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1. Introduction. The idea of using statistical inference for analyzing and under-
standing images has been used for at least 20 years, going back, for instance, to the work 
of Grenander [Gr] and Cooper [Co]. To apply these techniques, one needs, of course, a 
probabilistic model for some class of images or some class of structures present in images. 
Many models of this type have been introduced. There are stochastic models for image 
textures [GGGD], [ZMW], for contours in images [Mu], [GCK], for the decomposition of 
an image into regions [G-G], [M-S], for disparity maps, for grammatical parsing of shapes 
[Fu], for template matching, and for specific tasks such as face recognition [HGYGM]. 
The common framework for all these studies is to describe some class of images /(x, y) 

by means of a set of auxiliary variables {x„} representing the salient structures in the 
images, e.g., edges, texture statistics, inferred depth values or relations, illumination fea-
tures, medial axes or shape features, locations of key points such as eyes in a face, labels 
(as in character recognition), etc. Then i) a prior probability model for the "hidden" 
variables p({x,}) and ii) an imaging model p(I1{x„}) for I, given the hidden variables, 
are defined. Finally, an image is analyzed using Bayes's rule 

p({x„. } 
	

P(II{Xa})P({3-0}) 

which is applied to infer, e.g., the MAP estimate for the hidden variables, given the 
image. Implicit in this approach is the deduction that there is a well-defined marginal 
distribution 

p(I) =- f p(I, {x„}) H clx„ 

on all images that are likely to be seen. 
But is there such a thing as a universal stochastic model p(I) for images? Is this a 

reasonable thing to ask for? What sense would it make 	would the model apply equally 
if we were born in another historical time, if our eyes and bodies were hundreds of times 
bigger or smaller, if we lived in outer space? Images are so diverse and contain so many 
distinct types of structure that research has focussed on modeling specific well-defined 
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aspects of images rather than looking at the bottom line. p(I), itself. Several discussions 
and papers have influenced the first author to take seriously the possibility of such a 
model. Rosenfeld made the remark, about ten years ago. that one seldom encountered 
white noise. or noise of any standard kind in images: more typically, one encountered 
what he called "clutter". At that time, the first author was working with a class of 
models in which the image was assumed to be the sum of Gaussian white noise n and 
of a cleaned-up piecewise smooth image J (called a "cartoon"): I = n + J. But when 
looking at actual pixel values, one saw instead a random fluctuation caused by small 
details which one could not resolve. It was the presence of all these small details and 
small or distant objects rather than the presence of transmission noise or static that 
made the image pixel values so erratic. More recently, clutter has become an important, 
issue in the design of vision algorithms for object recognition. Here clutter is the mass 
of irrelevant details in the scene 	foliage, houses, roads 	in the midst of which the one 
relevent object, such as a car or a tank, is located. The issue is whether you have to 
identify and model every one of the mass of objects in the image before finding the car 
or the tank, or whether there is some statistic that enables you to separate the target 
from the clutter without explicitly describing the clutter in detail. 

A third motivation arose from a joint seminar with S. Shieber where we were comparing 
stochastic models in vision and language. We studied the beautiful experiments done 
by Shannon [Sh] using the most naive raw statistical procedures for modeling English 
language character strings. He counted not merely letter frequencies, but frequencies of 
letter pairs, letter triples, and letter quadruples; not merely frequencies of words but of 
word pairs and triples ("bigrams" and "trigrams"). Taking samples from these models, 
one has the uncanny sense of an almost continuous convergence from models whose 
samples were random character strings to models whose samples come close to being 
true English. Can this be done with images? The obvious problem is that to repeat, 
Shannon's experiment, one needs more memory than is even potentially available. For 
example, if image pixel values are in the range [0,255] and one were to try to compile 
exhaustively the statistics on image values in 3 x 3 blocks, one would create a probability 
table with 2569  = 272 	5 * 1021  entries. So sonic more analysis may be better first! 

