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Sectional Curvature in Terms of the Cometric, with Applications to the
Riemannian Manifolds of Landmarks*
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Abstract. This paper deals with the computation of sectional curvature for the manifolds of N landmarks
(or feature points) in D dimensions, endowed with the Riemannian metric induced by the group
action of diffeomorphisms. The inverse of the metric tensor for these manifolds (i.e., the cometric),
when written in coordinates, is such that each of its elements depends on at most 2D of the ND
coordinates. This makes the matrices of partial derivatives of the cometric very sparse in nature,
thus suggesting solving the highly nontrivial problem of developing a formula that expresses sectional
curvature in terms of the cometric and its first and second partial derivatives (we call this Mario’s
formula). We apply such a formula to the manifolds of landmarks, and in particular we fully explore
the case of geodesics on which only two points have nonzero momenta and compute the sectional
curvatures of 2-planes spanned by the tangents to such geodesics. The latter example gives insight
into the geometry of the full manifolds of landmarks.
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1. Introduction. In the past few years there has been a growing interest, in diverse sci-
entific communities, in modeling shape spaces as Riemannian manifolds. The study of shapes
and their similarities is in fact central in computer vision and related fields (e.g., for object
recognition, target detection and tracking, classification of biometric data, and automated
medical diagnostics), in that it allows one to recognize and classify objects from their repre-
sentation. In particular, a distance function between shapes should express the meaning of
similarity between them for the application that one has in mind. One of the most mathe-
matically sound and tractable methods for defining a distance on a manifold is to measure
infinitesimal distance by a Riemannian structure and global distance by the corresponding
lengths of geodesics.

Among the several ways of endowing a shape manifold with a Riemannian structure (see,
for example, [17, 18, 20, 25, 28, 30]), one of the most natural is inducing it through the action
of the infinite-dimensional Lie group of diffeomorphisms of the manifold ambient to the shapes
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being studied. One starts by putting a right-invariant metric on this diffeomorphism group,
as described in [27]. Then fixing a base point on the shape manifold, one gets a surjective
map from the group of diffeomorphisms to the shape manifold. The right invariance of the
metric “upstairs” implies that we get a quotient metric on the shape manifold for which this
map is a submersion (see below). This approach can be used to define a metric on very
many shape spaces, such as the manifolds of curves [12, 26], surfaces [33], scalar images [4],
vector fields [6], diffusion tensor images [5], measures [11, 13], and labeled landmarks (or
“feature points”) [14, 15]. The actual geometry of these Riemannian manifolds has remained
almost completely unknown until very recently, when certain fundamental questions about
their curvature have started being addressed [25, 26, 32].

Among all shape manifolds, the simplest case of the manifold of landmarks in Euclidean
space plays a central role. This is defined as

LN (RD) .= {(Pl,...,PN)\PaeRD, a:l,...,N}

(typically we consider landmarks P% a = 1,..., N, that do not coincide pairwise). It is
finite dimensional, albeit with high dimension n = N D, where N is the number of landmarks
and D is the dimension of the ambient space in which they live (e.g., D = 2 for the plane).
Therefore its metric tensor may be written, in any set of coordinates, as a finite-dimensional
matrix. This space is important in the study of all other shape manifolds because of a simple
property of submersions: for any submersive map f : X — Y, all geodesics on Y lift to
geodesics on X and give one, in fact, all geodesics on X which at one and hence all points are
perpendicular to the fiber of f (so-called horizontal geodesics). This means that geodesics on
the space of landmarks lift to geodesics on the diffeomorphism group and then project down
to geodesics on all other shape manifolds associated with the same underlying ambient space
RP. Thus geodesics of curves, surfaces, etc., in R” can be derived from geodesics of landmark
points. Technically, these are the geodesics on these shape manifolds whose momentum has
finite support. This efficient way of constructing geodesics on many shape manifolds has been
exploited in many recent works; see, e.g., [2, 8, 29].

What sort of metrics arise from submersions? Mathematically, the key point is that
the inverse of the metric tensor, the inner product on the cotangent space hence called the
cometric, behaves simply in a submersion. Namely, for a submersion f : X — Y, the cometric
on Y is simply the restriction of the cometric on X to the pull-back 1-forms. Therefore, for the
space of landmarks the cometric has a simple structure. In our case, we will see that each of
its elements depends only on at most 2D of the ND coordinates. Hence the matrices obtained
by taking first and second partial derivatives of the cometric have a very sparse structure; that
is, most of their entries are zero. This suggests that for the purpose of calculating curvature
(rather than following the “classical” path of computing first and second partial derivatives of
the metric tensor itself, the Christoffel symbols, etc.) it would be convenient to write sectional
curvature in terms of the inverse of the metric tensor and its derivatives. We have solved the
highly nontrivial problem of developing a formula (that we call “Mario’s formula”) precisely
for this purpose: for a given pair of cotangent vectors this formula expresses the corresponding
sectional curvature as a function of the cometric and its first and second partial derivatives
except for one term which requires the metric (but not its derivatives). This formula is closely
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connected to O’Neill’s formula, which, for any submersion as above, connects the curvatures
of X and Y. Subtracting Mario’s formula on X and Y gives O’Neill’s formula as a corollary.

This paper deals with the problem of computing geodesics and sectional curvature for
landmark spaces and is based on results from the thesis of the first author [23]. The paper is
organized as follows. We first give a few more details about the manifold of landmarks and
describe the metric induced by the action of the Lie group of diffeomorphisms. We then give
a proof for the general formula expressing sectional curvature in terms of the cometric. This
formula is used in the following section to compute the sectional curvature for the manifold
of labeled landmarks. In the last section, we analyze the case of geodesics on which only two
points have nonzero momenta and the sectional curvatures of 2-planes made up of the tangents
to such geodesics. In this case, both the geodesics and the curvature are much simpler and
give insight into the geometry of the full landmark space.

2. Riemannian manifolds of landmarks. In this section we briefly summarize how the
shape space of landmarks can be given the structure of a Riemannian manifold. We refer the
reader to [27, 31] for the general framework on how to endow generic shape manifolds with a
Riemannian metric via the action of Lie groups of diffeomorphisms.

2.1. Mathematical preliminaries. We will first define a distance function d : £ (RP) x
LN (RP) — R* on landmark space which will then turn out to be the geodesic distance with
respect to a Riemannian metric. Let O be the set of differentiable landmark paths, that is,

Q= {q: @, ...,d) :[0,1] —>£N(]RD)‘q“ e C'([0,1),RP),a = 1,...,N}.

Following [31, Chapters 9, 12, 13], a Hilbert space (V,( , )v) of vector fields on Euclidean
space (which we consider as functions RP — RP) is said to be admissible if (i) V is continuously
embedded in the space of C'-mappings on R” — R” which are bounded together with their
derivatives, and (ii) V is large enough: For any positive integer M, if z1,...,2p € RP and
ai,...,ay € RP are such that, for all u € V, Zé\il <aa,u(xa)> p, =0, then oy = -+ =
Qapr = 0.

The space (V,{ , )v) admits a reproducing kernel; that is, for each o, z € R” there ex-
ists K& € V with (K2, f)y = (o, f(z))go forall f € V. Further, (K, K®)y = (8, K(y))gp =
(a, Kyﬁ(az)mp, which is a bilinear form in (a, 8) € (R”)?, thus given by a D x D matrix K (z,y);
the symmetry of the inner product implies that K (y,z) = K(z,y)” (where T indicates the
transpose). In this paper we shall assume that K(x,y) is a multiple of the identity and is
translation invariant: we then write K (z,y) simply as K(z — y)Ip (where Ip is the D x D
identity matrix); the scalar reproducing kernel K : R” — R must be symmetric and positive
definite (see [31, section 9.1] for details).

There are other very natural admissible norms on vector fields v whose kernels are not
multiples of the identity; e.g., one can add a multiple of div(v)? to any norm, and then K
will intertwine different components of v. The most natural examples of the norms we will
consider are given by inner products

R

(2.1) (u,v)y = (u,v)p, ::/ <Lu(x),v(:17)>RD dux,

RD
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where L is a self-adjoint elliptic scalar differential operator of order greater than D + 2 with
constant coefficients which is applied separately to each of the scalar components of the vector
field u = (u!,...,u”). By the Sobolev embedding theorem, then V consists of C'*-functions on
RP which are bounded together with their derivatives. If K is a scalar fundamental solution
(or Green’s function [9]) so that L(K)(x) = d(x), then the reproducing kernel is given by
K& = K( —x)a. A possible choice of the operator is L = (1 — A2A)* (where A € R is a
scaling factor, k € N, and A is the Laplacian operator), with & > % + 1, in which case (2.1)
becomes the Sobolev norm

(2.2 Jull = | ii (5)aem X et an

(=1 m=0 |a|=m
When L = (1 — A2A)¥ the scalar kernel K has the form K (z —y) = v(||lz — y||gp ), with

_ L o\F=2 4
(2.3) v(e) = P T, B () AD <Z> Ky o <Z) , 0>0,

where K, (with v = k — &) is a modified Bessel function [1] of order v (not to be confused
with the symbol K we use for the kernel of V).

In summary, the scalar kernels that we consider in this paper will always have the following
properties:

(K1) K is positive definite.

(K2) K is symmetric, i.e., K(z) = K(—x), x € RP.

In addition, in certain sections we will introduce the following simplifying assumptions:

(K3) K is twice continuously differentiable, K € C*(RP).

(K4) K is rotationally invariant; i.e., K(z) = y(||z|[gp), z € RP, for some v € C?([0,0)).
Note that if (K4) holds, then v(0) > |y(p)| for all p > 0 by (K1) and (K2). Also, the
bell-shaped Bessel kernels of the type (2.3) satisfy all of the above when k > % + 1.

Now fix any admissible Hilbert space of vector fields. The space LP([0,1],V) is the set of
functions v : [0, 1] — V such that

1
1 »
[vllzeo,1,v) = </0 lo(t, Y dt) < oo0.

The space L?([0,1],V) is a subset of L([0,1],V) and is in fact a Hilbert space with in-
ner product (u,v)r2(o1,v) = fol (u,v)y dt. Tt is well known from the theory of ordinary
differential equations [7] that for any v € L'([0,1],V), the D-dimensional nonautonomous
dynamical system Z = vy(z), with initial condition z(¢y) = x, has a unique solution of the
type z(t) = ¥(t, to, z). Let o2 (x) := (L, s,x); fixing t = 1 and s = 0 we get p¥ := ¢, which
is the diffeomorphism generated by v. For an admissible Hilbert space we will call the set

Gy :={¢":ve Ll([O, 1,V)}

the group of diffeomorphisms generated by V; by [31, Chapter 12] it is a metric space and a
topological group. But, in the language of manifolds, Gy is not an infinite-dimensional Lie
group [19]. V is not a Lie algebra but is the completion of the Lie algebra of C*°-vector fields
with compact support with respect to || ||y




398 MARIO MICHELI, PETER W. MICHOR, AND DAVID MUMFORD

2.2. Definition of the distance function. For velocity vector fields v € L?([0,1],V) and
landmark trajectories ¢ € Q define the energy
2
) "
RD

where A € (0,00] is a fixed smoothing parameter (soon to be described). We claim that a

distance function d on £V (RP) between two landmark sets (or shapes) I = (z!,22,... 2)

and I' = (y',92,...,%") can be defined as

W)~ o(t,0°0)

1 N
(2.4) Ej[v.q] = Elv, q] 12/ (HU(t, e+
0 a=1

(2.5) d(, 1) == inf {\/E[v, gl v e L2([0,1],V), g € Q with (0) = I, (1) = I’};
in the next subsection we will argue that the above function is in fact a geodesic distance with
respect to a Riemannian metric. We treat the minimization of (2.4) as our starting point; it
is the “energy of a metamorphosis” as formulated in [31, Chapter 13].

