
THE GEOMETRY AND CURVATURE OF SHAPE SPACES

The idea that the set of all smooth submanifolds of a fixed ambient finite dimen-
sional differentiable manifold forms a manifold in its own right, albeit one of infinite
dimension, goes back to Riemann. We quote his quite amazing Habilitatsionschrift:

There are, however, manifolds in which the fixing of position re-
quires not a finite number but either an infinite series or a contin-
uous manifold of determinations of quantity. Such manifolds are
constituted for example by the possible shapes of a figure in space,
etc.

The group of diffeomorphisms of a fixed finite dimensional manifold is one such
infinite dimensional manifold. The differential geometry of the subgroup of volume
preserving diffeomorphisms was studied in the ground breaking paper of Arnold [1]
where, in particular, he showed that its geodesics (in the simplest L2 metric) were
the solutions of the Euler equation of incompressible fluid flow. In recent years, the
demands of medical imaging and, more generally, of object recognition in computer
vision, have stimulated work on the space of simple closed plane curves in R2 and
the space of compact surfaces in R3 homeomorphic to a sphere. One can endow
these spaces with a variety of different Riemannian metrics and work out both
the geodesic equation and the curvature tensor in these metrics. Many different
phenomena appear giving these spaces very different characteristics in different
metrics. My lecture will discuss four examples, each illustrating quite different
behavior, based largely on joint work in the last ten years with my collaborators
and students Peter Michor, Laurent Younes, Jayant Shah, Eitan Sharon, Matt
Feiszli, Mario Micheli and Sergey Kushnarev.

§1. The simplest possible example one might look at is the L2 metric on the space
of simple closed plane curves. To fix notation, let S be this space, the curves being
assumed to be smooth, i.e. C∞. Let [C] ∈ S be the point defined the curve C ⊂ R2.
The tangent space T[C]S is naturally isomorphic to the space of normal vector fields
to C, Γ(Nor(C)). If �n is the unit outward normal and s is arc length along C, we
put a metric on this via:

||a.�n||2 =
∫

C

a(x)2ds(x)

What does S ‘look like’ in this metric? It is an infinite dimensional version of the
string theory view of the real world: it is wrapped up more and more tightly in all
its higher dimensions. In fact all its sectional curvatures are non-negative and go
strongly to infinity in the higher frequency dimensions of the local coordinate a.
However, the exponential map from the tangent space T[C]S to S is locally well-
defined as the geodesic equation is a non-linear hyperbolic equation but conjugate
points are dense on every geodesic. The global geometry collapses in the sense
that the infimum of lengths of paths joining any two curves [C1], [C2] is zero. This
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Figure 1. A geodesic in the space of plane curves in the L2 metric.
The path starts at the x-axis and moves in the direction of small
‘blip’. As the blip enlarges it creates sharper and sharper corners
where the curvature goes to infinity so that the geodesic cannot be
prolonged.

constellation of properties seems to characterize one possible extreme in the galaxy
of infinite dimensional Riemannian manifolds.

The formulas are quite simple and beautiful. The geodesic equation can be written
like this. Suppose [Ct] is a path in S. To describe the second derivative of the path,
we can first use orthogonal trajectories to map each Ct0 to all nearby Ct’s. Then
a normal vector field a(x, t).�nCt(x), x ∈ C is defined by a function a(x, t), x ∈ Ct0

too. In particular, the tangents to the path [Ct] are given near t0 by a function
of two variables a(x, t), x ∈ Ct0, t ≈ t0. All geodesic equations express the second
derivative along a path as a quadratic function of the first derivatives. In our case,
this means that the first derivative of a should be a quadratic function of a and at
t0 this is what it is:

∂a

∂t
(x) = 1

2
κC(x).a(x)2, κC = curvature of C.

Although it may not look like it, this is a hyperbolic equation: you need only rewrite
it using local equations like y = f(x, t) for Ct and the curvature κ contributes an
fxx term with positive coefficient. This equation does seem to produce singularities
in finite time: see figure 1. Details on this and similar metrics can be found in
[2, 3, 4].