Shannon's models certainly could not produce fully meaningful English sentences: at 
best they capture some rudimentary aspects of grammar and reasonable juxtapositions 
of words with related meanings. What can we expect generic image statistics to capture? 
We do not want to model any specific class of objects, such as faces, nor specific textures, 
such as tree bark, nor the physics of the world we live in, such as the effects of specific 
reflectance functions. The idea behind this paper is that, even when you throw out such 
specifics, there are commonalities in the statistics of images, striking regularities that 
can be captured. Our hope is that the models described here are only a start, that 
much more about the nature of the images that we are used to seeing is contained in 
very simple low-level statistics. We can formulate this in a conjecture: there exist simply 
described stochastic models for images that a) assign high likelihood to any "natural" 
image of the world we live in and b) whose random samples have the "look, and feel" of 
natural images, i.e.;  make you look twice to see if you recognize something in them. For 
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instance, no Gaussian probability measures on images have anything like the look and 

feel of the real world 	the best one can do is make them look like clouds (see Fig. 1). 
The outline of this paper is as follows. In §2, we will introduce the precise mathematical 

formulation of the problem. In §3, we describe the most striking empirical phenomenon 
exhibited by the statistics of natural images: their apparent scale-invariance. In §4 we 
digress to show the problems that scale-invariance creates: there are no scale-invariant 
probability measures supported on image functions. To construct such probability mea-
sures, we need their samples to be generalized functions ("distributions" in the sense of 
Schwartz). In §5, we introduce the basic idea of this paper which is to assume that images 
can be described by a numerical quantity called clutter and that an image with clutter 
c1  c2  can be constructed by adding independent images of clutter c1  and c2. Such a 
situation is called an infinitely divisible family and we propose that this defines a natural 
class of image models. Although not exactly satisfied by the "true" probability measure 
on natural images, the infinite divisibility assumption captures in simple mathematical 
terms certain essential aspects of this measure. In §6 and §7 we analyze infinitely divisi-
ble image models, introducing two further axioms that express a) the idea that objects 
are local while the image itself is an ergodic field and b) that some parts of scale-space 
are empty of objects, an assumption we refer to as the "blue-sky" hypothesis. After that, 
we need to convince ourselves that these axioms can be satisified. It is not at all obvious 
that there is any probability model satisfying these axioms (which are closely related to 
what physicists would call a 2D non-Gaussian conformal field theory). We do this by 
establishing in §8 the convergence of what we call random wavelet expansions. In §9 we 
review recent experiments with images which support the theory we have described. In 

§10, however, we describe a basic failure of this class of models: the presence of clouds 
of tiny objects gives the marginal distribution on filter statistics a smooth density. All 
experiments, however, have resulted in empirical histograms for such statistics which 
appear singular at 0. 

We would like to thank many people for help with this paper, particularly: Persi 
Diaconis for introducing the first author to the idea of infinitely divisible distributions; 
Stuart Geman and Zhiyi Chi for very stimulating conversations on scale-invariance and 

further ideas on the use of infinitely divisible models; Yves Meyer for help on the con-
vergence of random wavelet expansions; Song-Chun Zhu for many provocative ideas on 
the modeling of images; and Jinggang Huang for his skill and insight in analyzing the 
statistics of natural databases. 

2. The basic setup. We begin by making precise what we mean by an image. Phys-
ically, images arise in a camera or in your eyes. Let (x, y, z) be coordinates in 3 space. 
Assume the world is viewed from the origin (through a "pin-hole" or lens centered at 
the origin). Then the 2D manifold of viewed directions is the sphere of rays through the 
origin, or an open set in this sphere (such as the retina). One can put coordinates (u, v) 
in this manifold, locally near the ray x = y = 0, z > 0 either by spherical coordinates 
(x, y, z) = (r sin(u) cos(v), r sin(v), r cos(u) cos(v)) for instance, or projective coordinates 
(x, y, z) = (ru, rv, r). In either case, a finite set of N sensors is positioned suitably to sam-
ple the light energy present around particular rays (u0 , v„ <o<  N. The signal received by 
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sensor a may be modeled as the convolution /(ct) = ff K(u - u„ , v - 	dv, 
where K is the impulse response of the sensor to different directions and I is the energy 
of the incident light. In this very concrete physical situation, the question addressed in 
this paper is to construct suitable probability measures on the finite-dimensional vector 
space RN  containing the measurements {/(a)}. 

In order to come up with a more mathematically tractable setup, however, we want to 
simplify the geometry in several ways. First of all, we want to avoid modeling the details 
of the sensor positioning, modeling the energy I directly. In this case, the simplest 
mathematical scheme is to consider I as a random distribution, and specific sensors a 
as defining test functions K(u — u„: , v - VG ), so that 1(a) is the inner product of the 
listribution I with the test sensor G. We therefore seek probability measures j/(/) on 
the space V' of distributions. 