The above infimum is computed over all differentiable landmark paths ¢ € O that sat-
isfy the boundary conditions (¢*(0) = z® and ¢*(1) = y*, a = 1,...,N) and vector fields
v € L%([0,1],V). The resulting landmark trajectories {q®(t),t € [0,1]}a=1,.n follow the
minimizing velocity field more or less exactly, depending on the value of the smoothing pa-
rameter A € (0,00]; it is a weight between the first term, which measures the smoothness of
the vector field that generates the diffeomorphism, and the second term, which measures how
closely the landmark trajectories actually follow the vector field.

The exact matching problem is the following: given two sets of landmarks I = (2!, 22, ...,
2Ny and I' = (y', 92, ..., yN) with 2% # 2 and y® # y° for any a # b, minimize the energy

1
Enolu] := /0 lo(t, I dt

among all v € L%([0,1],V) such that ¢”(z%) = y®, a = 1,...,N. In this case the landmark
trajectories are defined as the solutions to the ordinary differential equations ¢* = v(t,¢%),
a =1,...,N. Note that this is equivalent to solving (2.4) for A = oo, since such equations
are obtained by setting the integrands of the second term in the right-hand side of (2.4) equal
to zero. When A < oo in (2.4) we have regularized matching; i.e., the landmark trajectories
“almost” satisfy such a set of ordinary differential equations. This allows for the time varying
vector field to be smoother. For this reason the second term in the right-hand side of (2.4) is
often referred to as smoothing term; by allowing smoother vector fields the distance d is made
tolerant to small diffeomorphisms and therefore more robust to object variations due to noise
in the data.

2.3. Minimizing velocity fields and Riemannian formulation. By manipulating expres-
sion (2.4) we will now show that it is equivalent to the energy of a path ¢ € Q with respect
to a Riemannian metric.

Notation. Consider a landmark ¢ = (¢*,...,¢") in LV(RP). The D scalar components
in Euclidean coordinates of the N landmark trajectories ¢* = (¢*,...,q¢*?), a = 1,..., N,
can be ordered either into an N x D matrix or into a tall concatenated column vector. We
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shall always use indices a,b,c,... € {1,..., N} as landmark indices and i, j,k,... € {1,...,D}
as space coordinates in RP. We will associate with each of the N landmarks ¢* € R'™*P a
momentum p, € R'P (defined in the next proposition) which we will write, in coordinates,
as pa = (Pat,---,Pap) for each a =1,..., N. The components of momenta can also be ordered
into an N x D matrix or in a long row vector. We chose superscript indices for landmark
coordinates and subscript indices for momenta.

For a given set of landmarks (¢',...,¢") € LV (RP) we will define the symmetric N x N
matrix K(q) := (K(q“ - qb))mb:l’m,N. The matrix K(q) is positive definite by property (K1)
of the kernel.

Proposition 2.1. For a fixed landmark path § = {q [0,1] — RD} € Q there exists a
unique minimizer with respect to v € L*([0,1],V) of the energy Elv,q], namely

N
(2.6) vi(tx) = pat) K(z—7'(t)),  te[0,1], z € R,
a=1

where the components of the momenta are given by

N -1
(27 pat) = Y- (K(a(0) + ) Lo tenu
b=1 a
a=1,...,N,i=1,...,D (here Iy indicates the N x N identity matriz).

Remark. What the above proposition essentially says is that the vector field of minimum
energy that transports the N landmarks along fixed trajectories is, at any point in time, the
linear combination of N lumps of velocity, each centered at a landmark point. The directions
and amplitudes of the summands are determined precisely by the momenta.

Proof of Proposition 2.1. Using property (ii) of the admissible Hilbert space V', [31, Lemma
9.5] shows that for given ¢ = (¢, ...,¢") € LY(RP) we have the orthogonal decomposition

(2.8) V={veV:u(") = N}@{U—Zaa aaeRD}
Thus the minimizer must have the form

N
(2.9) v(t,x) =) ) K(x—g*(t), te[0,1], zeR”,

for some coefficients o, € C([0,1],R”), a = 1,..., N, to be computed. For velocities of the
type (2.9) the energy (2.4) can be rewritten as

@10 B = | ZZ QK (@~ )i + N |oaiK @ ) ~ 3"} dt.

Setting the first variation of (2.10) with respect to coefficients «a,; to zero yields the mo-
menta (2.7). [ |
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It is convenient, at this point, to introduce the ND x N D, block-diagonal matrix

(K(g) + )™ 0 0
(2.11) 9(q) = 0 (K(g)+ %)™ - 0

where the N x N block (K(q) + HTN) s repeated D times; the choice of symbol g is justified
by the fact that (2.11) is, as we shall soon see, precisely the Riemannian metric tensor with
which we are endowing the manifold of landmarks, written in coordinates.

Thus for a fixed path § € Q the minimizer of E[v,q] with respect to v € L2([0,1],V) is
given by (2.6); since it depends on § we will write it, with an abuse of notation, as v*(g). We
can define

(2.12) E[q) == E[v*(9),q),

which depends only on the arbitrary path § € Q. The energy (2.12) is “equivalent” to the
energy E[v,ql, in that the following hold:
(a) if (9, q) minimizes E[v,q], then ¢ minimizes Elq), and E[0,q] = E[§]; N
(b) if ¢ minimizes F[q], then (v*(§), ) minimizes Elv,q], and E[v*(q),q] = E|[q].
Proposition 2.2. For an arbitrary landmark trajectory q € Q the energy E|q| is given by

-1

~ L 1 N D '
(2.13) E[q]:/O q(t)Tg(q(t))(j(t)dt:/O > i) <K(q(t))+H7N> dt.

a,b=1 i=1 ab

In the above equation ¢(t) is intended as an N D-dimensional column vector obtained
by stacking the column vectors (¢'(¢),...,¢" ()T, i = 1,...,D (again, the superscript
indicates the transpose of a vector).

Proof. Following definition (2.12), formulae (2.7) for the momenta are inserted into the
modified expression (2.10) for energy FElv,q]. Simple matrix manipulations finally yield the
right-hand side of (2.13). [ ]

Remarks. Expression (2.13) has exactly the form of the energy of a path ¢ with respect
to Riemannian metric tensor (2.11). Whence given two landmark configurations I and I’
in £N(RP) we have that if ¢ minimizes (2.13) among all paths in ¢ € Q such that ¢(0) = I
and ¢(1) = I, then (E[])"/? is the geodesic distance between I and I’. By point (b) above we
also have that (v*(¢),q) is a minimum of energy Elv,q], so d(I,I') defined in (2.5) coincides
with (E[])"/? and is the geodesic distance between I and I’ with respect to the metric tensor g.

The Lagrangian function that corresponds to the energy (2.13) is

(2.14) Lad) = 2 " g(g)i = f: f:q'“iq'bi <K(Q) + H—N> ;
’ 2 2 e~ A
a,b=1 i=1
In Hamiltonian mechanics [3, p. 60] the “momenta” are defined as p,; = 9L/9¢%, or, in
vector notation, p(; = 0L/9¢" (for i =1,...,D). Applying such a definition to (2.14) yields
precisely equations (2.7) of Proposition 2.1. Whence the use of the term momenta is justified.
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Figure 1. Two trajectories in L*(R?). Bullets (o) and circles (o) are the initial and final sets of landmarks,
respectively. The grids represents the two corresponding diffeomorphisms ¢g; -

Note that for small values of the parameter \ the metric tensor g, written in coordinates,
gets close (up to a multiplicative constant) to the ND x N D identity matrix; in other words,
for A — 0, g converges to a Euclidean metric and the geodesic curves become straight lines. On
the other hand, for A — oo (exact matching) the metric converges to [diag{K(q),...,K(¢)}]~!
(block K(q) is repeated D times). In general, the block-diagonal form of the metric tensor g
given by (2.11) follows from the fact that the operator L in (2.2) is applied separately to each
of the components of the velocity field; however, the dynamics of the D dimensions of ¢ are
not decoupled since all ND components of g appear in each diagonal block of g.

In the case of exact matching, landmarks “never collide” (their trajectories are precisely
defined by diffeomorphisms of R”): it takes an infinite amount of energy to make any two
landmarks coincide. So under the condition A = oo the manifold of landmarks can actually
be taken as the set

(2.15) LN (RP) = {(Pl,...,PN) | P* e RP, P* £ PP if q # b}.

Figure 1 shows the qualitative behavior of geodesics in £2(R?), with A = co. In the case
illustrated on the left-hand side both landmarks travel in the same direction (from left to
right, as indicated by the arrows): the two arcs of the geodesic “attract” each other, or in
other words the two landmarks tend to “carpool” by using a velocity field with the smallest
possible support to minimize the L? part (i.e., the first term) of the Sobolev norm (2.2) of
the velocity field. On the other hand, when the two landmarks travel in opposite directions
(as illustrated on the right-hand side of Figure 1) they try to avoid each other so that the
higher order terms of the Sobolev norm are kept small; we shall return to the issue of obstacle
avoidance at the end of this paper. A typical geodesic in £*(R?) (again with A = 00) is shown
in Figure 2.

Conclusion. We have shown that distance d(I,I’), I,I' € LV (RP), defined in (2.5) is in
fact the geodesic distance with respect to a Riemannian metric. In coordinates, the corre-
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-2

i i i i i
-3 -2 -1 0 1 2 3

Figure 2. A typical geodesic trajectory in £L*(R?). Bullets (o) and circles (o) are the initial and final sets
of landmarks, respectively. The grid represents the corresponding diffeomorphism g, .

sponding Riemannian metric tensor is given by (2.11), which is such that each element of
its inverse (the cometric) depends on at most 2D of the ND coordinates. Whence the first
and second partial derivatives of the cometric have a very sparse structure. This gives us
motivation for deriving a general formula for computing sectional curvature in terms of the
cometric and its derivatives in lieu of the metric and its derivatives, which will be done in the
next section.

3. Sectional curvature in terms of the cometric.

3.1. Generalities and notation on sectional curvature. Let M be an n-dimensional
Riemannian manifold. If we consider a local chart (U,¢) on the manifold with coordi-

nates (z!,...,2"), we have the induced 1-forms dz',...,dz™ and coordinate vector fields
{01 := %r, e, Op = %}. The metric tensor g : TM X TM — R can be represented as

glu = 9(9;,0;) da* @ dz? =: g;j dz* @ dx? (here, as in the rest of the current section, we are
using Einstein’s summation convention). For each p € M we get a positive definite matrix
with elements g¢;;(p) = gp(0;,0;). With an abuse of notation we will write g;;(x) instead
of (gij o9~ )(x), z € p(U) CR™

Notation. We shall denote the partial derivatives of the elements of the metric tensor g

2 . . .
as gijx(x) := a%kgij(a;) = @g'gij and gi; k() ::'ax?w gi]:(a:) = 040k gi;. Also, we will indicate
the cometric as ¢~y = ¢Y0; ® 0; (so that ¢"gj;, = 6;) and their partial derivatives with

.. .. 2 ..
gwyk(x) = %9”(33) and g”yké(x) = M?Wg”(x).

