?�

j′
1

OO

KF

oo

ΓC2
b
(Nor(F )) ΓM2(Nor∗(F ))

?�

j′
2

OO

KF is just the restriction of K to this subspace of H′ and is given by the kernel:

KF (x1, x2) := image of K(x1, x2) ∈ Norx1(F ) ⊗ Norx2(F )), x1, x2 ∈ F.

This is a C2-section over F × F of pr∗1 Nor(F ) ⊗ pr∗2 Nor(F ). We can identify the
space of horizontal vector fields Hhor

F as the closure of the image under KF of
measure-valued 1-forms supported by F and with values in Nor∗(F ). A dense set of
elements in Hhor

F is given by either taking the 1-forms with finite support or taking
smooth 1-forms. In the first approach, Hhor

F is the closure of the span of the vector
fields

∣∣KF ( · , x)
∣∣αx

⟩
, where x ∈ F and αx ∈ Nor∗x(F ). In the smooth case, fix

a volume form κ on M and a smooth covector ξ ∈ ΓS(Nor∗(F )). Then ξ.κ defines
a horizontal vector field h as follows:

h(x1) =
∫

x2∈F

∣∣KF (x1, x2)
∣∣ξ(x2).κ(x2)

⟩
.

The horizontal lift hhor of any h ∈ TF B(M, N) is then

hhor(y1) = K(LF h)(y1) =
∫

x2∈F

∣∣K(y1, x2)
∣∣LF h(x2)

⟩
, y1 ∈ N.

Note that all elements of the cotangent space α ∈ ΓS′(Nor∗(F )) can be pushed up
to N by (jF )∗, where jF : F ↪→ N is the inclusion, and this identifies (jF )∗α with
a 1-co-current on N .

Finally, the induced homogeneous weak Riemannian metric on B(M, N) is given
as follows:

⟨h, k⟩F =
∫

N

(hhor(y1), L(khor)(y1)) =
∫

y1∈N

(
K(LF h)(y1), (LF k)(y1)

)
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=
∫

(y1,y2)∈N×N

(K(y1, y2), (LF h)(y1) ⊗ (LF k)(y2))

=
∫

(x1,x1)∈F×F

⟨
LF h(x1)

∣∣KF (x1, x2)
∣∣LF h(x2)

⟩
.

With this metric, the projection from DiffS(N) to B(M,N) is a submersion.
The inverse co-metric on the smooth cotangent bundle

⊔
F∈B(M,N) Γ(Nor∗(F ) ⊗

vol(F )) ⊂ T ∗B(M, N) is much simpler and easier to handle:

⟨α, β⟩F =
∫∫

F×F

⟨
α(x1)

∣∣KF (x1, x2)
∣∣β(x1)

⟩
.

It is simply the restriction to the co-metric on the Hilbert subbundle of T ∗ DiffS(N)
defined by H′ to the Hilbert subbundle of the subspace T ∗B(M, N) defined by H′

F .
Because they are related by a submersion, the geodesics on B(M, N) are the

horizontal geodesics on DiffS(N), as described in the last displayed set of formulae
in § 3.4. We have two variables: a family {F (t)} of submanifolds in B(M, N) and
a time-varying momentum α(t, · ) ∈ Nor∗(F (t)) ⊗ vol(F (t)) which lifts to the hori-
zontal 1-co-current (jF (t))∗(α(t, · )) on N . Then the horizontal geodesic on DiffS(N)
is given by the same equations as before:

∂t(F (t)) = resNor(F (t))(u(t, · )),

u(t, x) =
∫

(F (t))y

∣∣K(x, y)
∣∣α(t, y)

⟩
∈ XS(N),

∂t

(
(jF (t))∗(α(t, · ))

)
= −Lu(t, · )((jF (t))∗(α(t, · ))).

This is a complete description for geodesics on B(M,N), but it is not very clear
how to compute the Lie derivative of (jF (t))∗(α(t, · )). One can unwind this Lie
derivative via a torsion-free connection, but we turn to a different approach which
will be essential for working out the curvature of B(M, N).