The formula for curvature is even more elegant. Recall that sectional curvature is
just the Riemann curvature tensor R(a, b, a, b) evaluated on an orthonormal basis
of a 2-plane, and that this is a quadratic form on the wedge a∧ b of its two tangent
vector arguments. We will write R(a, b, a, b) as R(a ∧ b). So what could be more
natural than:

RS(a ∧ b) = 1
2

∫
C

(ab′ − ba′)2ds ≥ 0

where a and b define two tangent vectors in T[C]S. The formula shows that higher
frequencies produce more and more positive curvature. In fact, what happens is
that path Ct in S can be shortened by adding high frequency ‘wiggles’ to the
intermediate curves. This is illustrated in figure 2 below.
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Figure 2. The set of all circles with fixed center is a geodesic in
the L2 metric if the radius varies as t2/3. However conjugate points
are dense on it: Here is a deformation of this geodesic which has a
conjugate point when the radius increases by the factor 1.8957....
Beyond that point, it shortens the length of the geodesic.

To summarize: the geodesic equation is a non-linear hyperbolic PDE with well
posed initial value problem; the curvature is non-negative, going strongly to in-
finity at high frequency and with conjugate points dense; and the global metric
is identically zero because the infimum of path lengths is zero. This behavior is
typical of L2 metrics.

§2. Positive curvature which is, however, tamer is produced in another elegant
situation. This example is due to the work of Laurent Younes [5, 6]. Here we
regard the plane as the complex plane. The remarkable idea is to consider the
complex square root of the derivative of the curve, i.e. if t �→ f(t) ∈ C, t ∈
R/2πR is the curve, define g(x) + ih(x) =

√
f ′(t). If C is an embedded curve

(or more generally any immersed plane curve with odd index), then g(x + 2π) ≡
−g(x), h(x +2π) ≡ −h(x). The closedness of the curve is expressed by the formula∫ 2π

0
f ′(t)dt = 0 which means that in L2([0, 2π]) g and h are orthogonal functions of

the same length. We can reverse this process and, starting from such a pair g, h,
define a parameterized curve, up to translation, by:

x �−→ f(x) =
∫ x

0

(g(x) + i.h(x))2dx.

The upshot of this ansatz is this: Let H be the Hilbert space of functions g such that
g(x + 2π) ≡ −g(x) with norm ||g||2 =

∫ 2π

0
g(x)2dx. Let G be the Grassmannian of

2-planes in H and let G0 be the open subset of 2-planes such that there is no x where
all functions in the 2-plane vanish. Then using orthonormal bases of these 2-planes
as g and h, we find that G0 is isomorphic to the space of parameterized immersed
plane curves of odd index mod translations, rotations and scaling. Not only that
but the natural metric on this Grassmannian corresponds to a very natural metric
on this space of curves. The tangent space to parameterized curves is given by
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Figure 3. Some geodesics in Younes’s metric between plane
curves representing recognizable shapes. Note how they rotate to
make optimal matches, e.g. the tail of the cat with the head of the
camel.

all vector fields along the curve, not merely those which are normal, thus, in our
case, by a complex valued function along C. The Grassmannian metric turns out
to equal the 1-Sobolev norm (with only first derivatives):

||a||2 =
1

len(C)

∫
C

|a′(x)|2ds(x), s = arc length.

Geodesics and curvature on a Grassmannian are given by quite simple and classical
formulas so we also get formulas for these both on this space of parameterized
curves and on its submersive quotient of unparameterized immersed curves both
mod translations, rotations and scalings. The geodesic equation is now an integro-
differential equation most easily written not in terms of velocity a but in terms of a
‘momentum’ which is the second derivative u = −d2a/ds2. Like the Grassmannian
itself, these spaces also have entirely non-negative curvature but not so strongly
positive that this prevents the Riemannian metric from defining a nice global metric.
The space has finite diameter in its global metric and can be completed by adding
certain non-immersed curves. Some examples of geodesics in this space are shown
in figures 3 and 4. This type of space seems to be the natural infinite dimensional
analog of compact symmetric spaces of finite dimension.

§3. A third metric can be put on simple closed plane curves, here modulo trans-
lations and scalings, but now with non-positive curvature. Interestingly, only one
half a derivative is added to the metric in the previous example: it has a Sobolev
3/2 derivative. This is the famous Weil-Peterson metric. It is defined as follows:
start with the space of vector fields v(θ) on the circle and put the WP-norm on it,
defined in terms of its Fourier transform by:

||v||2WP =
∞∑

n=2

(n3 − n)|v̂n|2.