For a tangent vector X = X'9; we consider the 1-form X" := X Z'gijd:r:j =X jdxj (indices
lowered), and for a 1-form o = o;dz’ we have the tangent vector of := a;¢"9; (indices lifted).
Indicating with X (M) the space of smooth vector fields on the manifold M, let V :
X (M) x X(M) — X (M) be the Levi-Civita connection [16, 21] of the Riemannian manifold.
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The Christoffel symbols Ffj are defined by Vy,0; = Ffj@k, and it is well known that they have
the form Ffj = % gkt (Gie.j + 9jei — 9ije)- The Riemannian curvature endomorphism is the map
R: X(M) X X(M) X X(M) — X(M) given by R(X,Y)Z =VxVyZ -VyVxZ — V[X7y]Z.
In local coordinates R(0;,0;)0, = Rfjk(‘)g, and Rijrm = (R(0;,0j)0k,0m)g = gngfjk. The
Riemannian curvature tensor acts on vector fields as follows:

(3.1) R(X,Y,Z, W) := (R(X,Y)Z,W),,

and in coordinates it is written as R = Rijkmdxi®d:nj ®dz* @dax™. The Riemannian curvature

tensor has a number of symmetries: (i) Rijre = —Rjire; (ii) Rijre = —Rijor; (ii) Rijre = R

and (iv) Rijre+ Rjkie + Ryije = 0 (first Bianchi identity). With such conventions, the sectional

curvature associated with a pair of nonparallel tangent vectors X and Y is computed by
R(X,Y,Y, X) Rijem X YIYEX™

(3.2) K(X,Y) = -
IXZIY5 — (X, Y)3 XI5 — (X, Y)3

In order to express the numerator of sectlonal curvature (3.2) in terms of the elements of
the cometric and its derivatives (i.e., g/, g" ko and g’ M) we consider the covariant expression
of the Riemannian curvature tensor:

(33) RUTSU — szk;m gzug]rgksgmv

which we call the dual Riemannian curvature tensor. Similarly we consider the covariant or
dual Christoffel symbols

(3.4) I = g" g gLl

which are symmetric in the indices r and s.
To achieve notational compactness we will use the following symbols:

(3.5) gI* = g7 g and g = g gk,
Using that g = Q! implies Org = —Q 7! - 0,Q - Q! one immediately sees that

1
FZS — _gguw (gscp,r 4 grgo,s o grs,cp).

Proposition 3.1. The following expression holds for the Riemannian curvature tensor:
(36) 2Rzykm = Jik,jm + 9im,ik — Gjk,im — Gim,jk + 2szrjmgaﬁ 2F Fzmgaﬁ
For a proof see [24, section 24.9].

3.2. Mario’s formula.
Proposition 3.2. The following expression holds for the dual Riemannian curvature tensor:

9O RUTSV — _ gus,rv _ grv,us + grs,uv + guv,rs + ZF;UFgSng _ 2F;srgvgpa
(37) + gr)\,ug)\u g;w,s _ gr)\,ug)\u gus,v + QU)\7T9)\M gus,v _ QU)\7T9)\M g;w,s
+ gr)\,sg)\# g,uv,u + guA,ngu gus,r _ gr)\,ngug

JTERD) Qo,r

— 9" g g
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Proof. We will manipulate (3.6) and write it in the form Rijrm = giuGjrGksgmoR*"*" by
factoring giugjrgrsgmy out of each term; what will be left will be precisely the expression
for R*"sY. The terms in (3.6) involving Christoffel symbols are, by (3.4),

(38) Fz'ollcrfmgaﬁ = giugk:sgaU Iw;s gjrgmvgpﬁ F;;U 9aop = GiudjrJksImov (F;vrzsgpo)
and, similarly,
(3.9) LT 9o = GiuGirGhsgms (T TEgP).
As we noted before, if g = Q', then 0j9 = Q1. 0,Q - Q! and similarly it is the case that
Om0ig=Q ' (0,Q-Q71-0,Q+0;Q-Q ' 9,Q — 0,0,Q) - Q7 i.e., in index notation,
gikgm = Giu (9" I 9" 5 9" O = 9 jm) 9
= Giugks0 00 (6" D 9 ¢ + 9" D d™y — 9" e)
= GiuGks9irgmn (979" (9% D" ¢ + 9% D g™, — 9% en)]

(3.10) = Giuljr GksGmo (guA,vg)\M g#s,r + guA,'r JTER I gus,m)

9 9

9

where we have used definitions (3.5). Similarly, we can achieve the factorizations

rA,S Qo,u rv,us)

(3.11) Gjmiik = GiuGjrGrsImo (97" D 9" + 9 g 9" — g
(3.12) ~Gjkim = GiuGirGksmo ( — 9" G 0" — gV ga, g + g"HY),
(313) ~Gim.jk = GiuGjrGhsImv ( . gu)\,rg)\# g;w,s o guA,sgAu g;w,r + guv,rs)'

)

Inserting (3.8)+(3.13) into (3.6) we can write Rijkm = GiuGjrIksImoR*"Y, with R¥"*Y given
by (3.7). [ ]
Proposition 3.3. The dual Riemannian curvature tensor may also be written as follows:

(Tq) QRUTSY — _ qUSTV _ grous 4 rsuv | quvrs
) g g g () g ()
) g, g g ) g ()
(T4) _ %(g)\r,s — ) gau (ghY — gho)
(T5) I %(g)\r,v — ) gau (g — gho)
(Ts) F (7 — @) g (g0 — g5,

Proof. We will expand and recombine the terms in expression (3.7). The terms involving
second derivatives need no manipulation and correspond to term (Tp). The terms in the
second line of (3.7) can be written as

AU

, A, , A, : A, :
D 9" =9 o 9" G g 91— 9" g g0

= (g —g

g

)\u,r)gAu (g,uv,s _ g,us,v)7
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which is precisely (Tg). It is also the case that

po,r

2T T 677 — g™ gau 0" — gV gau g
_ %[(g)\r,v 4 g)\v,r) _ grv,)\]g)\p 9 Gos [(guu,s gy - gus,,u]
Mg g — NGy g
_ %{grv7p g g™, — grv7p (g7 4 gPouy — ", (g7 + gau,r)}
+ 3+ a9+ 9" = M A 9 — 9N g g

= (T3) + 3(g™" = ¢ gru(g"™® — g"**) = (T3) + (Ts).

QT

r\,S U\, v

Similarly one can prove that —2I°T'0"g? + g™ gy, gH*" + g*M P ga, g5 = (T2) + (T4). [ |
For any point p € M and an arbitrary pair of tangent vectors X = X'9;, Y = Y9, in T,M
we consider the covectors X? = X;dz? and Y = Y;dz® in T;M, with X; = ginj and Y; =
ginj . The numerator of sectional curvature (3.2) may be rewritten as RijrmX yiykxm =
R XY, Y. X,.
Theorem 3.4 (Mario's formula). For an arbitrary pair of vectors X = X'0; and Y = Y'0;
in T, M the numerator of sectional curvature (3.2) at point p € M may be written as

g(R(X,Y)Y,X) = R X, Y, Y, X,
(XY YX)(I surv_i_%gus gpr,v_%gus,ogm},o ig)\urg ,usv)(XY YX)

Moreover, if we extend X° and Y locally on M to constant 1-forms in terms of local coordi-
nates (i.e., make its coefficients X,,Y, constant functions), then the formula becomes

9(R(X, Y)Y, X)
- {%XX(IIWH )+ LYY (X)) - JXY + Y X)g™ (Xb’yb)}

+ {00, VDI = g7 @dXR), Ay IP) - $9(1X, Y], X, YD),

where the term in the first set of braces equals the sum of the first two terms in the coordinate
form, the term in the second set of braces equals the third term in the coordinate form, and
finally the last terms are equal. In the above formula, || X”||? = XsXug** and ||Y?||> = Y, Y,g"".

Proof. We will write the six terms provided by Proposition 3.3 as T7"*", 1 =1,...,6. We
have

TV X, Y, Y, X,
= " XYY X, — ¢ XYY X+ g XYY X+ g XYY X
— T~ XYY X, — X VYo X+ XYY X, 4+ XYY, X)
gT(XYr — YuXo) (XY, — Yo X,),
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where the second step follows from relabeling the indices. As far as (T2) and (T3) are con-
cerned,
(T’l2l,7”5’l) + T’lgl,?”s’l)) Xu}/;“}/sXv
=— 3 {VYg", 979" s Xu Xy — Ve Xog™ , 977 9" XY}
+5{V Y 9" (97" + ") Xu Xy + Xu Xy g, (97 + 977 Y, Y
— Yo Xu g™ (97 + g7 XuYs — XuYi g™, (97 + 9™V X}
=— {2V Y™, 979" s Xu Xy — 2V, Xog™" , 979" , XY}
+ {2V, 0 XX+ 2K X g 9T Y = 2XuY g, (97 4 7)Y X )
(%)
= = %grvm gpagusp{YuY;Xer + YerXqu - YerXuYts - YerXsYu}
+ gus7p gpr’v{YuYYerXv + XquY;“Y;) - XuY;}/er - XsYquXr}
=(= 19097 + 9", ") (XY = Yu X)) (XY, — Yo Xo),
where, once again, step (%) follows from relabeling the indices. Also, one can easily see that
T XY, YsYy = =5V, Yo(g™ = ¥ ) gau(g"? — g""*) Xy X, = 0. Finally,
(Tsursv + Tzﬁwsv)XuY'TY'sY'U
= 3V, X (6™ = ) gan(g" " — g") Xu Y
+ Y;“Xu (g)\r,u _ g)\u,r)g)\u (g,uv,s _ g,u,s,v)Xv}/s
— % }/rXu(g)\r,u _ g)\u,r)g)\u(g/w,s _ gus,v)XvY's
= 3V, Xu {0 9ang" — 9 g™ — N g+ 5 grng" XY
== 3 " g - VX XY, + VU X, XY 4+ Y, Xu XY, — YV X, XY )
= = 3 M 9" (XY = VX0 ) (XY, = YiX,).
Divide by 2 to get the coordinate formula. The nonlocal version of the formula follows easily
by bringing the X’s and Y’s into the formula. Thus (indicating 0; with the subscript ;)
Yo X (g™ + g%, 07X = X Xy (YiYa 97 o 9797 + YV 6™, 07 5 97)
= XTXU((HYbH2),pU g"" g% + (1Y), 9", 97") (because Y;,Y, are constants)
b b b
— Xog™ (Xeg (IY71P),0) , = X7 (X°([Y°]2),,) , = XX (IY*]?).
A typical term from the third part of Mario’s formula is rewritten as follows:
Y. Xy gus’o 9""7Y Xy = Xp Xy (HYb ||2) o g’
= (IV"1) ,(IX°17) , 9" = g~ (d(IY*17), d(| X°|1);
the other terms are similar. Finally, it is the case that

(XuYr_YuXr)g)\U7ra)\ = (Xu}/;“ — YuXr)g)\u7n gnra)\ - ()(u}/*?7 - Yan)g)\u7n a}\
= ((Xug™) sy Y = (Yug™) y X")Or = (X1, Y =Y, X760, = —[X, Y],
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and the proof is easily completed. |
Remark. 1t is convenient to split Mario’s formula into four terms:

(3.14) Ry = 3(X, Y, — Y X, )" (XY, — Vs Xo),

(3.15) Ry :=3(X.Y, — Yu X, ) g™, 9" (XY, — Yo X)),

(3.16) R3 :%(XUYT—YUX)(—Zg 9"%) (XY, — Yo X,),
(3.17) Rii=L(XuYs = YaX,) (- 8 97 g0, 0#) (XY, — Y X,):

all the terms with the exception of R4 (where g appears, but not its derivatives) depend only
on elements of the cometric and their derivatives.

Remark. The denominator of sectional curvature (3.2) can also be expressed in terms of
the cometric:

(3.18) IXIZIY G = (X,Y); = Xu XY, Yo(g"g™ — 9" 9").

4. Curvature of the manifolds of landmarks. In this section we will apply Mario’s for-
mula to the computation of sectional curvature for the Riemannian manifold of landmarks,
introduced in section 2. We first introduce the Hamiltonian formalism, since it will allow us
to write the geodesic equations in a simple form and to introduce geometric quantities that
will eventually appear in the formula for sectional curvature.