4.2. Auxiliary tensors on B(M, N). Our goal is to reduce calculations on
the infinite-dimensional space B(M,N) to calculations on the finite-dimensional
space N . To do this, we construct a number of useful tensors on B(M, N) from
tensors on N and compute the standard operations on them. These will enable us
to get control of the geometry of B(M, N). Let m be the dimension of M and n
the dimension of N . For F ∈ B(M,N), let jF : F ↪→ N be the embedding. We will
assume for simplicity that M is orientable, so that vol(M) ∼= Ωm(M).

1) We denote by ℓ the left action

ℓ : DiffS(N) × B(M, N) → B(M, N)

given by ℓ(φ,F ) or ℓF (φ) = φ(F ). For a vector field X ∈ XS(N), let BX be the
infinitesimal action (or fundamental vector field) on B(M, N) given by BX(F ) =
TId(ℓF )X with its flow FlBX

t (F ) = FlXt (F ). The fundamental vector field map-
ping of a left action is a Lie algebra anti-homomorphism, and the Lie bracket
on DiffS(N) is the negative of the usual Lie bracket on XS(N), so we have
[BX , BY ] = B[X,Y ]. The set of these vectors {BX(F ) : X ∈ XS(N)} equals the
whole tangent space TF B(M,N).
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2) Note that B(M,N) is naturally a submanifold of the vector space of m-currents
on N :

B(M,N) ↪→ Ωm
S (N)′ = ΓS′(ΛmTN), via F 7→

(
ω 7→

∫
F

ω
)
.

Any α ∈ Ωm(N) is a linear coordinate on ΓS′(ΛmTM) and this restricts to the
function Bα ∈ C∞(B(M, N), R) given by Bα(F ) =

∫
F

α. If α = dβ for β ∈
Ωm−1(N), then

Bα(F ) = Bdβ(F ) =
∫

F

j∗F dβ =
∫

F

dj∗F β = 0

by Stokes’ theorem.
For α ∈ Ωm(N) and X ∈ XS(N) we can evaluate the vector field BX on the

function Bα:

BX(Bα)(F ) = dBα(BX)(F ) = ∂t|0Bα(FlXt (F )) =
∫

F

j∗FLXα = BLX(α)(F )

as well as =
∫

F

j∗F (iXdα + diXα) =
∫

F

j∗F iXdα = BiX(dα)(F ).

If X ∈ XS(N) is tangent to F along F , then BX(Bα)(F ) =
∫

F
LX|F j∗F α = 0.

More generally, a pm-form α on Nk determines a function B
(p)
α on B(M,N) by

the formula B
(p)
α (F ) =

∫
F p α. Using this for p = 2, we find that for any m-forms

α, β on N , the inner product of Bα and Bβ is given by

g−1
B (Bα, Bβ) = B

(2)
⟨α|K|β⟩.

3) For α ∈ Ωm+k(N) we denote by Bα the k-form in Ωk(B(M,N)) given by the
skew-symmetric multi-linear form

(Bα)F (BX1(F ), . . . , BXk
(F )) =

∫
F

jF
∗(iX1∧···∧Xk

α).

This is well defined: if one of the Xi is tangential to F at a point x ∈ F , then jF
∗

pulls back the resulting m-form to 0 at x.
Note that any smooth cotangent vector a to F ∈ B(M, N) is equal to Bα(F )

for some closed (m + 1)-form α. Smooth cotangent vectors at F are elements
of ΓS(F, Nor∗(F ) ⊗ Ωm(F )). Fix a nowhere-zero global section κ of Ωm(F ). Then
a
κ is the differential of a unique function f on the normal bundle to F which is linear
on each fibre. Let φ be a local isomorphism from a neighbourhood of F in N to
a neighbourhood of the 0-section in this normal bundle, and let ρ be a function on
the normal bundle which is equal to one near the 0-section and has support in this
neighbourhood. Take α = d(f.κ ◦ φ) (extended by zero). It is easy to see that
this does the trick.

