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ABSTRACT

The recovery of geometric structure from noisy data
poses difficult non-linear statistical estimation problems.
This paper describes a novel, robust, low computational
cost approach for finding the geometric structure of an axi-
ally symmetric pot from a small fragment of it (an unorga-
nized set of 3D points). This problem is of great archaeo-
logical importance to the study of the hundreds and thou-
sands of shards found at excavation sites. Our method is
based on the following fact: for each point on the surface,
the center of the sphere of principal curvature correspond-
ing to the circles of revolution is on the symmetric axis.
By finding the line which minimizes the weighted least-
squares distance to the estimated centers, we can find first
the symmetric axis and then the profile curve. Because of
the special properties of a surface of revolution, we can do
this using only first derivatives, hence this method is robust
to noisy data. We then use bootstrap methods to find con-
fidence bounds for the axis and the profile curve. These
confidence bounds are essential if the estimations are used
for the assembly of the full pot from multiple sherds.

KEY WORDS

Shape analysis, 3D data analysis, Surface of revolu-
tion, Symmetric axis

1 Introduction

Estimating geometric structures from noisy 3D data is a
highly non-linear statistical estimation problem. This pa-
per concerns a particular problem of estimating axes which
arises in archaeology. This is part of the effort of the Brown
Shape Lab to understand and reconstruct 3D shapes from
archaeological finds [1] [2] [3] [4]. In particular, many
of these finds are potsherds. Potsherds are fragments of
a pot, which is ideally a surface of revolution, i.e. a surface
formed by rotating a generator curve about an axis. Re-
constructing complete or nearly complete pots from a large
collections of sherds is one of the most time consuming and
difficult problems that archaeologists face. At present, this
is done manually and often takes a few days to reconstruct

one pot. Instead, most pottery is approximately classified
using two dimensional drawing and measuring techniques.
We can assist them by finding accurate estimates (i) of the
axis hence (ii) of the distance of each point on the sherd to
the axis (which define the profile curve). With this infor-
mation, the problem of finding adjacent sherds belonging
to the same pot is greatly simplified, since these distance
values must agree on the break curve between the sherds
and the axes must match. Of course, it is also necessary
to compute confidence bounds for both the axis and dis-
tance function or correct matches will be rejected when the
estimates are only slightly different.

Given a perfect surface of revolution, theoretically,
there are many ways to find its axis: one of the 2 families
of lines of curvature are circles of revolution with centers
on the axis and the other are the generator curves, lying in
planes containing the axis. But still, finding an reliable al-
gorithm working on unorganized 3D data is not an easy
task. Unfortunately, potsherds are far from perfect, due
to imperfections in the production process and subsequent
erosion. In other words, they are noisy surfaces of revo-
lution. Even worse, each sherd is only a small fragment
of the whole surface, which makes this problem more chal-
lenging. What then is the best way to find their approximate
axis and confidence bounds for this estimate?

As far as we know, not much work has been done
for this problem. Lukacs et. al. [5] proposed geometric
least-squares fitting methods for spheres, cylinders, cones
and tori, however, each geometric type is treated separately.
Potmann et. al. [6] proposed an approach to reconstruct
helical surfaces or surfaces of revolution using concepts
from line geometry. Their algorithm is based on the fact
that the normals of these surfaces lie in “linear complexes”,
which are given by linear equations in the Plűcker coordi-
nates. Using these coordinates, the least squares distance
between a line and the set of normals can be represented
by a positive semidefinite quadratic form. Minimizing that
form is then reduced to a generalized eigenvalue problem.
This method can be applied to our problem and it is fast,
but lack of accuracy sometimes since they didn’t use all
the possible information. We use this solution as our initial
starting point.

Our approach is inspired by the study of the contact



between surfaces and spheres [7]. Spheres of curvature are
defined to be spheres tangent to the surface and having ra-
dius equal to the inverse of one of the principal curvatures
there. For any point on a surface of revolution, the sym-
metry axis contains the center of the sphere of curvature
corresponding to the parallel circles. By finding the line
which minimizes the least squares distance from the esti-
mated centers to it, we can find the symmetry axis. After
we get the axis of revolution, we can calculate the distance
from each data point to the symmetric axis, and do a cu-
bic spline fit [8] [9] to get the profile curve. Because of
the special properties of a surface of revolution, we will
show that this can be done using only first derivatives of
the data, hence this method is quite robust with noisy data.
We also use weighted least squares instead of least squares
to achieve robustness to outlier data points. This algorithm
is computationally efficient. The goal function is easy to
calculate, and the minimization can be carried out by gen-
eral iterative methods. We apply this method to real data
from potsherds from an archaeological site in Petra, Jordan
[10]. After the estimate is made, we use bootstrap methods
to obtain confidence bounds on both the axis and the pro-
file curve. Note that a line in 3-space is described by 4 pa-
rameters, hence the confidence interval for the axis is best
described as a hyperellipsoid centered at the estimate. For-
tunately, it typically takes a special form and can be readily
described. The results are very promising and we expect
our approach can be integrated into a system for the full
reconstruction of pots being built here at Brown.