4.1. Hamiltonian formalism. On the N D-dimensional manifold £ = £V (RP) of land-
marks we consider the Riemannian metric g given, in coordinates, by the matrix (2.11); it
is in block-diagonal form, and we write its generic element as g(q)@;), with a,b = 1,..., N
(landmark labels) and 4,5 = 1,..., D (coordinate labels, respectively, of landmarks a and b).
More precisely, the matrix g(q) is made of D square (N x N) blocks; indices 4,5 = 1,...,D
indicate the block, whereas indices a,b = 1,..., N locate the element within the (i, 7)-block.
Therefore if we indicate with hgp(¢) the generic element of the N x N matrix (K(q) + HTN)_l,
we have that

9(ai)(bj) = hav(q) dij, a,b=1,...,N, 4,5=1,...,D,

where §;; is Kronecker’s delta. Similarly, if we indicate ¢(@(®) a5 the elements of the cometric
tensor g(q)~!, they are given by g(®®7) (¢) = hab(q) 67, where h®(q) = K(¢* — ¢°) + 2 5 In
analogy with the notation introduced in section 3 we also denote the partial derlvatlves by
g(m)(b]),(ck) = %g(m)(bj) and g(m)(b])7(ck)(dz) = E)q%;qdeg(m)(bj); they will be computed later.

For simplicity from now on we shall assume that A\ = oo, i.e., that we are dealing with
ezact matching of landmarks so that £V (R?) has the form (2.15). The element of the cometric
becomes ¢(®7) (¢) = K(¢* — ¢®) 6, and the Hamiltonian [16, p. 50] for the system can be
written as

N D
H(p,q) = 5" 9(a Z Z O () paipn; = 5 Y D, K(a" )6 puipy.

ab 1,5=1 a,b=11,5=1

that is, H(p,q) = 3 30,1 K (4% — ¢"){pa: Pv) g
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Proposition 4.1. Hamilton’s equations for the Riemannian manifold of landmarks are

N
=Y K(q"—¢")pe,
b=1
N
Pa=—> VK"~ ¢")(pa:Ps)go:
b=1

a=1,...,N.

Proof. Equation (2.7) can be written as ¢% = 21])\[:1 K(q® — ¢®)py; for a = 1,...,N,

i=1,...,D; alternatively, computing % = % yields the same result. Also,
o) bD D D 9
aor K (" —a . q" =) =30 GR (o q q“)
D 9o
(4.2) = ZZ:I a_ﬁ(qb —q°) (52 - 53)52'@ b q°) ( —da)
so that

. N N
Pai = =526 (0,0) = =3 Yomr 95(4" = 4°) (PasDe)rp + 5 2opy (4" = ¢%) (Pby Pa)ro

* N
W SN 9K (g0 ¥ (b, pi)go

in (¥) we used the skew-symmetry of VK (¢® — ¢®) in indices a and b, which follows from
property (K2). [ |

Corollary 4.2. If p,(to) = 0 for some landmark a = 1,..., N and time tg € R, then p,(t) =
0.

4.2. Notation. From now on we shall also assume that (K3) holds, i.e., that the kernel K
is twice continuously differentiable; for the time being we will not assume rotational invariance.
We define

K% .= K(¢° - ¢") e R,

0K (x) := gfl (z), K .= 0;K(¢° — ¢®) € R,
(4.3) VK = (0,K,...,0pK)', VK™ :.=VK(¢®—¢") e RP,
PK
2K () := 2 b . 92 00— o0 e R
82] (gj) 8:13@83:] (gj)v 82] azy ((] q ) € K,
D?K := Hessian(K), D’K® .= D’K (¢° — ¢*) e RP*P.

Note that VK® = — VK% VK = (, and DK% = D?2K"% for all a,b=1,..., N, by (K2).

For a fixed set of landmark points ¢ in £ = £¥(R?) consider any pair of cotangent vectors
o, B € Ty L: we shall write a = (a1,...,an) and 8 = (81,...,Bn), where each component is
D-dimensional. We define the vector field a™ : RP — RP and its values at the landmark
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points by

N
ol (z) = ZK(J} — ")y, zeERP,
b=1
N

(aﬁ)a — Oéhor(qa) _ ZKabab’
b=1

which are, by virtue of formula (2.6), the velocity field o™ on R induced by the landmark

momentum « = (ai,...,ay) and the corresponding landmark velocity af € T,L (which
obviously coincides with the first of Hamilton’s equations (4.1)). Note that af = (ozji, . ,ag\,)

is the tangent vector in 7,£ with metrically lifted indices. Note that al°r is the horizontal

lift [10, p. 148] of the tangent vector of on the admissible Hilbert space V: simply put, of
all vector fields v : RP — RP in V such that v(¢%) = (af)%, a = 1,..., N, o is the one of
minimum norm.

The curvature of the Riemannian manifold of landmarks will be expressed in terms of
three auxiliary quantities which we now introduce. We will call these force, discrete strain, and
landmark derivative. We start with the force. For a fixed covector o = (a,...,an) € T, L,
T

having the dual vector extended to a vector field o on all of R? allows us to take its
derivatives at the landmark points, a D x D matrix-valued function on RP:

N
(Dahor)g ($) — 82'(Oéhor)j ($) = Z OébjaiK($ - qb)a
b=1

N
(D) (q") = 3 0K ey,
b=1

For a trajectory (q(t),p(t)) of the cotangent flow one has that (pi(t),...,pn(t)) € Tk
for all t where the trajectory is defined, so the above notation can be used to rewrite Hamilton’s
equations in a more compact form. In particular, the following result holds.

Proposition 4.3. The second of Hamilton’s equations (4.1) can be written as

(4.4) Pa = —Dp"" (¢?) - pa, a=1,...,N.
Proof. It is the case that
Pai = — Sopey K (py, pa)gp = — Zf:1 (Z{,V:l 9 K py;) paj
= = X 7(DP")](¢") paj = — (DP""(a") - pa);

foranya=1,...,Nandi=1,...,D. |
For a fixed cotangent vector o € T/ L, this motivates defining the negative right-hand side
of (4.4) to be force:

Fy(a,a) := Da" (¢%) - aq, a=1,...,N.
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The full bilinear, symmetrized force may be thought of as a map F : T/L x Ty L — TH' L. We
call the covectors given by this the mixed force, with the definition

Fy(, B) i= $(Da" (¢%) - B + DB (") - cva),

D N
(4'5) Fai(awﬁ) = %Z O‘b]ﬁay + ﬁb]aay = %Za O‘aaﬁb>RD + <6aaab>RD)

j=1b=1 b=1

fora=1,...,Nandi=1,...,D. (The angle brackets are inner products in ]RD.) Note that
the “complete” cotangent vectors o = (aq,...,ay) and 8 = (B1,...,0n) (not only their a-
components) are needed to compute each component Fy(«, 3) of the mixed force. The mixed
force has a simple interpretation. If we extend « and § to constant 1-forms on £, then the
differential of the map g — gq_l(oz, B) = Zmb K(q® — ¢"){aq, By)gp is given by

D

D 0iK(¢" — q") (dg® — dg") (cva, By)gp

] =

(g, (e, B)) =

RS
o>
Il
—
-
Il
—

(4.6) = 0K (¢ — ¢") ({(aa, Bo)gp + (Ba, aw)gp) dg™ = 2F (, B).

NE
NE

13

Q
o~
Il
~
Il
-

For a fixed o« € T, ; L we define the discrete vector strain

N D N
§5%(a) = (0f)" — (")), or §™(0) = 3D (K™ — KM)dag = (K — K")ag,
c=1 j=1 c=1
for all a,b =1,..., N (we define it this way because it measures the infinitesimal change of
relative position of the landmarks a and b induced by the cotangent vector «). These are
vectors and are skew-symmetric in the points a,b: S®(a) = —5%(a), S%(a) = 0. The scalar
quantities
N D
Cab(()é) — <(aﬁ)a o ( jj) Kab ZZ Kac Kbc Kab Qi
c=1 i=1

are defined to be the scalar compressions felt by kernel K; they are symmetric (since both
factors in the inner product are skew-symmetric), i.e., C%(a) = C*(a), with the property
C*(a)) = 0. We call these compressions because if K is a monotone decreasing function of
the distance from the origin (the most common case), then VK points from ¢* to ¢°.

Finally, if v and w are any two vector fields on the manifold of landmarks, we may write
their Lie derivative as the difference of covariant derivatives:

[U7 w]ﬁ = vf,ﬂat(w) - vi,ﬂat(v)’

where the flat connection on £ is just the one induced by its embedding in RYP. In other

words, \vérs ’ﬂat(w) is the usual derivative of w in the direction v if we use the coordinates g%
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on landmark space, that is, V51 (w) := i V(w0 =3 > b 09 (B w™)Dy;. If @, B are
constant 1-forms everywhere on £V, we can take v = of and w = ¥, now as vector fields on
L, and then we find that

vER (B =30 (o aq,,] (B Oai = > > (o ( 5 bJZK(q“—chci) B

a,i b,j ai b
_ b] ac b_] ab
a K 517 51) Bcz ai )8 i K Bbz ai
a,i b,c,j a,i b,]

D OMNCEICRIRERES (z o)

a,t

This is a vector in T, £ which we define to be the landmark derivative of B with respect to

af. The coefficients with respect to 0,1, ... ,0,p (for fixed a) are the elements of the following
vector:
N N
(47) Da(a75) ::anb(a)ﬁb = Z(Kac_Kbc)<aC7vKab>RDﬁbv a=1,...,N.
b,c=1

We have that D(a,3) = (D%a,))), is the ND-dimensional vector of the coefficients
of VE ﬂat(ﬁﬁ) with respect to the basis {0y} of T,L£. In particular, the coefficients of the
Lie bracket of of and f* as vector fields on £ are given by D(a, 3) — D(8, ).

4.3. General formula for the sectional curvature of £V (RP). We can write sectional
curvature of £V (RP”) in the following way, where we have split it into the terms introduced
by (3.14)—(3.17).

Notation. From now on { , ) will indicate the dot product in R”, while { , )7,
and ( , )y« will be the inner products in the tangent and cotangent bundles of £ = £V (RP)
respectively.

Theorem 4.4. The numerator of sectional curvature of LN(RP), for an arbitrary pair of
cotangent vectors o and B3, is given by R(af, 8, B, of) = Z?‘:l R;, with

(4.8)
=15 (a0 ® 5(8) — B @ 5(c)" (Ip ® D2K) (cpy ® S(8) — By © S(a)),

)

a#b

(4.9)

Ry — Z <<D“(a,a),Fa(ﬁ,ﬁ)> + <Da(ﬁ,ﬁ),Fa(O‘aO‘)> _ <Da(a,ﬁ) + D“(ﬁaa),Fa(a,ﬁ»)a
(4.10)

Ry = ||F (0, B)||7.p = (Fl,0), F(8,5)) 1.

= Z Kac(<Fa(a7 5)7 Fc(av /8)> - <F‘1(a’ a)’ Fc(ﬂ’ 5)>)7

(4.11)

Ro = =3 llo%, #lelf3. = =41 D(ex 8) = DB ) .
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In the formula we have used the definition (v1®v2)T (M@ M) (w1 @ws) = (v Myw;) (vl Maws)
for the first term Rj, while we have used the norm for D x N matrices

D N
1715 =" JiadivAa
i=1 a,b=1
for the fourth term Rjy4.