Likewise, a (pm + k)-form α ∈ Ωpm+k(Np) determines a k-form on B(M, N)
as follows. First, for X ∈ XS(N) let X(p) ∈ X(Np) be given by

X
(p)
(n1,...,np) := (Xn1 × 0n2 × · · · × 0np) + (0n1 × Xn2 × 0n3 × · · · × 0np) + · · ·

· · · + (0n1 × · · · × 0np−1 × Xnp).
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Then we put

(B(p)
α )F (BX1(F ), . . . , BXk

(F )) =
∫

F p

jF p
∗(i

X
(p)
1 ∧···∧X

(p)
k

α).

This is just B applied to the submanifold F p ⊂ Np and to the special vector
fields X(p). Thus all properties of B continue to hold for B(p); in particular, item 4)
below holds with X(p) in place of X.

4) We have iBX
Bα = BiXα because(

iBX1
Bα

)(
BX2 , . . . , BXk

)
(F ) = Bα

(
BX1 , BX2 , . . . , BXk

)
(f)

=
∫

F

jF
∗(iXk

. . . iX2(iX1α)
)

= BiX1α

(
BX2 , . . . , BXk

)
(F ).

For the exterior derivative we have dBα = Bdα for any α ∈ Ωm+k(N). Namely,

(dBα)(BX0 , . . . , BXk
)(F ) =

k∑
i=0

(−1)iBXi(Bα(BX0 , . . . , B̂Xi , . . . , BXk
))(F )

+
∑
i<j

(−1)i+jBα(B[Xi,Xj ], BX0 , . . . , B̂Xi , . . . , B̂Xj , . . . , BXk
)(F )

=
k∑

i=0

(−1)i

∫
F

j∗F iXidi
X0∧···∧X̂i∧···∧Xk

α

+
∑
i<j

(−1)i+j

∫
F

j∗F i
[Xi,Xj ]∧X0∧···X̂i...X̂j ···∧Xk

α

=
∫

F

jF
∗
( k∑

i=0

(−1)iLXiiXk
· · · îXi · · · iX0

−
∑
i<j

(−1)ii
X0∧···∧X̂i∧···∧Xj−1∧[Xi,Xj ]∧Xj+1∧···∧Xk

)
α

=
∫

F

jF
∗

k∑
i=0

(−1)i

(
LXiiXk

· · · îXi · · · iX0

−
k∑

j=i+1

iXk
· · · iXj+1 [LXi , iXj ]iXj−1 · · · îXi · · · iX0

)
α

=
∫

F

jF
∗
( k∑

i=0

(−1)iiXk
· · · iXi+1LXiiXi−1 · · · iX0α

)
=

∫
F

jF
∗
( k∑

i=0

(−1)iiXk
· · · iXi+1(d iXi + iXid)iXi−1 · · · iX0α

)
=

∫
F

jF
∗
( k∑

i=0

(−1)iiXk
· · · iXi+1d iXi · · · iX0

+
k∑

i=0

(−1)iiXk
· · · iXi

diXi−1 · · · iX0

)
α

= 0 +
∫

F

jF
∗iXk

· · · iX0dα = Bdα(BX0 , . . . , BXk
)(F ).

5 Серия математическая, т. 77, № 3
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Finally we have LBX
Bα = BLXα since

LBX
Bα = (iBX

d + d iBX
)Bα = B(iXd+diX)α = BLXα.

Note that these identities generalize the results in item 2).
5) For α ∈ Ωm+1(N) we pull back to DiffS(N) the 1-form Bα on B(M, N) where

φ0(F0) = F :(
(ℓF0)∗Bα

)
φ0

(X ◦ φ0) =
(
(ℓF )∗Bα

)
Id

(X) = (Bα)F (BX(F )) =
∫

F

j∗F iX α,(
(ℓF )∗Bα

)
Id

= α|F =: µ(α, F ) = µα(F ) = µF (α) ∈ XS(N)′,

µ : Ωm+1(N) × B(M, N) → XS(N)′,

µ(α, F ) is a 1-co-current with support along F.