Moreover, we want to avoid modeling the details of peripheral vision and the borders 
of images. The simplest way to do this is to construct probability measures on the 
space of distributions /(u, v) defined for all (u, v) E IBz. We shall assume the measures 
we construct are stationary, so that their marginals on the distributions in a specific 
window, i.e., in an open subset U C R2 , are independent of translation. The assumption 
is that physical images I(u, v) for u, v sufficiently small are modeled by the marginals 
of this probability measure. In this case, it does not matter whether we use spherical 
or projective coordinates in the manifold of rays, because to first order, in a Taylor 
expansion: 

(r sin(u) cos(v) , r sin(v), r cos(u) cos(v)) 	(ru, rv,  , r). 

To avoid confusion, note that the measures we seek on /(u, v) do not model random 
projective views I(u, v) of the world. This is because projective views distort spheres in 
(x, y, z)-space near the periphery of sight into elongated ellipses in the (u, v) plane. Nor 
can they possibly model spherical images /(u, v) of the world because spherical images are 
only defined for a compact set of values of (u, v). Instead, we are asking for a stationary 
measure whose windows model actual images of the world locally. The samples from 
such a stationary measure are more like Chinese landscape scrolls, in which more and 
more of the world comes into view as the scroll is further unrolled. 

In passing from a model of a bounded part of the world to the idea of images as 
infinite scrolls, it is natural to assume that distant parts of the image I are more and 
more independent. In other words, we make it part of our basic assumption that the 
measure we construct will be ergodic in a suitable sense. For some theorems it will be 
important to formulate this requirement quantitatively, for instance by asking that some 
covariances decay fast enough. But the independence of 2 random variables is much 
stronger than having zero covariance and one may also want to assume the decay of 
various higher-order measures of dependence such as mutual information. 

3. Axiom I: Scale-invariance. Vision is quite distinct from hearing and touch in 
its lack of characteristic scale. In hearing, there are many natural units for measuring 
time: your heart beat, the frequency of your vocal cords, the length of a day. etc. These 
units give universal scales in which to measure any time interval; hence units in which 
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to record the signal received from your ears. Similarly, when you touch an object, its 
true physical size determines how many tactile sensors in your skin are excited: hence it 
always evokes a signal in the 2D array of tactile sensors of the same "size". But this is 
not true of vision: you can see your spouse's face from a 100 foot distance or a 1 inch 
distance and the resulting signals transmitted by your retina, are (approximately) scaled 
versions of each other. What this means is that any scene that produces an image /(u, v) 
on your retina or camera focal plane may also be viewed from nearer or farther away. 
producing (approximately) an image I (Ati,, Ay) which is a scaled version of I. 

Why have we written "approximately"? The reason is that this ignores perspective 
effects. In fact, when you get closer to a scene, the nearer objects get larger faster than 
the farther objects. These effects are not usually very noticeable. Except for unusual 
views, such as telephoto images down twenty blocks of a straight street or closeup views 
of a face 1 inch from the nose, the effect is not obvious. The simplification we are 
proposing to use goes under the name of "weak perspective" in the computer vision 
literature. The characteristic distance to each part of the viewed scene is fixed at some 
typical value z0  and surface points with coordinates (s, y, z) are projected to the image 

plane via (u, v) = (xlz0 ,y1z0 ). Then getting closer or moving farther away from the 
scene simply changes z0  and precisely rescales the image. Whether this approximation 
is reasonable depends on the stochastic nature of the world geometry, i.e., what is the 
natural distribution of objects and their sizes in the world in which we live. We will 
present below some reasons for believing this weak perspective model is reasonable. 

Mathematically, we may express scale-invariance in terms of the basic probability 
measure ,u on D' as follows. Firstly, the group of diffeomorphisms of R2  acts on D 

and on D', in two natural ways. Let 0 : R2 	R2  be a diffeomorphism of R2 . we  

may define To( f)(x) = f (0-1(x)) for f E D and define it on D' by transpose-inverse: 

< 	f > = < I,T0-1(f) >, for I E D', f E D. Explicitly, this makes 0 act on 
distributions I that are functions by the rule T0(I)(x) = D C5 1 — 1  I (0 —  (x)). Alternately, 
we can make it operate this last way on D and by the first formula on D'. We want to 
express the invariance of the probability measure p on D' by the formula 

Axiom I (scale-invariance): p(T,/,(S)) = p(S) 

for all measurable subsets S C D' and all 0 of the form 0(i) = Ax + a. But which is 
right definition of the action? 