The theorem is proved by applying Mario’s formula to the cometric of the manifolds of
landmarks. One needs to compute the elements of the cometric and its derivatives in terms
of the kernel and its derivatives (4.3). In agreement with notation (3.5) we will define (note
that we will keep using Einstein’s summation convention wherever possible)

L \(bi
gl (i) (o) . g(az)( ])7(ck) glek)(ae)

and g(ai)(bj),(ck)(dﬁ) — g(ai)(bj)7(up)(50) g(up)(ck) g(fo)(dé)_

Lemma 4.5. It is the case that

ai)(bj a a i
(4.12) g L = 0K (82 — ob) 6,
at)(bj a a a i
(4.13) g = ORK (62 — 8) (3 — o) 6,
(414) g(ai)(bj),(dé) _ 8@Kab (Kad o Kbd) 5ij’
(4'15) g(ai)(bj),(ck)(dé) _ 8]%£Kab (Kac o Kbc) (Kad o Kbd) 51]
Proof. Since ¢l@)(®3) = Kabgii and also 8qackK(q“ — @°) = OpK(0% — 8%) by (4.2), equa-
tion (4.12) follows immediately. Similarly to (4.2) one can prove that %&CK (¢* — ¢°) =
ab (sa ai)(bj ai)(bj ab / sa o i
2K (05 — 8Y), whence g = S0 gD = 93K (63 — 6h) (2 — L) 6,

so (4.13) holds too. Now, by expression (4.12),

gl ®7):(d) — g(ai)(bj) ) gleR) o)

— ch 8kKab (5g _ 52) 5@']’ ch 5k£ — aZKab (Kad _ Kbd) 52‘]‘7
which is (4.14). We can use (4.13) to compute

(ai)(bj),(ck)(dl) _ g(m’)(bj)( (&) g(,up)(ck) g(gg)(da
(pp)(Eo

= Zupfa' 830K“b (5Z — 52) (52 — 52) 5 K me §pk peéd ot
— 8]%ZKab (Kac o Kbc) (Kad _ Kbd) 51‘]‘7

9

which completes the proof. [ |

Proof of Theorem 4.4. We will compute terms Ry, ..., Ry introduced by formulae (3.14)—
(3.17). For simplicity, sometimes we will write Dal" instead of Do (¢):
e Computation of R1. We have Ry = %(aauﬁcr — Bautrer) gl@W () @) (0 8o — Broagy).

Inserting expression (4.15) into such a formula yields

2R = Z (Oéauﬁcr — Bauacr) ava“b (Kac - Kbc) (Kad - Kbd) o (absﬁdv - ﬁbsadv) .

all indices
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Performing the above multiplications gives rise to four terms, which we will now compute one
by one. First of all we have

2R11 1= 201 indices CauBerQbs Baw O, KW (K — K*) (K — K) 54
= D abro [DousGaud ns] [ (K — K*)Ber | 07, K [32 (K — K™)Ba,
=S Lo, Y, S(B) 92, K S (B) =3 ol (Sab(l@))TD2Kab Se()
=30 (00 © S%(8))T (Ip © D2K™) (ap, @ S™(5)),

where, once again, the superscript 7 indicates the transpose of a vector; similarly,

2R172 — Zall aau/@cr/@bsadv agUKab (Kac o Kbc) (Kad o Kbd) Sus
= Y0 (@ ®5(8))" (Ip ® D2 K) (8, ® 5%(a)),
2R1,3 = Zall BauCervs Baw 83UKab (Kac - Kbc) (Kad - Kbd) ous
— 3 (Ba ® 5%(a)) " (Ip ® D2K) (o, © 5°(3)),
2R1,4 = Zall ﬁauacrﬁbsadv 872’UKab (Kac - Kbc) (Kad - Kbd) (O
= Yy (Ba ® 5(a)) " (Ip ® D2K™) (5 © 5™ ().

Now we can take the summation Ry = ZZ 1 R1,, which yields precisely expression (4.8).

e Computation of Ry. We may combine (4.12) and (4.14) from Lemma 4.5 to get

g(au)(bs) (Ap)(er),(

) g Z)\p a Kab (5a 5()}\) Sus 8UK>\C (K)\d _ ch) §Pr

(4.16) = 0, K [avK“C(Kad — K°) — 9, K" (K" — K“)]§"*.

Inserting (4.16) into 2Ry = (tgufBer — Baucter) g™ gAp)er),(dv

() ) (s Bav — Bostray) yields

2Ry = 311 indices 1 QauBer@hsBan O, K [0, KK — K°T) — 9, K**(K™ — K°T)] 5"
— QauBer Bpstay Op K [0, K (K — K0) — 0, K**(K" — K%)] 6"
— BauOer@psfBay O, K [0, K*(K* = K) — 0, K" (K" — K°%)] 6"
+ BauCer Brsatay Op K [0, K (K — K°0) — 0, K**(K" — K°%)] 6},

which immediately implies

Ry

=3 apealar ) (B, VE®) [{Ba, VE“) (K = K) — (8, VE") (K" = K“)]  (=: Ry1)
— 3 Y abed(@ar Bo)(Bes V) [(ag, VEK*) (K = K) — (aq, VK") (K" = K“)]  (=: Ray)
— 3 Davea(Bas v (e, VE®) [(Ba, VE*) (K = K) — (B4, VE") (K" = K“)]  (=: Ry3)
+ 3 Dapea(Bar Bo) (e, V) [(aa, VE ) (K= K) — (g, VK") (K"~ K“)] (=t Roa)
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We will now manipulate terms Ra 1,...,[2 4 one by one. Since VK ab — VKb by relabeling
the indices we have

Rop =Y apea(@ar ) (Be, VK (Bg, VK) (K — K )
= D abelQas ap) (Be, VK) < Kadﬁd — ZdKCdﬁd) VKac>
= Y se(@as a8 {Bes VKNS ™(B), VE™) = 3 {0 ) (s VYO (8)
= L ap{a, ab) (3.C%(B)Be, VK ™) = 32 (@, ) (D(B, B), VE)
=Y. DB, BIVK®] o, =3, DYB, B)T Daler - a
= > (DB, B), Fula, ).
Similarly, Ry = 3., (D%(cv, @), Fo (8, 8)). Tt is also the case that

Rap = & S o0, B) (Ber VE ) (34 (K~ Ke)g, V)~ (3, (KM — K )y, VK™)]
L e, B (B, VE®)[(S%(), VE) — (St(a), V)]
=3 Labelar Bo) (Be, VE®) [C¥(a) — C*(a)];
relabeling the indices (and using the fact that VK = —VK) yields

Ry =— 2 LS e [(@a, Bo) + (aw, Ba)] (Be, VE®)C%(a)
=— 15 o llaa, B) + (o, Ba)] (3°.C%() B, VL)
=— 15" o llaa, B) + (o, Ba)] (D(ex, B), V)
=~ 5 XD (0. B)" [VEB] aq + VK™ af o]
== 32,00 8)" [DBL - 0 + Dag - fo] = =32, (D%(a ), Fa(a, B)).
Similarly, Ro3 = —>_ (DB, a), Fo (5, a)). By the symmetry of Fg(-,-),

R2,2 + R2,3 = _Z<Da(a)6) + Da(/ﬁaa)’Fa(awﬁ»‘

Adding the above sum to the expressions for R and Rj 4 finally yields (4.9).
o Computation of Rs. We have

1 au)(bs cr)(dv),(no
R3 = _g(aauﬂcr - /Bauacr)g( e ),(770) g( ), )(abSIBdU B /Bbsad”)’

But by Lemma 4.5,
g(au)(bS),(no) gler)(@v),(no) ZnNzl 25:1 0, K (62 — 52) 545 9y K4 (Kon — JCm) g
— (VK®, VEKed)gusgro(Kae — fgad _ febe | febd),
whence
—8Ry = 3, {(VE®, VEed)(Koe — fod — fbe 4 fcbd)
+ (O Ber s Bt 5" — B Bt 6" — BanOrer s B0 6™ + B Orer Fpa 006" }

= Zabcd { (<04a, Oéb><ﬁc, 6d> - <Oéa, ﬁb> <6c, ad> - <ﬁa, ab><a07 ﬁd> + <ﬁa, 6b> <Oéc, Oéd>)
. <VKab, Vch>(Kac _ Kad . Kbc + Kbd)}.



SECTIONAL CURVATURE IN TERMS OF THE COMETRIC, WITH APPLICATIONS 415

Relabeling the indices in the above expression yields

—8R3 =" 1peq [8(0ta, ) (Be Ba) — 2(ca, B) (Be, a) — 2(Ba, o) {atc, Ba)
— 2(0wa, By) (Bas ) — 2(Bas ) (aa, Be) | (VE®, VK K
=3 apea K*[80L (VK )TV KI8T 3,
— 205 B (VK TVK QT B, — 26T (VKT VK BT o,
— 20! B (VK™Y VE“B] o — 28L oy (VK™Y VK0 B,],

that is,

“8Rs = ¥, K*°[8a (Daler)T (DA},

— 205 (DB™)" (Dap™) e — 261 (D) (DA™ )axe
— 207 (DB (DB o — 281 (D) (Do) 3]

= e K [8(Dag® - g, DB - B, )
—2Dag™ - fo + DB - g, Dag™ - fe + DB - )]

= Y K [8(Fu(a, @), Fo (B, B)) — 8(Fulev, B), Felav, B))],

which is precisely (4.10). Alternatively, this can be derived from formula (4.6).
o Computation of Ry. It is the case that

3

Ry = _Z(aau/@cr - /Bauacr)g@)\)(au)7(cr) G(EN) (nw) g(nu)(bs),(dv) (absﬂdv - /Bbsadv) .

By Lemma 4.5,

D auer (@auBer = Banter) gV M) = 3 (O Ber — Banter) O K& (K8 — ) 5™
=> {aau [ZrﬁTKﬁa(Zchcﬁcr)] — gy [Zr arKga(ZcKacﬁcT)]
— Bau [, 0 K (K 0er) | + Bau [, 0 K (X K “arey) | } 6™
= T {Cau [(TEE, B2) — (V2 B17)] — B [(VEE?, or) — (VK alior)] } 6
= 3w {0au(VEE, SE(B)) — By (VS S8 (a)) } M
= 3 00 {CE(B)atan — CE4 () B } 6.

So if we define the matrix H;q == ), [C“b(ﬂ)abi — C“b(a),é’bi], i=1,....,D,a=1,...,N, we
have
Ry = _% Zus Zgn Z)\,u Hu§ o (K_l)fﬁ 5>\H H577 o
= =150 Xt Hue Hun (K™ ep = =3 Hll -
Alternatively, this can be derived from formula (4.7). [ |

The denominator (3.18) of sectional curvature for £ (RP) is given by the following simple
formula.
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Proposition 4.6. For any pair of cotangent vectors o, 3 € T; L,

417) el 18]

%*E - <O"5>%‘*E = Z KabKCd(<aaa ap)(Be, Ba) — <aa,5b><amﬂd>)'

abed
Proof. Using double-index notation we may write (3.18) as follows:
2 2 1BI2 p—(t B2 £ = ay s Ber Baw (@) B2 gler)(d0) _ glaw)(dv) gbs)(er))
= Zabcd gy Ops ﬁcr ﬁdv (Kab(susKCd(S“’ _ Kadéuvac&sr)
- Zade<aa’ Oéb> </66’ ﬁd>KabKCd - Zabcd(aaa /Bd> <Oéb, /Bd>KadeCa

and (4.17) follows by relabeling the indices. [ ]

[l

4.4. The rotationally invariant case. Finally, suppose the Green’s function K is rota-
tionally invariant, i.e., that (K4) holds:

K(x) =~(]z|), z € RP, with v € C*([0,00)).

We will use the convenient notation vy := v(0), vap := ¥(||g® — ¢°|l), 7 :== 7' ([l¢* — ¢*||), and
v =~"(llg* — ¢°||) for a,b=1,...,N. Then we can evaluate the first and second derivatives
of K.

Lemma 4.7. For rotationally invariant kernels, it is the case that

(4.18) VE (@) ="(l=ll) 7

& ||
(4.19) D*K(x) = |7"(|=]) - 7/|(||:LJIEIH) IZIE::IIZ i 7/ﬁfl:l”) o

(H [y

where Ip is the D x D identity matriz and Pr+ (x) :==1p— |9|”;”2 is projection to the hyperplane

of RP that is normal to x. _
Proof. We have that 0; K (z) = 7’(||:E||)ﬁ, and (4.18) follows immediately. Also,

00K (x) = ”mnazm\\xu) Yzl gy a7’ + ' (2o’ 52 iy
7'l i + LS — v (2 i = [ lal) - T2 52 + Zilgles,

which implies (4.19). [ |

Because of (4.18), in the rotationally invariant case, the “scalar compression” C%(a) really
does measure a multiple compression of the flow af between ¢® and ¢*. We can decompose
the vector strain S“b(a) into the part parallel to the vector ¢® — ¢® and the part perpendicular

a b
to this: let u® = IIZa:gbII and define

(4.20) %)l = (8P(a),u®),  SP(a)t = 5?(a) - S®(a)l u®.
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Note that S%(a)l is a scalar while S%(a) is a wvector. In particular it is the case that
C%(a) =4, - S%(a)l. Moreover, formula (4.19) allows us to simplify the first term R; in
the curvature formula. Substituting (4.19) into (4.8), we get the rotationally invariant case
for Ry.