2 Facts about Surfaces of Revolution

A surface of revolution is formed by rotating a plane curve
about a line in R3. The plane curve is called the profile
curve, the line is called the axis of revolution [11]. For
convenience we let the axis of revolution be the z-axis and
consider the profile curve in the xz-plane. Then the surface
of revolution can be parameterized as:

X(u; v) = (�(v) cos u; �(v) sinu;  (v)) (1)

Then the coordinate curves u = cnst., v = cnst. are the
principal curves. The unit surface normal is given by

n(u; v) = sign(�)
( 0 cosu;  0 sinu; �0)p

�02 +  02
(2)

and the two principal curvatures are given by8<
:

�� = sign(�)(�00 0��0 00)

(�02+ 02)
3

2

;

�� = � 0

j�j
p
�02+ 02

:
(3)

Here �� is the curvature of the parallel u 7�! X(u; v) and
�� is the curvature of the meridian v 7�! X(u; v).

It is easy to show that the centers of the spheres of
curvature corresponding to �� are in the axis of revolution.

3 Formation of the Problem

Given a set of m 3D data points from a surface of revolu-
tion, let pi and ni be the m 3D data points and their cor-
responding estimated normals. Suppose the axis of revolu-
tion is the line L. L is determined by a point p0 on L and a
unit vector v corresponding to the direction ofL. We make
the point p0 unique by requiring p0 � v = 0. Note that
now the axis has four degrees of freedom. For any point p
on the surface, suppose the normal at that point is n. (See
Figure 1) We shall show that �� can be calculated from

Figure 1.

the axis L and the vectors p;n, without using any higher
derivatives. �� is very important in our algorithm. We can
calculate it in general coordinates as follows. From Figure
1, notice that the radius of curvature corresponding to � � is
just kbpk,

kapk = kp0pk sin� = k(p� p0)� vk
and sin� = kn� vk

Hence,

kbpk = kapk
sin�

=
k(p� p0)� vk

kn� vk
and thus

�� =
kn� vk

k(p� p0)� vk (4)

Thus the center of the ith sphere of curvature is

ci = pi � 1

��;i
ni

All the centers ci should be in the axis of revolution.
Hence, we seek to minimize the following function:

f(p0;v) =

mX
i=1

k(ci � p0)� vk2

=

mX
i=1

k(pi � p0)� v � k(pi � p0)� vk
kni � vk (ni � v)k2

The arguments p0;v of f depend on 6 real parameters but
they are not independent as they satisfy the two constraints:

p0 � v = 0; kvk = 1:



It is convenient to introduce 4 new independent parameters.
Define the matrix R as follows:

R =

�
cos� cos� sin� cos� sin�
� sin� cos� 0

�

and then the vector v can be represented as

v =
� � cos� sin� � sin� sin� cos�

�T
Definew = (x0; y0)

T = R �p0. Note that kR �xk = kx�
vk because

�
R
vT

�
is the rotation matrix which makes

the z-axis parallel to the axis of revolution. Hence, we have

k(pi � p0)� vk = kR � (pi � p0)k = kR � pi �wk
and kni � vk = kR � nik
Also notice that (pi � p0) � v should be parallel to ni �
v, so the function f can be represented as a function of 4
parameters: �, �, x0, y0.

f(�; �; x0; y0) =

mX
i=1

r2i (5)

where

ri = k(R � pi �w)� k(R � p�w)k
kR � nik (R � ni)k (6)

The above is the least squares formation, which is known
as sensitive to outliers. To achieve robustness, we want an
estimator which is not affected by the outliers. One way
to do it is using weighted least squares [12], i.e. replace
min

�̂

P
i r

2
i by

min
�̂

X
i

wir
2
i (7)

where

wi =

�
1 if jri=�̂j � c;
0 if jri=�̂j > c:

(8)

and �̂ = 1:4826medianijrij (9)

The constant c is chosen depending on the data. In most
cases, we use c = 2:5. We implement this as an iterative re-
weighted procedure: for each iteration, we use the weight
function based on the solution from last iteration.