In terms of measures on D', the probability of seeing a specific pattern may be de- 
scribed as it({/ 	fk > — ak j < C}), where f k  are a set of test functions, e.g., the sen- 
sors of a camera, ak are the expected values for these responses and e allows for noise. The 
probability of seeing the same pattern at a smaller scale is p({/ < I, yk  > ak. < e}) 

where nothing changes but the sensors. We need gk (Y) = A2  f k (AZ d) where A is the 
factor by which the pattern shrinks and a is a translation. Note that the factor A2  is used 
so that the sensor has the same sensitivity, i.e., if fk  dx dy = 	gk  dx dy. These two 
measurable subsets of D' differ by the action of the diffeomorphism 0(Y) = A-1  (x — 
but note that the action is defined in the second way, i.e., it acts on test functions with 
the Jacobian factor and on images by simple substitution. 
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Unfortunately, as is well known, there are no nontrivial measures on D' that are 
invariant under translations and scale changes and that have finite mean and variance. 
For any such measure p,, the mean /0 (Y) and the covariance C(Y,!7) are distributions 
defined by 

< Io, f > = Exp(< , f >) 

C, f g> = Exp(< (I 	(I — 	f g>) 

(where "Exp" means expectation). Because of translation invariance, /0  is a constant 

and C is a distribution in x — ' only. Because of the scale invariance of p,, C is also 
invariant under scale changes and hence must be a constant too. Hence the measure p, 

is supported on the one-dimensional subspace of constant images R • 1 C 'D'. If these 
moments do not exist, there are translation and scale-invariant measures. The simplest of 
these is "Cauchy noise". On a finite grid, this is defined by independent pixels, identically 
distributed with a Cauchy distribution. The measure fica„,,h,„oise  is defined simply by its 
Fourier transform: 

Exp(ei<H> ) = - I I I (x)Ith r 

This problem stems from "infra-red" blow-up, i.e., scale invariance of the kind we 
are assuming implies too many extremely large-scale oscillations and these give rise to 
infinite energy around zero frequency. The solution is to consider images as distributions 
modulo constants. Since the large scale, low frequency contributions to the image are 
locally nearly constants, they have less and less impact on the image modulo constants. 
This leads us to look instead for measures on the quotient space 

D'd =def D'/R • 1. 

For such a measure, the covariance is a distribution C(i — 'fi) that is scale invariant 
modulo constants. If it is rotationally symmetric too, the only such distributions are 
CAY — 	= cI  log(11 x — 	+ c2. Since the covariance is now only defined on test 
functions with mean 0, we can ignore c2. 

Measures on Ddi  that are stationary, rotationally symmetric and scale-invariant do 
exist. The classical one is the Gaussian measure, known as the "two-dimensional free 
quantum field": the unique Gaussian measure with mean 0 and covariance — log(11±.---SO• 
It is constructed by approximating Ddl  by finite-dimensional quotients given by finite sets 
{Oi}, 1 < i < rt of test functions with f = 0. For each such set, we use the Gaussian 
on W' with mean 0 and covariance 

Ci. = 	Oi(:-.00-. (0 log( 11 x — 	) 

By standard arguments (see [G-V], Ch. 4), these define a Gaussian measure on the nuclear 
space V. In fact, this measure is supported on a suitable Hilbert-Sobolev space defined 
by a negative degree of differentiability. We may define these spaces by 

Hs 	0y
/2 r  

'Hoc • 
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Then a careful study using the Minlos-Bochner theorem (see [Hi], [Re] as well as [G-V]) 

shows that it is supported just outside the space of locally L 2  functions' 	in fact in 

n,,„ 
Loosely speaking, this measure is given by the probability density function 

= e  1/171112dx dy 	dr(x, y). 

This formula is most easily interpreted by rewriting it in terms of the Fourier transform 
I of I. Since 

11V I (x,Y) 112  dx dY = f f 	± 77 2)1k 71) 2d 

dtt can be rewritten, still loosely, in diagonalized form: 

diu(I) = H 	d71. 

This shows that samples from this model are simply "colored" noise, white noise with 
higher frequencies decreased by the factor 11 	r) 11 and low frequencies amplified by the 
inverse of this factor. The effect is that, unlike white noise, when it is smoothed, the law 
of large numbers does not erase all features, but it always retains oscillations of the same 
contrast. An example of an image sampled from this distribution is shown in Fig. 1. 