Now SL2 is a subgroup of the group of diffeomorphisms of the circle with lie algebra
consisting of the vector fields (a + b cos(θ) + c sin(θ)) ∂

∂θ . This is clearly the null
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Figure 4. If we allow paths to pass through some non-immersed
curves, we find many closed geodesics in this metric. This is the
simplest example. The path goes from left to right, row by row; a
loop flips over in the ellipse-like shapes at the end of the first row
and the beginning of the third, hence these are non-immersed.

Figure 5. A selection of plane curves obtained by composing two
diffeomorphisms corresponding to (i) a boomerang-like shape with
base point in the middle and (ii) a finger-like shape with base point
near one end respectively. In each panel of 15 curves, the data �t is
varied or, equivalently, a variable rotation is added in the middle
of the composition.

space of the above WP norm and since – miraculously – the WP-norm is also
invariant under the adjoint action of SL2 , this norm extends by right translations
to an invariant Riemannian metric on the coset space SL2\Diff(S1). Now the final
link: this coset space is isomorphic to the space of simple closed plane curves mod
translations and scalings. This comes ‘welding’: given a diffeomorphism ϕ, attach
two unit disks to each other along their boundaries using the twist ϕ. The result is
a simply connected compact Riemann surface, hence it must be conformal to the
sphere. The image of the welded common boundary is our curve. For details, see
[7, 9].

One of the remarkable consequences of this construction is that it defines an oper-
ation of composition between plane curves. The welding operation also defines a
bijection between the group Diff(S1) itself and triples (C, P,�t) where C is a simple
closed plane curve, P a base point inside C and �t is a distinguished ray at the base
point, all modulo translations and scalings. Thus there is a law of composition of
such triples. Some examples are shown in figure 5.
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Figure 6. A geodesic from the unit circle to a duck like shape
using an 8-Teichon. The figure is due to S. Kushnarev [10].

This metric is the closest to the standard metric on Rn because (a) it is invariant
under the transitive action of a group, here Diff(S1) and (b) it is quite flat in high
frequency dimensions because the Ricci curvatures (which are the sum of sectional
curvatures R(a ∧ bi) where {bi} are an orthonormal basis of a⊥ for variable a) are
known to be finite. It is also a complete complex Kähler-Hilbert manifold and has
unique geodesics between any two points [7, 8]. The metric can also be defined
using potential theory which embeds the curve in field lines and thus endows its
interior and exterior with a rich additional structure. The geodesic equation is
an integro-differential variant of Burger’s equation involving the (periodic) Hilbert
transform. Among geodesics on this space, there is a special class of soliton-like
geodesics, which Daryll Holm named ‘teichons’. They are the geodesics generated
by vector fields v dual in the WP norm to sums of delta functions, i.e.

〈v, u〉WP =
∑

i

piu(θi), for all u

for some pi, θi. An example of a teichon is shown in figure 6.

§4. The final example is much more general and deals with the full diffeomorphism
group of Rn. Arnold’s curvature formula for volume preserving diffeomorphisms
was significantly more complicated than anything in the above examples. In his
case, there are both positively and negatively curved sections and this also seems
to happen for Riemannian manifolds constructed from any higher order Sobolev
type metrics on diffeomorphism groups. I would not be surprised if at some point
understanding these more complex curvature formulas gives new insight into the
unsolved problems of fluid flows.

The situation that my group has studied most intensively is the metric induced on
‘landmark space’, that is simply the space Ln,N of distinct N -tuples of points in
Rn. Fixing a base N -tuple, we get a submersive map from Diff(Rn) to Ln,N . We
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Figure 7. Three geodesics on the landmark spaces L2,2,L2,2,L2,4

respectively, plus the induce diffeomorphism of the ambient plane.
Note how points moving in the same (resp. opposite) direction are
drawn together (resp. pushed apart). In the four point case, this
causes some complex gyrations. These figures are from the thesis
of M. Micheli [11]

may put a Sobolev norm on vector fields X,

||X||2 =
∫

Rn

〈X, LX〉dx1 · · ·dxn

where L is a positive definite self-adjoint operator, e.g. L = (I −�)s. This defines
a metric on the group of diffeomorphisms provided that L has enough derivatives.
In fact, we want the finiteness of the metric to force the diffeomorphisms to be C1.
Then we get an induced Riemannian structure on the quotient space Ln,N . It has
a simple form. If G is the Green’s function associated to L, {P 1, · · ·P N} ∈ Ln,N

and va is a vector at P a, then the metric is:

||{v1, · · · , vN}||2 =
∑

1≤a,b≤N

(G−1)ab〈va, vb〉, Gab = G(P a − P b).