The algorithm is as following:

1. get an initial estimation of the axis of revolution L (0)

using Plűcker coordinates by the method of [6]. (The
Plűcker coordinates of a line goes through point p
with direction unit vector v may be taken as (v;v �
p).

2. compute the weight function w (k)
i using Eq. (8), and

Eq. (6) from the current estimation of the axis of rev-
olution.

3. get a new estimation of the axis of revolution L (k+1)

by minimizing Eq. (7).

4. if the difference between L(k+1) and L(k) is small
enough, stop, otherwise, go back to step 2.

For simplicity, in step 3, we used a MatLab minimization
routine based on an iterative line search algorithm [13].

4 Comparison with the Plűcker method
(Potmann’s method)

The Plűcker method is based on the fact that all the surface
normals intersect with the axis of revolution. It minimizes
the least squares distance between a line (the axis) and the
set of all surface normals, which is

f(p0;v) =

mX
i=1

k(pi � p0) � (ni � v)k2

=

mX
i=1

k((pi � p0)� v)� (ni � v)k2

(using (a � b) � c = (a � c)b � (b � c)a.) Compare this
with the goal function of our algorithm, which is

f(p0;v) =

mX
i=1

k(pi�p0)�v�k(pi � p0)� vk
kni � vk (ni�v)k2

We can see that the Plűcker method requires that the two
vectors (pi � p0) � v and ni � v be parallel, while our
method requires the two vectors not only be parallel, but
also satisfy a length relation. The intuition is the Plűcker
method doesn’t use the extra constraint that the normals of
the surface points from the same revolution circle intersect
at the same point on the axis, but our method uses this also.

5 Experimental Results

Experiments are performed on various sherds from the
Great Temple site of Petra, Jordan [10] scanned by a Shape-
grabber laser scanner [14]. The data for each sherd is a
dense set of unorganized 3D points and their correspond-
ing normals. The pixel size is 1mm. We have used of
sherds of very different shapes. For example, the sherd
p1313 is highly curved and not convex. The sherd p654
is very flat. The sherd p642 is also flat but has a ridge. The
sherd p967 is very small. The sherd 1135 has multi-valued
profile curve.

In order to get the error estimation, we do the boot-
strap [15] for each sherd. We generate 500 independent
bootstrap samples by “resampling with replacement”, i.e.
each bootstrap sample has the same number of data points
as the original with points being drawn with replacement
from the original data. The axis has 4 degree of freedom
and in order to make the 4 parameters comparable to each
other, we use the following parameterization:

x = a=z0 � z + b (10)

y = c=z0 � z + d (11)



where z0 is the size of the sherd in z direction. To normal-
ize the data, we do a transformation such that the z-axis is
the mean estimate of the axis of the 500 bootstrap samples,
and the x-axis goes through the centroid of the sherd. We
apply our algorithm to each bootstrap sample, get an esti-
mate of the 4 parameters a, b, c, d of the axis of revolution
and the profile curve. Then we estimate the standard error
by computing the covariance matrix S of the 4 parameters
based on the 500 bootstrap samples.

Suppose l(i) = (ai; bi; ci; di), i = 1; 2; :::; n is a ran-
dom sample of size n from a multivariate normal distribu-
tion N4(�;�), then the mean estimate l � N4(�;�=n).
The statistic n(l��)0��1(l��) therefore has a �2 distri-
bution with 4 degrees of freedom and can be used to make
inferences about �. Given a sample mean vector l, the
equation n(l � �)0��1(l � �) = �2�;4 describes an ellip-
soid with center at l. This equation provides a 100(1��)%
confidence ellipsoid for �.

Since � is unknown, we can replace � by S.
Hotelling’s T 2

T 2 = n(l � �)0S�1(l � �)

has distribution 4(n � 1)F4;n�4=(n � 4), where Fp;n�p
denotes an F distribution with p and (n � p) degrees of
freedom. Therefore, the ellipsoid n(l � �) 0S�1(l � �) =
4(n � 1)F�;4;n�4=(n � 4) provides a 100(1 � �)% con-
fidence ellipsoid for �. Moreover, using properties of the
Hotelling T 2, the individual confidence intervals for the el-
ement of � can be given as following:

lj �
s

4(n� 1)