We will construct non-Gaussian rotation and scale-invariant measures below. At this 
point note that, even when non-Gaussian, their covariance must be c1  log( I 	- II); 
hence their power spectrum takes the form 

Exp(1( 1)1( 2 )) 	I I bI 

4. Nonexistence of scale invariant measures on functions. The scale-invariant 
Gaussian probability measure is well known not to be supported on the subspace of 
measurable functions 4„. C V1  ([Do], [Re]). This makes such a model seem complicated 
and inaccessible. Mallat, Meyer, Donoho, Simoncelli, Coffman and others have instead 
proposed various spaces of true functions as natural models for images (see [Ma]). For 
example, they propose the space of functions /(x, y) of finite total variation, or the 
more subtle Besov spaces or specific spaces of wavelet expansions with mother wavelet (s) 
adapted to image geometry. The point of this section is to prove that there is no scale-
invariant probability measure on such spaces (or on them modulo constants). The idea is 
that scale-invariance automatically implies oscillations everywhere of the same amplitude 
and measurable functions cannot be so complex. Thus, accepting the stochastic approach 
to images and their scale invariance forces you to model images by Schwartz distributions 

This holds in any dimension. For any d, there is a unique Gaussian probability measure on Did  with 
mean 0 and covariance C(a) = ci log(II a7 	+ c2 . To see where it "lives", we may construct it from 
"white noise" (see [Hi]) which is given by C(a) = 0 if I 0 or equivalently by 

Expi(e,<f./>) = e _ If(z)12 dz  

It is well known that white noise is supported in nc,„ H/2 	The scale-invariant measure is con- 

structed by operating on white noise by convolution with the kernel 	II — d/2  which boosts the differ- 
entiability by d/2. 
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FIG. 1. A computer simulation of a sample of the scale -invariant 
Gaussian measure on images 

that are not measurable functions. It seems that the models of images proposed by 
the wavelet community are really models of the "cartoon" component J obtained by 
decomposing an image I into a sum J n, where n is noise or texture or clutter and J 
are the major salient parts of the image. But, whereas n has been modeled as noise, we 
propose that it really follows the same statistics as J only scaled down (compare Meyer's 
discussion [Me]). 

THEOREM. Assume ,u is a probability measure on 	distributions on R" modulo con- 
stants. Assumeµ is invariant by translations and scale transformations and that n is 
not a delta function with support 0. Then ,u is not supported on the subspace of locally 
integrable functions 

(LL/R • 1) C 

Proof. Assumeµ is supported on LL/R • 1. Fix any positive numbers a and r and let 
B,.(I) denote the ball of radius r with center'I% Let IS denote the Lebesgue measure of 
a subset S C R". For any I E Li,,,.  and x c R", define 

g„,(I, = 1{# E BJ17) I(Y) — I()1 > 
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This defines a measurable function: 

: (41„c /R • 1) x R" 	O. 1] . 

In particular, we can integrate 	times the measure and get Exit, 
Because is invariant with respect to translations, 	is constant as a function of Y. 

Because ,u is also scale-invariant, 	is independent of r too! Thus 

Ex1)/ (Yu. r 11) = Pc 

for some constant p„ depending only on a. 
Next, consider g„.,.(I,Y) for fixed I and r 	0. Recall that Lusin's theorem for the 

function I states that I is "almost everywhere continuous". More precisely, for every 

e > 0, there is a set Z, C 1k" with Z. < c such that 110,71,,,._z )  is continuous. Recall that 

if S C IR" is measurable, S has density 1 at a point Y E S if 

lim S n 	/1B,,(Y) =1 
c—o 

and that there is always a set Shad C S with Sb,ial = 0 such that Y E S — Shad implies 

S has density 1 at Y. Combining these two shows that 

lim g„.,(I,Y)= 0 if Y (R" — Z) — (R" — 

But 

Zo (I) = n[ z, U (R" — Z)1,,,(1 ] 

has measure 0. Hence, for fixed I and x Z0 ( I) , 

lim ga.,.(I,i)= 0. 

Note that Z0 = Uzo(I) is a set of measure zero in ( Li10,1I[8 • 1)  x 

Now apply Lebesgue's bounded convergence theorem: 

Pa. = lim Expi  

= Expi ( 	Y)) 

= 0. 