The mapping µ : Ωm+1(N) × B(M, N) → Xc(N)′ is smooth, µF : Ωm+1(N) →
Xc(N)′ is bounded linear, and the differential of µα : B(M, N) → XS(N)′ is com-
puted as follows:

⟨d(µα)(BX(F )), Y ⟩ = ⟨DF,BX µ(α, F ), Y ⟩ = DF,BX ⟨µ(α, F ), Y ⟩ = ∂t|0⟨αFlXt (F ), Y ⟩

= ∂t|0
∫

FlXt (F )

jFlXt (F )
∗iY α = ∂t|0

∫
FlXt (F )

(FlXt ◦jF ◦ (FlXt |F )−1)∗iY α

= ∂t|0
∫

FlXt (F )

(FlXt |F )−1)∗jF
∗(FlXt )∗iY α

= ∂t|0
∫

F

jF
∗(FlXt )∗iY α =

∫
F

jF
∗ LX(iY α)

=
∫

F

jF
∗(i[X,Y ]α + iY LXα) = ⟨µ(α, F ),LXY ⟩ + ⟨µ(LXα, F ), Y ⟩.

This means that

dµα(BX(F )) = µ(α, F ) ◦ LX + µ(LXα, F ) = −LXµ(α, F ) + µ(LXα, F ), (14)

where LXµ(α, F ) denotes the Lie derivative of 1-currents. There are two interpre-
tations of formula (14):

dµα(BX) = −LX ◦ µα + µLXα, dµα(BX(F )) = −(LXµF )(α).

We shall also need the mapping µ : Ωm(N) × B(M, N) → C∞
c (N)′ with values in

the linear space of distributions (without the density part) on N which is given by

⟨µ(γ, F ), f⟩ =
∫

F

f.γ =
∫

F

jF
∗(gγ).

The distribution µ(γ, F ) is again bounded linear in γ ∈ Ωm(N), and its derivative
with respect to F is again given by (14), with the same proof as above.
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§ 5. Geodesics and curvature on B(M,N)

We want to use the auxiliary tensors of the last section to derive formulae for
geodesics and curvature on B(M), using Mario’s formula to compute the curvature.
The basic idea is to write a smooth covector a at a point F ∈ B(M, N) as Bα,
where α is an (m + 1)-form on N . As always, for any (m + 1)-form α on N , B♯

α is
the (C2) vector field on B(M, N) which is dual to the smooth 1-form Bα. At each
point F ∈ B, B♯

α lifts horizontally to a tangent vector at the identity to DiffS(N),
which is given by the vector field

µ(α, F )♯ =
∫

N

|K|µ(α, F )⟩ ∈ XC2(N),

so that Bµ(α,F )♯(F ) = B♯
α(F ); see item 5) in § 4.2.

With these covectors, we consider next the force introduced in § 2.3. We have

2F (α, β) = d(⟨Bα, Bβ⟩) = d
(
B

(2)
⟨α|K|β⟩

)
= B

(2)
d(⟨α|K|β⟩).

But ⟨α|K|β⟩ is a 2m-form on N × N and d can be split into two parts, d1 + d2,
acting on the first and second factors. Evaluating this 1-form at F and taking its
inner product with BX , X ∈ XS(N), we get(

B
(2)
d(⟨α|K|β⟩)(F ), BX(F )

)
=

∫∫
F×F

jF×F
∗iX(2)(d(⟨α|K|β⟩))

=
∫∫

F×F

jF×F
∗((iX)1(d1(⟨α|K|β⟩)) + (iX)2(d2(⟨α|K|β⟩))

)
because F × F has type (m,m) and the integrand must have the same type,

=
∫

F

j∗F iXd
(
iµ(β,F )♯(α) + iµ(α,F )♯(β)

)
,

whence

2F (α, β) = B
(2)
d(⟨α|K|β⟩) = Bγ , γ = Lµ(β,F )♯(α) + Lµ(α,F )♯(β).