(n� 4)
F�;4;(n�4)

q
s2j=n

where s2j is the sample variance of the j th parameter [16].
Figure 2 to Figure 6 are some examples of the exper-

imental results. All these figures are organized the same
way: the top left shows the picture of the sherd examined.
The top right shows the function of estimated distance to
the axis shown on the potsherd itself. The points with the
same distance are marked with the same color. We use
several colors to separate different distances. We can see
the parallel circles clearly from the plot. The second row
left shows the estimated profile curve (solid line) and its
95% confidence interval (dash lines) using 500 indepen-
dent bootstrap samples. The second row right shows the
standard deviation of the estimated profile curve as a func-
tion of height along the axis of revolution, based on axis
estimates using 500 independent bootstrap samples. The
bottom left shows the covariance matrix of the 4 parameters
of axis using 500 independent bootstrap samples. The bot-
tom right shows the 4 eigenvectors of the covariance ma-
trix with eigenvalues in decreasing order. The numbers on
top of the plot are the corresponding eigenvalues for the
eigenvectors. For most sherds, the results are good. The
confidence interval for each parameter of the axis is small,
hence the error of the estimated axis is small. The error of

the estimated profile curve is also small comparing to the
radius of the parallel circles of the pot.

From the bootstrap results, we can also see the uncer-
tainty when deciding each parameter of the axis of revo-
lution. For sherd p1135, all the eigenvalues of the covari-
ance matrix are very small, and therefore, the algorithm
is quite certain about where the axis should be. This may
because this sherd looks like a bottom, and has a clear pre-
ferred orientation. For all other sherds, there always one
big eigenvalue, whose corresponding eigenvector is very
nearly a linear combination of the parameters a and b. But
the coefficients of the linear combination vary for different
sherds due to different geometry properties. Therefore, the
algorithm is most uncertain in one direction and the confi-
dence ellipsoid is “cigar-shaped”. Note that a is determined
by the angle between that sherd and the axis at the centroid,
b is x-distance between an estimation and the mean estima-
tion. Therefore, the one direction which the algorithm is
most uncertain is related to the angle and the distance be-
tween the sherd and the axis. But the algorithm is quite
certain about c and d. This is reasonable because the sherd
is somehow symmetric about yz-plane.

the sherd p1313
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Figure 2. experimental results for sherd p1313

The sherd p654 and p642 are similar in shape, tex-
ture, thickness and clay type, so we think they are from the
same kind of pot. Figure 7 is a comparison of the two pro-
file curves. The two profile curves are very similar.Though
they don’t match exactly, there is an small turning angle
difference, the confidence interval for sherd p642 falls into
the confidence interval for sherd p654, so the error is under
control. From Figure 3 and Figure 4, we can see that the
pattern of error of the two sherd is also similar, yet the esti-



the sherd p654

60
80

100

−2002040

−20

−10

0

10

20

the estimated distance to axis function
 shown on the sherd                    

0 20 40 60 80 100mm
0

20

40mm

the profile curve and its 95% confidence interval

0 0.5 1 1.5 2mm
0

20

40mm

the standard deviation

0.4037

−0.7667

0.0231

−0.0432

−0.7667

1.5074

−0.0444

0.0829

0.0231

−0.0444

0.0097

−0.0173

−0.0432

0.0829

−0.0173

0.0332

the covariance matrix

a b c d

a

b

c

d

1 2 3 4
−1

−0.5

0

0.5

1
1.9063

0.0364
0.0108

0.0005

the eigenvectors and the eigenvalues

a
b
c
d

Figure 3. experimental results for sherd p654

the sherd p642
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Figure 4. experimental results for sherd p642

the sherd p967
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Figure 5. experimental results for sherd p967

the sherd p1135
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Figure 6. experimental results for sherd p1135



mate for sherd p642 is much better than that for sherd p654.
This is consistent to that the sherd p642 is a little bigger and
it has a ridge, which gives a clue where the axis should be
, hence it contains more information. The similarity shows
that our methods are reliable in this sense.
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Figure 7. The left shows the profile curves of p642 and
p654. The right shows the 95% confidence intervals for the
profile curves of p642 and p654. We can see that the two
profile curves are very similar and the confidence interval
for p642 falls into the confidence interval for p654.

6 Conclusion

In this paper, we presented a novel method to extract sym-
metric axis and associated profile curve of a surface patch
from a surface of revolution. This method is robust to
noisy data and computationally efficient. The experimen-
tal results are very promising. We also give the confidence
bounds for the axis and the profile curve using bootstrap
method, which are essential for using the estimations for
the full assembly of a pot. This method may face difficul-
ties if the surface is very close to a sphere. This is because
for any point on a sphere, the corresponding sphere of cur-
vature is the sphere itself, hence we will get only one point
(the center of the sphere). If that happens, any diameter
could be claimed as the symmetric axis.
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