Thus for every a and r, 	= 0 for almost all I and Y. This can only happen if the 
- 	 it-measure 0, i.e., it is a delta function supported on 0. This set of non-constant I has 

proves the theorem. 	 ❑ 

5.Axiom II: Clutter and infinite divisibility. A fundamental fact about the 
world (or, at least, about the way we think about the world)  is that it is not a formless 
mixture of stuff, but is broken up into discrete objects. Individual objects are the things 

up, and the things that have a specific use. What that we name, the things we pick u 
constitutes an object is never precise: objects typically are made up of parts, which may 
be thought of as distinct objects, and are part of larger assemblages which can be treated 
as single objects. The prototypical object is a simple rigid thing made of a single material 
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with a homogeneous appearance which can be moved independently of the rest of the 
world, e.g., a knife or a stone. But most objects are more complex and have parts: a body 
is a single object (e.g., it resists dismemberment), but it is made of parts—limbs, trunk. 
head, etc. 	which move as separate almost rigid objects. Other "objects", referred to in 
language by so-called mass nouns, break up into tiny parts. Thus sand is made up of a 
huge number of grains. 

Since the 3D world breaks up into objects, the 2D views produced by imaging the 
world also break up into the viewed surfaces of each object. Visually, simple objects are 
most readily identified by their motion relative to the rest of the image, e.g., by their 
simple optic flow fields; but they often appear clearly in static images by virtue of their 
homogeneous color or texture, separated from the background by sharp intensity or local 
power spectrum discontinuities. It is natural to break up 2D views of single objects into 
further parts on the basis of albedo changes as well as its 3D parts. For instance, if the 
surface of a sweater is variously colored, its pattern breaks its visible surface into distinct 
2D surface parts. In other cases there is a mixture of geometric and illumination factors 
that break a surface into parts. For instance, the visible surface of a lake may break up 
into vast numbers of ripples. You may also treat shadows and highlights as "parts" of 
the surface, objects in the 2D world of the image. From the point of view of images, all 
these effects break up a part U of the image domain into subparts U1  C U winch we will 
consider as being the viewed portion of a virtual object, an infinitely flattened object on 
the surface of another. 

Can we express the fact that images depict a world of objects as a mathematical 
property of the probability measure tt on images? This property is not a simple one to 
capture, but, as a first approximation, we propose that it means that the measure p is 
infinitely divisible. Recall that a probability measure p on R is infinitely divisible if, for 
every n > 2, there is a probability measure p( n )  such that p = p(" ) *p(") *• • • *p(" )  (where 
* represents convolution). Translating this into the language of random variables, if x is 
a random variable distributed by it, then for every 71, x can be written as a sum r = x 1  + 
x2  + • • • + x„, where x i  are "iid" , independent and identically distributed. It is a theorem 
that infinitely divisible distributions belong to semi-groups of distributions (see e.g. [Sa]), 
i.e., for each such p, there is a family of measures pi , defined for all t > 0, such that p = 
and p, *µc = psH-t . The measures 12(n)  in the definition are just the measures p1/ „ in the 
semi-group. This gives us the intuitive characterization of infinitely divisible distributions 
as the marginal distributions on the value X1  of stationary stochastic processes {XI  ,t > 
0, X0  = 0} with independent increments: i.e., the distribution of X1, — X 1., depends only 
on t 1 	t2 	it will be Pt, _11 	and it is independent of Xs, — X82  if the intervals [t 1  , 
and [s 1  , ,s2] are disjoint. The same definition works for vector-valued random variables 
as well as scalar random variables. Thus we define a probability measure p on a function 
space E to be infinitely divisible if for every n > 2, there is a probability measure p( n )  
such that p = p(" )  * /LW * • • • * p(" ) . Then there is a semi-group pi  as before, and a 
random variable in E chosen from p is an iid sum of n random variables in E chosen from 

( 	) 
• 

Thus, for images I, we propose: 
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Axiom II (infinite divisibility): 

(1) Every image I has associated with it a parameter c, the 

clutter of I, 
(2) Images with clutter c are random samples from a probability 

measure 	on D' and it, * and  = 

This is equivalent to saying that an image I with clutter c can be formed as a sum 

I = 11 +12 + • • • + In , where I k are independent images each with clutter c/n. What we 

have in mind is to create an image with a certain level of clutter as the superposition of 
images with less clutter. This is clearly a toy version of the way nature makes the real 
world, starting with bare land, adding rocks, trees, animals, more or less at random. It 
is not meant to be exactly true of the distribution of generic images, but we propose it 
as being approximately true, like the axiom of scale invariance. 