Proposition 4.8. In the rotationally invariant case (K4) we have that

"
<unRFZX%wWMm—WmMMWW%—WmMQ
ab
/
+5%%5ﬁﬁyﬂmL@&—S“wﬁ®am9WmL®m—S“wﬂ®aw)
In the above we use the inner product of tensor products, (v @wy, va@ws) := (vy, v2) (w1, w2).
Proof. For any pair of covectors n and p in T; L, by (4.19) we have that

Sab(n)TD2Kab Sab(ﬂ)

a a a al ’Y(; a a al
=y S () u® (u™) " 5 () + MS "(n)" Pr(u®) S ()

/
rmWwMWW+W77WW )E S ().

Inserting this expression into (4.8) yields the desired result. |

4.5. One landmark with nonzero momenta. A simple special case is when only one
landmark carries momentum. We now compute the numerator of sectional curvature when
both cotangent vectors are nonzero at only one of the D-dimensional landmarks (¢, ..., ¢"V).
We define

(T5 L)1 == {nGT*ﬁ‘nazofora>l}

so that the elements of the above set are cotangent vectors of the type n = (1,0,...,0).
Proposition 4.9. In LN (RP), for any pair o, 3 € (T L)1 the four terms of R(of, g%, 5%, af)
are given by Ry = Ry = R3 =0 and

where
H® = (’Val - 70)(<0417VK[11>51 - <517VK[11>@1) fora>1.

Proof. The vanishing of R; can be checked directly (note that the sum in (4.8) is taken over
a # b since S°(n) = 0 for all ¢ and 7). Also, using formula (4.5) we see that all mixed forces
F, are zero; therefore Ry = R3 = 0 by formulae (4.9) and (4.10). Also, by (4.7), D%(a, B) =
(Va1 — 'yo)<a1, VK“1>51 since v, B € (T;£)1; a similar expression holds for D*(3, o), which
concludes the proof by (4.11). [ ]

Therefore when «, 8 € (7, 0 L)1 the sectional curvature is always negative; we can under-
stand this by considering the geodesic flow in this case. It follows immediately from Propo-
sition 4.1 that if we start with zero momenta p, at all ¢*,a > 1, then the momenta at these
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Figure 3. Dragging effect of one momentum-carrying landmark ¢* (bullet o) on a grid of landmarks
(circles o), with vy(z) = exp(—%ﬁ—z), o = 1.5. Left: initial configuration, with initial momentum py = (2.7,1.8)
also shown. Right: configuration after one unit of time, with trajectory of ¢* also shown; the grid represents
the diffeomorphism o8, obtained by integrating o in time.

points stay zero, while the momentum at ¢' remains constant. Thus the velocity of ¢' is
just given by K (0)p1, and this is constant. The point ¢' carrying the momentum moves in
a straight line at constant speed, while the other points ¢ (a > 1) are carried along by the
global flow that the motion of ¢! causes and move at speeds ¢* = K%'p;, which are parallel
to ¢' (but not constant). As shown in Figure 3 (the central landmark ¢' is the only one
carrying momentum) what happens is that all other landmark points are dragged along by
q', more strongly when close, less strongly when far away. Points directly in front of the path
of ¢ pile up and points behind space out.

Negative curvature can be seen by the divergence of geodesics. If one imagines slightly
changing the direction of p; in Figure 3, the final configuration of the landmark points (say,
after one unit of time) will differ greatly from that caused by the original value of p;. Also, if
one imagines ¢' moving along two nearby parallel straight lines, the differential effect on the
cloud of other points accumulates so that the final configurations will differ everywhere; thus,
even though the initial landmark configurations are close, the final configurations will be far
away. In general, the last negative term in the curvature expresses the same effect: the global
drag effect of each point results in a kind of turbulent mixing of all the other points (think of
a kitchen mixer with blades whose motion mixes the whole bowl).

Proposition 4.9 simplifies in the case of £ = £L2(R”) (two landmarks only). We shall write
(4.22) a! = (ag,u'?),  af =a; — ozg u'?, ﬁ|1| = (B1,u'?), B =p— |1|u12.

Proposition 4.10. In the case of L = L2(RP), when o, € (T; L)1 the numerator and
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denominator of sectional curvature are given, respectively, by

3 - /
(4.23) R(a*, 8%, 8% of) = Ry = =10 %( 2)*|Blat — ol |,

(4.20) £ 181 — (o, B = 8 (|IBlot — alBE[* + 185 @ of - af @ BE]).

Again we have used the inner product of tensor products (v1 @wy, vo@wa) 1= (v1, va) (w1, wa).
Proof. 1t is the case that Ry = —32||H?||>(K~!)2s (matrices H* were defined in Proposi-
tion 4.9). But (K1) = (73 — v35) 190, whereas from Proposition 4.9 we have

IH?|? = (o = m12)* ({1, VE)?[|B1]* + (B1, VE ') ? e ||
- 2(0&1,VK12><61,VK12><041,,81>),

where VK2 = v],u!? by (4.18). Inserting expressions (4.22) into the above formula yields (4.23).
From Proposition 4.6 we have that the denominator is given by vZ(||a1]|?||81]|? — (1, 81)?);
inserting (4.22) into such a formula yields (4.24). [ |

We will generalize the above results in the next section.

5. Landmark geometry with two nonzero momenta. The complexity of the formula for
curvature reflects a real complexity in the geometry of the landmark space. But there is
one case in which the geometry of such a space can be analyzed quite completely. This is
when there are only two nonzero momenta along a geodesic. To put this in context, we first
introduce a basic structural relation between landmark spaces.

5.1. Submersions between landmark spaces. Instead of labeling the landmarksas 1,2, ...,
N, one can use any finite index set A and label the landmarks as ¢* with a € A. And instead
of calling the landmark space £V, we can call it £4. Now suppose we have a subset B C A.
Then there is a natural projection 7 : £A — £B gotten by forgetting about the points with
labels in A — B. In the metrics we have been discussing this is a submersion. In fact, the
kernel of dr, the vertical subspace of TL£4, is the space of vectors v® such that v* = 0 if a € B.
Its perpendicular in T* is

(T*ﬁA —{pGT*£A|pa—0fora€A B}

so the orthogonal complement of ker(dr) in TLA is the space of vectors p? where p is in
(T*L£A)5. On this subspace, the norm is just

> K@= d")po.py)

bb'EB

whether p? is taken to be a tangent vector to A or to B. In other words, the horizontal
subspace for the submersion 7 is the subbundle (T *D“) C TLA of tangent vectors p* where
p has zero components in A — B and this has the same metric as the tangent space to £5.
In particular, from the general theory of submersions, we know that every geodesic in £8
beginning at some point 7({¢®}) has a unique lift to a horizontal geodesic in £A starting at
{¢“}. The picture to have is that all the landmark spaces form a sort of inverse system of
spaces whose inverse limit is the group of diffeomorphisms of R,
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We do not want to pursue this is in general, but rather we will study the special case
where the cardinality of B is two. We might as well, then, go back to our former terminology
and consider the map 7 : £V — £2 gotten by mapping an N-tuple (¢, ¢?,...,q¢") to the pair
(¢',¢?). Moreover, we want to consider only the case in which the kernel K is rotationally
invariant as in (K4). A basic quantity in all that follows is the distance p := ||¢' —¢?|| between
the two momentum bearing points.

5.2. Two momentum geodesics. Remarkably, we can describe, more or less explicitly,
all the geodesics which arise as horizontal lifts from this map. These are the geodesics with
nonzero momenta only at ¢! and ¢?. Moreover, the formula for sectional curvature for the
2-plane spanned by any two horizontal vectors can be analyzed. This analysis was started in
the Ph.D. thesis of the first author [23] and has been pursued further in [22].

The metric tensor of £ = £2(R”) in coordinates is obtained by inverting the 2 x 2 matrix
K:

[ w0 ) (K™D = (K22 = (3 — 7(0)*) "0,
51) K= [ v(p) } - { (K )1z = (K1 = — (33 —1(p)2)"11(0),

so that the cometric and metric, for all covectors a, 8 € TL and vectors v,w € TyL, are
simply

(5.2) g e, B) =0 (a1, Br) + (aa, B2)) +7(p) ((au, Bo) + (a2, B1)),

o) = s [ w') + 0% ) = (o) (0", 0?) + (07, 0h)]

The geometry of the two-point space is best understood by changing variables for the
landmark coordinates (¢!, ¢?) and the momenta (p1,p2) to their means and semidifferences,
that is,

__d'+d 5 _d - S ey I Uy
q: 5 q: 5 p: 5 D 5
sothat  ¢' =7+6dq, ¢ =7q—0q, p1=D+0p, p2=D—0p.
Then the cometric (5.2) becomes
(5.3) g~ (@, 60), (B,68)) = 2(v0 +7(p) (@, B) + 2(v0 — 7(p)) (6, 88).

With these coordinates, the two-point landmark space becomes a product V x Vs in which
all fibers V' x {6qo} are flat Euclidean spaces but with variable scales, all fibers {g,} x Vj are
conformally flat metrics sitting on the manifold R” — {0}, and the tangent spaces of the two
factors are orthogonal.

Proposition 5.1. In terms of means and semidifferences, the geodesic equations for L2(RP)
are

7= (v0+70) P p=0,

5.4 . . !
e A L o= ~27 (151 ~ 3pI?)
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The above result is proved by direct computation. We can solve these equations in four
steps.

1. First, the linear momentum P is a constant, so “center of mass” § moves in a straight
line parallel to this constant:

(5.5) 7(t) = 7(0) + ( [ G +fy<p<f>>)df) 5.

2. Second, if we treat vectors dg and dp as 1-forms in R”, equations (5.4) also show that
(6q A 8p) = 6q A dp + dq A 6p = [(scalar) 6p] A 8p + dq A [(scalar) 6q] = 0,

so the angular momentum 2-form dg A dp € /\2 RP is constant; we write this as w e Ae?, where
w is the nonnegative real magnitude of the angular momentum and (e', e?) is an orthonormal
pair. Then it follows that

oq(t) = %p(t) [ cos (G(t))el + sin (9(t))e2] for some function 0(t).
3. Third, we can express #(t) as an integral:
oq = +p[cos(0)e! + sin(0)e?] + %p@[ —sin(f)e' + cos()e?], so
5q N oq = —%p20' el Ae?,  as well as (from (5.4))
5g A g = (v0 —v(p))dp A g = —w (v0 — v(p)) €' A€
combining the second and third lines, we find that
t
(5.6) o(t) = 6(0) + 4w/0 %T()’;(T)) dr;

note that by (K1) and (K2) it is the case that 79 > 7(p) for any p > 0, so 6 is a monotone
increasing function if w # 0; otherwise it is a constant.

4. The last step is to solve for p(t). This can be done using conservation of energy [16,
p. 51]. Equations (5.4) are in fact the cogeodesic equations for the Hamiltonian H(p,q) of
section 4.1, which we may rewrite in terms of means and semidifferences as

H = (v +v)IBI* + (70 — ¥(0) 1612

by (5.3); hence this function of p and ||0p| is a constant (P is also a constant). Then we
calculate

(p*) = 4(6q,6q)" = 8(6q,6q) = 8(v0 —v(p))(dp,6q) = p= 4%%7(/»(51), 5q).