Here the superscript 2 on X means that X(2) is the vector field on N × N given
by 0×X +X × 0, whereas on B, because d(⟨α|K|β⟩) is a (2m+1)-form on N ×N ,
we must apply B(2), not B, to it. Thus we define the force F using operations on
the finite-dimensional manifold N by putting

FN (α, β, F ) :=
(
image in Nor∗(F )⊗vol(F )

)(1
2
(Lµ(β,F )♯(α) + Lµ(α,F )♯(β))

)
.

The term ‘force’ comes from the fact that the geodesic acceleration is given
by F (α, α). In our case, we find that the geodesic equation on B(M,N) can be
extended to an equation in the variables F (t) ∈ B(M, N) and α(t, · ), a time-varying
(m + 1)-form on N :

∂t(F (t)) = (res to Nor(F ))u,

u = µ(α, F )♯ =
∫

Ft(y)

|K( · , y)|α(y)⟩,

∂t(α) = F (α, α, F ) = Lu(α).

5*
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Moving to curvature, fix F . Then we claim that for any two smooth covectors
a, b at F , we can construct not only two closed (m + 1)-forms α, β on N as above,
but also two commuting vector fields Xα, Xβ on N in a neighbourhood of F such
that:

1) Bα(F ) = a and Bβ(F ) = b;
2) BXα(F ) = a♯ and BXβ

(F ) = b♯;
3) LXα(α) = LXα(β) = LXβ

(α) = LXβ
(β) = 0;

4) [Xα, Xβ ] = 0.
We can do this using a local isomorphism of N with the normal bundle to F in N

as above. This gives a projection π of a neighbourhood of F in N to F and a partial
linear structure on its fibres. Then for α and β use (m + 1)-forms κ∧ω, where κ is
a pullback of an m-form on F and ω is a 1-form constant along the fibres; and for
Xα and Xβ use vector fields which are tangent to the fibres of π and constant with
respect to the linear structure on them.

We are now in a position to use the version of Mario’s formula given in § 2.3. As
it stands, this formula calculates curvature using operations on B(M, N). What we
want to do is to write everything using forms and fields on N instead. We first need
an expression for the stress D(α, β) in this formula. Using the notation in item 2)
of § 2.3, we have

D(α, β, F ) = DF,BXα (F )(B
♯
β − BXβ

) = [BXα , B♯
β − BXβ

](F ) = [BXα , B♯
β ](F ).

In order to compute the Lie bracket, we apply it to a smooth function Bγ

on B(M, N), where γ ∈ Ωm(N). Then we have, using § 4.2 repeatedly,

(LB♯
β
Bγ)(F ) = (LB

µ(be,F )♯
Bγ)(F ) = BL

µ(be,F )♯ γ(F ),

(LBXα
LB♯

β
Bγ)(F ) = (LBXα

BL
µ(β,F )♯ γ)(F )

= B(LDF,BXα
µ(β,F )♯γ)(F ) + B(LXαLµ(β,F )♯γ)(F ),

(LB♯
β
LBXα

Bγ)(F ) = (LB
µ(β,F )♯

BLXα γ)(F ) = B(Lµ(β,F )♯LXαγ)(F ),

DF,BXα
µ(β, F )♯ = DF,BXα

∫
N

|K|µ(β, F )⟩ =
∫

N

|K|DF,BXα
µ(β, F )⟩

=
∫

N

∣∣K∣∣(−LXαµ(β, F ) + µ(LXαβ, F ))
⟩

by (14)

=
∫

N

∣∣L0×XαK
∣∣µ(β, F )

⟩
+ µ(LXαβ, F )♯,

([BXα
, Bµ(be,F )♯ ]Bγ)(F ) = (LB♯

β
Bγ − LB♯

β
LBXα

Bγ)(F )

= B(LDF,BXα
µ(β,F )♯γ)(F ) + B(L[Xα,µ(β,F )♯]γ)(F )