Let us try to be clearer about "how true" this axiom is for real world images. It 
seems reasonable to imagine the world as being formed by placing objects in a scene, 
some simple, some compound, some in large arrays, and by painting their surfaces with 
patterns and shadows made up of other shapes, simple, compound and textured. This 
scene is then viewed from a random viewpoint. If we make simpler scenes by leaving out 
all but a few of its component objects and surface shapes, we can imagine recreating the 
full scene by adding together these simpler scenes. This will work except for one main 
phenomenon which will not be captured. This is partial occlusion. Imagine a scene with 
two objects 01 , 02  viewed from some point P. If neither occludes the other, the resulting 
image is the sum of the images of the two separate objects. If 01  is in front of 02  and its 

outline is wholly inside of 02 's, then the resulting image is the sum of 02  and that of 01  
but painted with the difference of the colors of 01  and 02 . The hard case is when one 
object partially occludes the other: this results in "T-junctions" where their contours 
intersect and the object in front must be painted so as to cancel out the occluded portion 
of the contour of the object in back. This cannot be done without violating independence 
of the two simpler images. Thus we propose that T-junctions in images are the simplest 
structures that violate the infinitely divisible axiom. In addition to T-junctions. partial 
occlusion produces extended contours which are broken into pieces, which also cannot 
arise from an infinitely divisible distribution. 

6. Axiom III: Locality of objects and ergodicity. The above two axioms are 
nearly all we want. In fact, a remarkable fact is that infinite divisibility nearly produces 
objects for us. To see this, we need the famous Levy-Khintchine theorem, which makes 
very explicit the nature of infinitely divisible distributions. Looking first at the case of 
scalar random variables X with distributions it, the Levy-Khintchine theorem, in its usual 
form, asserts the existence of an auxiliary measure v, called the Levy measure, on IR — (0) 
such that (x2 v)([-1,1]) < oc and 

f 	= 

where 1% is the Fourier transform of v, interpreted by defining the principal part of v as 
a distribution. 
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This theorem can be rewritten as an explicit recipe for constructing the random vari-
able x: 

xo  +0-x, + E „ where 
i>2 

X0 = a constant, 

x I  = a standard normal variable, 

/2,13, • • • = a Poisson process on R — (0) with density v. 

The theorem should be understood to mean that the random variable x has a fixed 
part, a Gaussian part, and a discrete part that is the sum of a Poisson process, i.e., a 
countable set of points in R — (0) distributed randomly with density given by the measure 
v. The simple case is where v(IR — (0)) < oc, so that the Poisson process consists in a 
finite set of points and the sum in the discrete part is finite. In this case the Fourier 
transform v of the measure v exists in the usual sense. To include all infinitely divisible 
distributions, however, v must be allowed to have infinite measure around 0 so long as x2 v 
assigns finite measure to a neighborhood of 0. In this case, we have to add convergence 
factors to the series for the discrete part of x (and the series must be summed in the 
right order). We ignore these technicalities. 

The important case for us are those scalar random variables x such that 

= X()+ 
	

{xi} Poisson for a finite measure v. 

We may think of these variables as scalar variables resulting from the superposition of 
a finite number of "objects". It is a standard result that such x's are exactly those 
with infinitely divisible distributions and Pr(x = xo ) > 0 (i.e., their distributions have 
"atoms"). 

The Levy-Khintchine theorem generalizes to random variables I with values in Banach 
spaces X (see [Li]): 

	

I 	= 	+ /1  + 	where 
>2 

	

III 	a constant, 

	

II 	a Gaussian random variable, 

	

12113,•• 	a Poisson process on X — (0) with density v. 

As before, the Levy measure v is a measure on X — (0) with possible singularities at 0, 
and the sum has to be interpreted carefully if this singularity is too big. 

We want to apply this to the probability measure on images, with X C Dd  being a 
Banach subspace of the full space of distributions (modulo constants) which carries the 
measure ft. The meaning of the samples Ik,k > 2 from the Levy measure is that these 
component images are the primitive "objects" out of which images are composed. Thus 
we add our third locality axiom, which states that these objects are given by functions 
and are compactly supported: 
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Axiom III (locality): The Levy measure v for images I is sup-

ported on the space L!, of measurable functions with compact sup-
port. 

(Note that Li. is a subspace of V'2 because, among all the functions f + a, a E R, only 
one can have compact support.) 