But

(0p,6q)* +w* = (0p,6q)* + [|6p A 6q|* = ||6p]1* - |6q)* =

vV 70 ; 7(p) \/p2 [7‘[ B (

0’ (”H — (0 + v(p))llﬁHQ)
4 Y —v(p)

— p=2 %0 + () [111?] — 402 (v0 = 7 (p))-
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Figure 4. Converging and diverging trajectories for two landmarks in two dimensions. In these examples

v(x) = exp(=32%), (4'(0),¢°(0)) = ((1,0),(=1,0)), (p1(0),p2(0)) = ((~10,8.6), (10, ~8.6)) for the graph on
the left, (p1(0),p2(0)) = ((—10,9), (10, —9)) for the graph on the right. The thick and thin lines are, respectively,
the trajectories of the first and second landmarks.

This means that the function p(t) is the solution of

p(t)
(5.7) t= / vde where
p

0 2¢/F(z)’

F(x): = Ha? (10 — () = [PP2* (38 — 1(2)?) = 4 (30 — 7(2))".

Summary. If we fix constants H, p, w, p(0), 6(0), ¢*(0) (for all a), we can first integrate
(5.7) to get p(t) (the separation of ¢! and ¢?), then integrate (5.6) to find their relative angle
0(t), and then integrate (5.5) to get their center of mass g(¢). This gives the trajectories
of ¢! and ¢%. The remaining points are dragged along as solutions of %q“(t) = 7(Hq“(t) —
¢ @)Np(t) + (g (1) = @O p2(t), a > 2.

As worked out in [22], one can classify the global behavior of these geodesics into two
types. One is the scattering type in which ¢', ¢? diverge from each other as time goes to either
+o00. This occurs if the linear or angular momentum is large enough compared to the energy.
In the other case where the energy is large enough compared to both momenta, they come
together asymptotically at either t = +00 or —oo, diverging at the other limit. In both cases,
they may spiral around each other an arbitrarily large number of times (see Figure 4).

5.3. Decomposing curvature. Next we consider £V (R”): we want to compute the sec-
tional curvature R(of, 5%, 5%, af) for cotangent vectors that are nonzero at only (¢', ¢%). Also,

we will use the notation u := % for the unit vector from ¢? to ¢! as well as p = ||¢' — ¢?||

for their distance. Similarly to (4.20), we will also want to decompose any vector in 7 € RP
into its parts tangent to u and perpendicular to wu:

nlhi=(u) and nti=n-nlu
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Once again note that nll is a scalar whereas ' is a vector. Following the notation used to

describe geodesics above, for any a € (T;L)12 = {n SNve | N, = 0 for a > 2}, we write

a= %(al + ap) and do = %(al — ag).

Proposition 5.2. In LN (RP) for any pair o, 3 € (T L£)1,2, the terms Ry, Ra, and R3 in the
numerator of sectional curvature can be written as

Ry = 4(y0 —7(0)) " (p) (60l 81 — 65, 60l 5 — 651 az)
+4(0 = (p)” % (0ot @ p1 = 0B ® a1,00" @ By — 0" ® az),
Ry = —4(v0 = 7(0)) /' (9)? (60! 1 — 651, b0l 85 — 681 xz),

Ry = %_TMVI(P)2[(<C¥1,ﬁ2> +(B1,02))° — d{a1,a2) (61, B2).

We need the following result.
Lemma 5.3. For any a € (T;L)1,2, the discrete strain S2(q) is given by

(5.8) S (@) = 2(y0 — 7(p))da.

For any pair o, B € (T L)1 it is the case that Fy(a, 8) = 0 for a > 2, whereas

(5.9) F1 (a,ﬂ) = —Fg(a,ﬂ) = ’y’gp) (<041,52> + <,31,042>)u.

Also,

(5.10)  D'(a,B) =2(v0 —(p)) ¥ (p) dal By,  D*(a, B) =2(v0 — 7(p)) ¥ (p) 5l B1.

Remark. We are not interested in D?(a, 8) for a > 2 since the terms in formula (4.9)
where they appear are zero (because Fy(«, 8) = 0 for a > 2).
Proof of Lemma 5.3. The formula for the discrete strain results from
51%(a) = (af)! — (@9 = (K = K
=001 +7(p)az = v(p)ar — a2 = 2(70 — 7(p))der
The values for F' follow immediately from formula (4.5) and VK2 = 4/(p) u. Note that

C(a) = C*(a) = (S"(a), VE'?) = (2(y0 — 7(p)) 6o, ¥ (p)u) = 2(70 — ¥(p)) ¥ (p) darl,

so D'(a,8) = C(a)f2 = 2(y0 — ()Y (p)0c By and D*(a,B) = C*(a)fi = 2(y0 —
Y)Y (p)sal .
Proof of Proposition 5.2. The R; expression follows by substituting the expressions in (5.8)

into formula (4.21), noting that the only nonzero terms in the latter are for (a,b) = (1,2) and
(a,b) = (2,1).
By Theorem 4.4 and the fact that Fo = —F} from Lemma 5.3, R is given by

R2 :<D1(O"O‘) - D2(oz,oz),F1(ﬁ,ﬁ)> + <D1(ﬁaﬁ) - D2(ﬁ,ﬁ),F1(Oé,Oé)>
(5.11) — (DY(a, B) = D*(a, ) + D*(B, @) — D*(B, ), Fi (v, B)).
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Again by Lemma 5.3 we have that D*(n, () —D?(n,¢) = —4(v0—7(p))7 (p) onll 8¢ for any pair

n,¢ € (T;L)1,2, while Fy(n,¢) = 37 (p) ((n1, C2) + (12, C1)) u. Applying this to all the terms we
get the expression for Ry in the statement of the proposition.
As far as Rjg is concerned, by Theorem 4.4,

R3 = 'YO[(Fl(aa/B) Fi(a, B)) — (Fl(%a)aFl(ﬁ,ﬁ)ﬂ
v(p) [(Fi(a, B), Fa(e, B)) — (
+7(p) [(Fa(a, B), Fi(a
+ % [(Fa (e, B), Fa(a, B)) — (Fa(o, @), Fo (B, B))]
=2(0 —v(p) [(F1(a, B), Fi(a, B)) — (Fi(a, ), F1 (B, 8))]
= 2020) (v/())2 [((ou1, B2) + (Br, a2))? — 4{ar, a2) By, Ba)]

where we have used the fact that F, = —F; by (5.9). This completes the proof. |

The expressions provided by Proposition 5.2 become much clearer if we go over to means
and semidifferences, i.e., if we use the substitutions

(5.12) aj=a+6a, a=a—o6a, P1=p+3B, [=ph—6p.
Corollary 5.4. For any a, B € (T L)1 2, with L = LN (RP), it is the case that
Ry = 4(70 = 1(0)) "7 (p) (15817 — 50/ B|12 — |68 60 — dall 58%)
/!
+4(v0 — fy(p))z%p)(lléﬁl @@ —dat @ PB|* — 45" © da — da @ 65|1%),

Ry = —4(v0 —v(p))7 (p)? (681 — 50l 5|1 — 68160 — sallsp)?),
Rz = (v —v(0)Y(p)? 268 @@ - ba @ B|* - [Bea—-aw f|® - |08 ® da - da®ip|*).

Proof. By insertion of formulae (5.12) it is easily seen that
(dal gy —oplay, 60l By — 58l as) = |68la — 6l B|* — [|5816a — salép|?
and
(Sat @ B1 — 0BT ® an,60" @ Bo — 6B ® as)
= 168" @@ — ot @ B” — 68" @ ba — ot @ 5813
so the new expressions for R; and Rs follow immediately. Also,

[(o1,82) + (ﬁl,azﬂz — 4(on, a2) (B, B2)

= [2((@, B) — (90, 8))]” — 4((@, @) — (5, 50)) ((B, B) — (98, 8))
—2[2((@,@) (B, B) — (@.5)")] — 2[2((6ax, ) (35,68) — (6cx,35)°)]
+4[(@,@)(68,08) + (B, B) (da, 5a) — 2(@, B) (6, 6)]

= 9foa-awd|?-2108®da-saxb8|?+4|lfea—sax . ®
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The fourth term R4 is the only one which involves the other points ¢%, a > 2. But one has
an inequality for this term involving the same expressions in « and (3.

Proposition 5.5. Any o, 5 € (T*ﬁN)Lg are constant 1-forms on LY which are pull-backs via
the submersion LN — L2 of constant 1-forms on £2. We can therefore consider the curvature
term Ry(LN) = =3|[of, 8%z~ ||? on LN and the corresponding term Ry(L?) = —3||[c¥, 5] 2|
on L£%. Then we have the inequality

(p))

2
Ri(LY) < Ry(£2)=—6v/(p)? %HM”@ — 5alBIP + (10 — v(p)) 138150 — sl 55]2].

Proof. First, note that [au, m] o~ breaks into perpendicular parts: a vertical part in the
kernel of dr and a horizontal part which is simply the horizontal lift of [af, 8] ;2. This explains
the inequality assertion in Proposition 5.5. To calculate R4(L£?), we use the last expression in
(4.11), i.e.,

R4(£2) = _% Zz,bzl <Da(a7/8) - Da(ﬁva)va(avﬂ) - Db(/Bva)> (K_l)ab

_ 20— I I I I
= =32 o5 (0P {18616y — 88 | + [l 5, — dpla P

— 2y(p)(3all 81 — 381ar, 3l B — 361as) |,

where we have used (5.1) and (5.10). The final result follows after inserting (5.12) into the
above expression and performing some algebra. |

Note that all terms in Corollary 5.4 and Proposition 5.5 are very similar. In fact, they
are all “components” of the norm ||a A B||? of the 2-form whose sectional curvature is being
computed. First note that we can decompose T*L£? into the direct sum of three pieces, namely

sl ec? .= {(au,—au) |a € R}, dim (5”T*£2) =1,
STTL? = {(p, —p) |p eRP.pL u}, dim (5LT*£2) =D-—1,
T L2 = {(p,p) ‘p S RD}, dim (T*£2) =D,
where as usual u := ﬁ (see Figure 5). Note that these three subspaces are orthogonal

with respect to the cometric by virtue of (5.2). An arbitrary covector o = (a1, as) € T; L
can be uniquely decomposed into the summation o = a1y + a9) + 3, with

Q) = (6allu, —sallu) e sllT* 2,
(5.13) ag) = (dat, —bat) € 5TTL?,
gy = (a,a) € T L2

So it is the case that (i) a € dIT*L? & 6t =0 and @ = 0; (i) a € 6*T*£L? < dlla = 0 and
a=0; (iii) « € T L% & dall =0 and s = 0.
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Figure 5. Typical covectors o = (a1, a2) in spaces 6”T;[,, (VT;[,, and T:[Z for L = L*(R?).

Consequently the space of 2-forms /\2 T*£? decomposes into the direct sum of five pieces:

/2\T*£2 = év with Vi o= dlTec? A T2,
i=1
Vo 1= Z&T*ﬁ AT L2 Vy = SlTec? A stTr L2,
Vi = /2\ (6+1*L?), Vs o= /2\ (T"£?).
(Since § IT*£2 is one dimensional it creates no 2-forms.) Again, note that the spaces Vi,..., V5
are pairwise orthogonal with respect to the inner product

(5.14)
<Oﬁ A /Baé-/\ 7]>/\2T*£2 = <a’€>T*£2<’8’T,>T*£2 - <a7n>T*£2</87€>T*£27 04757577] € T*£27

by the orthogonality of 6/7 7L 5T, ¢ £, and T;ﬁ. Any 2-form a A § then decomposes into the
sum of its five projections onto these subspaces, and its norm squared is the sum of the norm
squared of these components. Let us first give the five pieces of its norm names:

T = |68l @@ - sallu @ B2,

Ty = |6t @@ — dat @ B, Ty := 68lu @ 6o — salluw 55+,
Ty = 68" ® dat — ot ® 6542, Ts:=|Bea-aep|’
In the above definitions || || indicates the Euclidean norm. We have to be careful here: we

have been using Euclidean norms in R” in all our formulas above, and now we are dealing
with norms in 7*£?; these essentially differ only by a factor by (5.3). More precisely, the
following result holds.