= (LB(DF,BXα
µ(β,F )♯+[Xα,µ(β,F )♯])Bγ)(F ),

[BXα
, Bµ(be,F )♯ ](F ) = B(DF,BXα

µ(β, F )♯ + LXα
µ(β, F )♯)

= B

(∫
N

∣∣L0×XαK
∣∣µ(β, F )

⟩
+ µ(LXαβ, F )♯ +

∫
N

∣∣LXα×0K
∣∣µ(β, F )

⟩)
= B

(∫
N

∣∣LXα
(2)K

∣∣µ(β, F )
⟩)

+ 0.
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Thus we define the stress on N by putting

D(α, β, F )(x) =
(
restr. to Nor(F )

)(
−

∫
y∈F

∣∣L
X

(2)
α

(x, y)K(x, y)
∣∣β(y)⟩

)
.

Next consider the second derivative terms in R11. A typical term works out
as follows:

BXαBXα(⟨Bβ , Bβ⟩) = LBXα
LBXα

(⟨Bβ , Bβ⟩) = BL
X

(2)
α

L
X

(2)
α

⟨β|K|β⟩

= B⟨β|LB
X2

α
L

X
(2)
α

K|β⟩.

Slightly extending the Lie bracket notation, we can write

⟨β|L
X

(2)
α

L
X

(2)
α

K|β⟩ =
⟨
β|[X(2)

α , [X(2)
α ,K]]|β

⟩
.

Analogous formulae hold for the other terms.
Finally, putting everything together, we find the formula for curvature:

⟨RB(M,N)(B♯
α, B♯

β)B♯
β , B♯

α⟩(F ) = R11 + R12 + R2 + R3,

R11 =
1
2

∫∫
F×F

(⟨
β
∣∣L

X
(2)
α

L
X

(2)
α

K
∣∣β⟩

+
⟨
α
∣∣L

X
(2)
β

L
X

(2)
β

K
∣∣α⟩

− 2
⟨
α
∣∣L

X
(2)
α

L
X

(2)
β

K
∣∣β⟩)

,

R12 =
∫

F

(
⟨D(α, α, F ), F (β, β, F )⟩ + ⟨D(β, β, F ), F (α, α, F )⟩

− ⟨D(α, β, F ) + D(β, α, F ), F (α, β, F )⟩
)
,

R2 = ∥F (α, β, F )∥2
KF

−
⟨
F (α, α, F )), F (β, β, F )

⟩
KF

,

R3 = −3
4
∥DN (α, β, F ) − DN (β, α, F )∥2

LF
.

In the case of landmark points, where m = 0, N = RD and K is diagonal, it is easy
to check that our force and stress and the above formula for curvature are exactly
the same as those given in our earlier paper [4]. In that paper the individual terms
are studied in special cases giving some intuition about them.

§ 6. Appendix on convenient calculus: calculus beyond Banach spaces

The traditional differential calculus works well for finite-dimensional vector
spaces and for Banach spaces. For more general locally convex spaces we sketch
here the convenient approach as explained in [15] and [10]. The main difficulty is
that composition of linear mappings stops being jointly continuous at the level of
Banach spaces, for any compatible topology. We use the notation of [10] and this
is the main reference for the whole appendix.
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6.1. Convenient vector spaces and the c∞-topology. Let E be a locally
convex vector space. A curve c : R → E is said to be smooth, or C∞, if all derivatives
exist and are continuous; this is a concept without problems. Let C∞(R, E) be the
space of smooth functions. It can be shown that C∞(R, E) does not depend on
the locally convex topology of E, but only on its associated bornology (system of
bounded sets).

E is called a convenient vector space if one of the following equivalent conditions
is satisfied (called c∞-completeness):

1) for any c ∈ C∞(R, E) the (Riemann) integral
∫ 1

0
c(t)dt exists in E;

2) a curve c : R → E is smooth if and only if λ ◦ c is smooth for all λ ∈ E′, where
E′ is the dual consisting of all continuous linear functionals on E;

3) any Mackey-Cauchy sequence (that is, tnm(xn − xm) → 0 for some tnm → ∞
in R) converges in E; this is visibly a weak completeness requirement.