Arguably this is the most natural class of metrics to put on landmark space.

The geodesic equation on landmark space is quite elegant. To any geodesic there
is a natural set of momenta ua for which a geodesic is a solution of:

dua

dt
= −

∑
b

∇G(P a − P b)〈ua, ub〉

dP a

dt
=

∑
b

G(P a − P b)ub

These equations create a world governed by a weird sort of physics in which points
moving together attract and points moving in opposite directions repel and occa-
sionally one even gets planetary systems. Since Ln,N is a submersive quotient of
the diffeomorphism group, geodesics in L lift to horizontal geodesics in the group.
So these geodesics induce warpings of the ambient Euclidean space. In fact any ge-
odesic in the diffeomorphism group can be approximated by one of these landmark
geodesics if we take enough landmark points. Some examples are shown in Figure
6.
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The sectional curvature of landmark space has four terms, similarly to Arnold’s
formula for the curvature of Lie groups [1]. The reason for this seems to be that it
reflects several different modes of interactions of the points. There are, in particular,
at least two ‘causes’ of positive curvature. One is seen in the middle panel of Figure
4: when two points must move in a similar direction, it saves energy for them to
come close to each other. But if the distances are in a certain range, there will be
two geodesics joining the pair at the initial position on the left and the same pair
translated to the final position on the right. One geodesic has the points moving
nearly independently and nearly parallel and the other has them first coming close,
then moving together and finally moving apart again. This non-uniqueness causes
positive curvature.

Another cause of positive curvature occurs in dimension three and higher. Suppose
two points are to be interchanged, the first moving to the position of the second
and the second to that of the first. Since the distance is infinite if they were to
move directly towards each other, they must move around each other and there are
many planes in which to do this. We show in [12] that when only two points have
momenta, these are, in a sense, the only ways positive curvature can arise.

But negative curvature is caused all the time by the turbulence caused by landmark
point motion. Take the situation where a single point P is moving with non-zero
momentum but that there are many other landmark points around it with zero
momentum. These extra points are dragged along, compressed together in front of
P . If P moves from A to B, we wind up with a configuration C(B) of the whole set
of landmarks. Take B1 �= B2. Then what will the geodesic from C(B1) to C(B2)
look like? You can’t just put momentum on P because you need to move the points
bunched up near B1 back apart and create a new bunch near B2. The only way to
do this is unwind the mess you made in one geodesic and recreate the new mess in
the second. This is negative curvature: to connect the endpoints of two trips, it is
better to go nearly back home. For details, see [12].

Anyway, the somewhat daunting formula for sectional curvature is this. Let v1 =
{va

1} and v2 = {va
2} be two tangent vectors to TL at some point {P a}. Let vi be

extended to a vector field on Rn by its horizontal lift to the diffeomorphism group.
Let v�

1 and v�
2 be the co-vectors dual to the v’s. Then the numerator of sectional



THE GEOMETRY AND CURVATURE OF SHAPE SPACES 9

curvature is given by:

R(v1 ∧ v2) = R1 + R2 + R3 + R4

R1 =1
2

∑
a�=b

[
(v�

2)a ⊗ δabv1 − (v�
1)a ⊗ δabv2

] ·Hab · [(v�
2)b ⊗ δabv1 − (v�

1)b ⊗ δabv2

]
,

R2 =
〈
D11, F22

〉− 〈
D12 + D21, F12)

〉
+

〈
D22, F11

〉
,

R3 =
∥∥F12‖2

T∗L − 〈
F11, F22

〉
T∗L,

R4 = − 3
4‖D12 − D21)‖2

TL,

where δabv = va − vb, and Cab(v) =
〈
δabv,∇G(Pa − Pb)

〉
for any v

and Da
ij =

∑
b �=a

Cab(vi)(v�
j)b ∈ TL,

and (Fij)a = 1
2

(
Davi · (v�

j)a + Davj · (v�
i )a

)
∈ T ∗L, (Da = deriv. at P a)

and Hab = I ⊗ D2G(P a − P b)

The term R4 above is the main cause of the turbulence related negative curvature:
it is the only term which involves points with no momentum of their own.

It is natural to generalize this formula to get more insight into it. A paper is under
preparation analyzing the spaces of submanifolds of any type in any fixed ambient
finite dimensional manifold M with respect to a very general Sobolev-type metric
on the group of diffeomorphisms of M .
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