Proposition 5.6. The denominator of the sectional curvature (3.2) for L2(R?) can be written
as

(515) [l A Bl 72 = 4098 = ¥(0)2) (Tt +T2) +2(70 = 7(p)) *(2T5 +T1) +2(70 +7(p)) *T5.

Proof. We may apply decomposition (5.13) to both a = Z?:l oy and B = Z?:l Biy and
write
a B =(aq)ABa) — By Aag) + (a@) ABe) — Ba) A ag)
+ (@) ABa) — By M) +a@) A B +ag) A Bg),
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where the five summands on the right-hand side belong to Vi, ..., Vs, respectively. We have
laqy A By — Bay A ag) Hi\z T 02

= [ty A BayIp2 gz + 181y A @y Ine gz = 2(ea) A Bray, By A ez g2 o
*) = _
= 405 = 1(0)*) [0 2B + (881 a|® — 260l 651, )] = 4(v5 — ¥(p)?) T3,
where we have used (5.14) and (5.3) in step (x). The square norm of the remaining four terms
is computed similarly. Orthogonality of Vi,..., Vs finally yields (5.15). [ |

To express the formulas for the numerator of sectional curvature succinctly, let us also
introduce abbreviations for the coefficients involving ~:

k1(p) == (70 — 7(0)) 2" (p), k2(p) == (70 — v(p))ﬂ//()p),
(5.16) )
ks(p) = (70 —7(p))7 (p)?, ka(p) = Do) "(p)°.

Y +7(p)

Note that ki1, ko, ks, and k4 are all homogeneous of degree 3 in v and degree —2 in the distance
por dp on L. Moreover, ks is negative and k3 and k4 are positive, while k; may be positive
or negative. For all v of interest, 7/ is everywhere negative, starting at 0, decreasing to a
minimum at some pg, and then increasing back to 0 at co. Then k; is negative for p < pg and
positive for p > pg.

The following equalities are proved by direct computation:

|68 @@ —da® B|? =Ty + Ty,
106+ ® da — dat @ 5B = T3 + Ty,
168 ® da — da ® 682 = 203 + T

Inserting notation (5.16) and the above equalities into Propositions 5.2 and 5.5 immediately
yields the following result.

Proposition 5.7. We can write the terms in the numerator of sectional curvature for £L2(RP)
as

Ry = 4k (T — T3) + 4ko(To — T3 — Ty), Ry = —4k3(Ty — T3),

(5.17)
R3 = k‘3(2(T1 + Tg) =205 — Ty — T5), Ry = —6(]€3T3 + /-6‘4T1);

hence R = R(a%, B%, %, of) = Z?:l R; may be expressed as
(5.18) R =2(2k1 — ks —3ky) Ty +2(2ks + k3) T +4(— k1 — kg — kg) Ts + (— 4ko — k3) Ty — k3 T5.

By virtue of Proposition 5.5 the above proposition still holds in the case of LN (RP) as
long as a, 8 € (T;£)1,2 and the equality signs for Ry in (5.17) and R in (5.18) are substituted
by “<.” The coefficients in (5.18) may have all sorts of signs for peculiar kernels. However,
the kernels 7 of interest are the Bessel kernels (2.3) and the Gaussian kernel, which is their
asymptotic limit as their order goes to infinity. The coefficients for these kernels are shown in
Figure 6. We see that the coefficients of T5 and T3 are negative while those of T are positive.
Henceforth, we assume we have a kernel for which this is true.
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2k2+k3

2k‘—k3—3k4

_k1_k2_k3

—4k,—k,

Figure 6. The coefficients of T1 (top left), T> (top right), Ts (bottom left), and Ty (bottom right) for the
Bessel kernels v (shown with thin lines) and the Gaussian kernel (shown with the thick line). The kernels are
scaled to normalize v(0) and ~"(0).

5.4. Sectional curvature of £?(R!). Finally, we will now explore the important example
of two landmarks on the real line. In this particular case the manifold is two dimensional, so
sectional curvature K will turn out to be independent of cotangent vectors « and 3. In fact,
given the translation invariance of the metric tensor, it will depend only on the distance p =
l¢* — ¢?| between the two landmarks.

The spaces 0IT*£2(R') and T" £L2(R") are one dimensional while §-7*£2(R!) = {0}. Thus

2
AT CRY = dlT*2(®RY) A T'LY(RY)

and the only nonzero term in (5.18) is T}. Therefore combining formulas (5.15) and (5.18) we
get the following result.
Proposition 5.8. The sectional curvature of L2(RY) is given by

_ 2k ks —3ka 20 =90 iy 20 =00 2
== v ) P T ez )

The above function K is shown on the left-hand side of Figure 7 as a function of p for
the Gaussian kernel. The coefficient of the term 77 in (5.18) is negative for p small and
positive for p large. The “cause” of the positive curvature has been analyzed in [23]. Roughly
speaking, suppose two points both want to move a fixed distance to the right. Then if they
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Figure 7. Left: sectional curvature K for L*(R') (from Proposition 5.8) as a function of p = |¢* — ¢*|;
here y(z) = exp(—22°). Right: two trajectories in L*(R') shown in the (¢',¢°) plane (under the assumption
that ¢* < ¢*). Both geodesics originate at (q*,q?) = (0,4) and lie in the region where K > 0 (above the upper
dotted line that indicates the zero of K at |¢* — ¢*| ~ 1.53); they have different initial momenta (p1,p2) = (1,1)
and (p1,p2) = (1,0.4) and exhibit conjugate points.

are far enough away, they can just move more or less independently (we shall refer to this as
Geodesic 1). Or (i) the one in back can speed up while the one in front slows down; then (ii)
when the points are close, they move in tandem using less energy because they are close; and
finally (iii) the back one slows down and the front one speeds up when they are near their
destinations (Geodesic 2). This gives explicit conjugate points (in the sense that two points
are joined by distinct geodesics) and is illustrated on the right-hand side of Figure 7 (where
Geodesics 1 and 2 are represented, respectively, by the dashed and thick curves).

5.5. Sources of positive curvature; obstacle avoidance. There is another source of pos-
itive curvature in £? in higher dimensions. It is clear from (5.18) and Figure 6 that any
positive curvature must come from the term with 77 or the term with 7. As the five terms
are orthogonal, we can make all of them but one zero.

For example, if we choose a = (dallu, —dallu) € §1T*C and 5 = (B,3) € T'L, then it is the
case that T} = (Jal)?||]|? and it is the only nonzero term. Then, if p is sufficiently large, the
sectional curvature for this 2-plane is positive as discussed in the previous section. Figure 8
illustrates an instance of the existence of conjugate points for two geodesics in £2(R?); the
momenta (p1,p2) of each of the two trajectories belong at all times to & IT*02 & T L2

The other possibility is that T} is the nonzero term, which occurs when o = (6, —6at) €
§TT*C and B = (68+,—6B+) € §+T*L. In this case we have that Ty = 2(||6a’|]?||654]]? —
(Sat,66+)2), and for it to be nonzero it is required that D > 3 because T} is the norm of a
2-form in > (6+T*L), which has dimension (D — 1)(D —2)/2. The positive curvature of this
section is readily seen by considering the geodesics that these vectors generate. The simplest
example is the following.
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Figure 8. FEuxistence of conjugate points in L2(R?), with v(z) = exp(—%:cz). Both geodesics origi-
nate at landmark set (¢',¢°) = ((—2,—4),(2,4)); the first one (dashed) has initial momentum (p1,p2) =
((0,10),(0,10)) € T" L2 while the second one (continuous) has initial momentum (p1,p2) = ((6,10), (—6,10)) €
SIT*£2 T L2, The geodesic trajectories exhibit conjugate points.

Proposition 5.9. The circular periodic orbit of radius r,
(5.19) q'(t) = (rcost,rsint), @A(t) = —¢*(t),

t € R, is a geodesic in L2(R?) if and only if r is the solution of the equation vy — v(2r) +
ry'(2r) = 0.

Proof. For orbit (5.19) it is the case that § = 0, d¢ = ¢', and p = 2r; also p; = (70 —
7(,0))_1q'1 and ps = —p1, so that p = 0 and dp = p;. The first three equations of (5.4) can
easily be checked; the fourth one holds if and only if vg — vy(2r) + ry/(2r) = 0. [ |

(The above result was also proved by Frangois-Xavier Vialard of Imperial College, Lon-
don.) Orbit (5.19) has the property that at time 7, ¢' and ¢ interchange their posi-
tions: it is a geodesic from the set of landmark points ((r,0), (—r,0)) € £*(R?) to the set
((=7,0),(r,0)) € £3(R?). But if these points live in R3, they can move around each other in
any plane containing the points. Thus we have a circle of geodesics in £2(R?)

q*(t) = (rcost,rcosfsint,rsinfsint), Pt) = —q'(t)

all connecting ((7‘,0,0), (—r, 0,0)) to ((—r, 0,0), (r, 0,0)) for any 0 € [0,27). This is exactly
like all the lines of fixed longitude connecting the North and South Poles on the 2-sphere and
means that one set of landmark points is a conjugate point of the other in £2(R3). This is
the simplest example of how geodesics between landmark points must avoid collisions and
hence make a choice between different possible detours, leading to conjugate points and thus
positive curvature.
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6. Conclusions. We believe that £V (R”), the Riemannian manifold of N landmark points
in D dimensions, is a fundamental object for differential geometry and that we have only
scratched the surface in its study. We started with a basic formula which computes sectional
curvature of a Riemannian manifold in terms of the cometric, its partial derivatives, and the
metric itself (but not its derivatives). This is particularly adapted to computing curvature for
manifolds which arise as submersive quotients of other manifolds and gives O’Neill’s formula
as a corollary. We then applied this to derive a formula for sectional curvature of the space of
landmarks. This formula is not simple but, like Arnold’s formula for curvature of Lie groups
under left- (or right)-invariant metrics, splits into a sum of four terms. The four terms involve
interesting intermediate expressions in the two vectors (or covectors) which define the section
and which have relatively simple geometric interpretations. We called these the mized force,
the discrete vector strain, the scalar compression, and the landmark derivative. The geodesic
equation in its Hamiltonian form is quite simple and involves the force as expected. We also
gave several concrete examples to illustrate the nature of these geodesics.

Finally, we have examined in detail the case of geodesics in which only one or two land-
mark points have nonzero momenta and computed the curvature in sections spanned by such
geodesics. We found that in this case there are essentially two sources of positive curvature.
One can understand them through the nonuniqueness of geodesics joining two N-tuples: the
first sort of nonuniqueness is caused by the two points with nonzero momentum choosing
between converging in the middle of the geodesic (“carpooling”) or moving independently and
not converging; the second occurs only when D > 3 and arises when the same two points
need to get around each other and must choose on which side to pass (if D = 2, this sort of
nonuniqueness also occurs but comes from nontrivial topology, not curvature).

One of the most important questions left open is to explore how prevalent positive cur-
vature is in general, i.e., for geodesics in which all points carry momentum. Answering this
question is central to applications of landmark space in which geodesics are actually com-
puted. One might hope that the picture for two momenta is true in general, but this is far
from clear. It seems interesting to explore whether there is some sort of “index” for curvature
forms—a numerical measure of how much positive vs. negative curvature is present. Another
important question is to explore the shape of the coefficients in (5.18) for different kernels.
More generally, what is the impact of different kernel types (Bessel, Gaussian, Cauchy) on the
corresponding geodesics? Finally, note that all kernels have a length constant built into their
definition so that the geometry of the space of landmarks is far from scale invariant. Thus
one should analyze what happens asymptotically when the points are very close relative to
this constant or are very far from each other.
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