The final topology with respect to all smooth curves is called the c∞-topology
on E and is denoted by c∞E. For Fréchet spaces it coincides with the given locally
convex topology, but on the space D of test functions with compact support on R
it is strictly finer.

6.2. Smooth mappings. Let E, F and G be convenient vector spaces, and
let U ⊂ E be c∞-open. Here is the key definition that makes everything work:
a mapping f : U → F is said to be smooth, or C∞, if f ◦ c ∈ C∞(R, F ) for all
c ∈ C∞(R, U).

The main properties of smooth calculus are the following.
1) For mappings on Fréchet spaces this notion of smoothness coincides with all

other reasonable definitions. Even on R2 this is non-trivial.
2) Multilinear mappings are smooth if and only if they are bounded.
3) If f : E ⊇ U → F is smooth, then the derivative df : U×E → F is smooth, and

also df : U → L(E, F ) is smooth, where L(E,F ) denotes the space of all bounded
linear mappings with the topology of uniform convergence on bounded subsets.

4) The chain rule holds.
5) The space C∞(U,F ) is again a convenient vector space, where the structure

is given by the obvious injection

C∞(U,F )
C∞(c,ℓ)//

∏
c∈C∞(R,U),ℓ∈F∗

C∞(R, R) , f 7→ (ℓ ◦ f ◦ c)c,ℓ,

where C∞(R, R) carries the topology of compact convergence in each derivative sep-
arately.

6) The exponential law holds: for c∞-open V ⊂ F ,

C∞(U,C∞(V,G)) ∼= C∞(U × V, G)

is a linear diffeomorphism of convenient vector spaces. Note that this is the main
assumption of variational calculus where a smooth curve in a space of functions
is assumed to be just a smooth function in one variable more.

7) A linear mapping f : E → C∞(V, G) is smooth (bounded) if and only if
E

f // C∞(V, G)
evv // G is smooth for each v ∈ V . This is called the smooth

uniform boundedness theorem [10, § 5.26].
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8) The following canonical mappings are smooth:

ev : C∞(E, F ) × E → F, ev(f, x) = f(x),

ins : E → C∞(F, E × F ), ins(x)(y) = (x, y),

( )∧ : C∞(E, C∞(F, G)) → C∞(E × F, G),

( )∨ : C∞(E × F, G) → C∞(E, C∞(F, G)),

comp: C∞(F,G) × C∞(E, F ) → C∞(E,G),

C∞( , ) : C∞(F, F1) × C∞(E1, E) → C∞(C∞(E, F ), C∞(E1, F1)),

(f, g) 7→ (h 7→ f ◦ h ◦ g),∏
:

∏
C∞(Ei, Fi) → C∞

(∏
Ei,

∏
Fi

)
.

Smooth mappings are always continuous in the c∞-topology, but there are
smooth mappings which are not continuous in the given topology of E. This is
unavoidable and not so horrible as it might appear at first sight. For example, the
evaluation E × E∗ → R is jointly continuous if and only if E is normable, but it is
always smooth.
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ses applications à l’hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Greno-
ble), 16:1 (1966), 319–361.

2. P.W. Michor and D. Mumford, “An overview of the Riemannian metrics on spaces of
curves using the Hamiltonian approach”, Appl. Comput. Harmon. Anal., 23:1 (2007),
74–113.

3. P.W. Michor, “Some geometric evolution equations arising as geodesic equations on
groups of diffeomorphisms including the Hamiltonian approach”, Phase space analysis
of partial differential equations, Progr. Nonlinear Differential Equations Appl., 69,
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Université Paris Descartes, France
E-mail : mariomicheli@gmail.com

P.W. Michor
Fakultät für Mathematik, Universität Wien, Austria
E-mail : Peter.Michor@univie.ac.at

D. Mumford
Division of Applied Mathematics, Brown University,
Providence, RI, USA
E-mail : David_Mumford@brown.edu

Received 16.02.2012