What happens when we combine axioms 1, 2 and 3? From infinite divisibility we get 
the Levy-Khintchine decomposition of I. From scale invariance and the uniqueness of 
the Levy measure, we conclude that v must also be translation and scale invariant. In 
other words, V is invariant under the three-dimensional group G = 11R.2  x R+  of maps 
(x, y) 	(rx + a, ry + b). By axiom 3, v is supported on L. Denote by p : G x 14. —> L I  

the action of the group G on our function space. On the other hand, there is a measurable 
map 14. — (0) —s R2  x R+  taking every nonzero function f to the center and radius of 

the unique smallest circle on which it is supported. Let 	C L,1„ be the set of functions 
whose support is contained in the unit circle and in no smaller cirle. Note that acting 

by (a, b, r) E G carries the unit circle to the circle with center (a, b) and radius r. So 

combining these two maps, we get a measurable isomorphism 

R2  x R+  x (L!, — (0)) L' LI, — (0) 

defined from the LHS to the RHS by the action of the group and from the RHS to the 
first two factors on the left by the smallest circle construction. The scale invariance of 
the Levy measure then means that, in this product decomposition, it is a product of 
Haar measure dx.dy.dr/r on the groups  and a reduced Levy measure v„ on L1 : 

dx.dy.dr 
= 	 x 

r 

7. Axiom IV: Blue sky. We next want to consider the reduced Levy measure v„. 

A fundamental property of the world and of images of it is that they have blank spaces in 
them: the blue sky, blank painted walls. This is really a property of scale-space. When 
things on all scales and at different locations are put together in a scene, there should 
be parts of scale-space that are not sampled. This effect can arise from the natural 
fluctuations of the sampling density of the Poisson process, but only if the Levy measure 
is not too big. In order that our model will produce images with blank regions in them, 
we assume: 

Axiom IV (blue sky) 

(1) The constant image /0  is zero, 
(2) The Gaussian component II  is zero, and 
(3) The reduced Levy measure v,, is finite. 

C o nf us i ngly, 	db.dr r is the right invariant Haar measure and da.db.dr / r3  is the left invariant Haar 
measure. If the group acts on functions in the usual way, we believe the right-invariant measure on the 
group makes the product measure invariant. 
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This axiom implies that the Poisson process /i  sampled from v can be constructed from 
a Poisson process (ai, )u) in the group G with density cdadbd\/.\ plus independent, 
random choices Ji  sampled from v„. Thus it gives us the explicit form of the expansion: 

I(x,y) = 

We want to call such an expression a random, wavelet expansion. The terms in this 
expansion are meant to model the individual "objects" in the scene (where objects is 
interpreted to include things such as parts of patterns, shadows, textons, etc., as discussed 
above). 

The above axiom implies that for any bounded part K of G there is a nonzero prob-
ability that the series for I contains no term with (ai , bi , A) E K. This means that the 
resulting image I contains no objects of a certain bounded range of sizes in a certain 
bounded part of the image plane. Hence images have nearly blank areas, when blurred 
to eliminate infinitesimal features and considered mod constants to eliminate huge fea-
tures. It is not clear, however, that any measure of the above type exists. The series 
clearly converges if we put infra-red and ultra-violet cutoffs, but this is not clear in the 
full scale-invariant case. The convergence for this case is discussed in the next section. 

What do such random wavelet images look like? We have simulated them for several 
choices of v„ and displayed the results in Figs. 2-3. In the first image, u„ is supported on 
the characteristic functions of circles and the clutter is low to show the individual terms of 
the expansion clearly. Each is colored by a Cauchy random variable and the whole image 
is displayed with a gamma correction, applying a sigmoidal function 1/(1 + exp(—I/c). 
(This is supposed to mimic real images where the typical ratios of maximum to mini-
mum intensities are 100-1000 and are displayed by film with some gamma correction to 
compress the dynamic range.) In the next two images, circles are replaced by "ribbons" 
(also called "worms" or "snakes") obtained by sweeping a circle of varying radius along 
a curve called its medial axis. In the simulation, the orientation of the medial axis and 
the log of the radius are given by independent Brownian functions of arc length and the 
length of the axis is exponentially distributed. In the last image, the support of every 
function in vu  is a rectangle but it is not colored with constant intensity but by a sum 
of a constant and of three random sine-waves. 

8. Convergence of random wavelet expansions. In this section, we want to 
prove that, with mild conditions on the functions in the support of the Levy measure v, 
the random wavelet expansions (7.1) converge almost surely as distributions. We saw in 
4 that they cannot converge almost surely as functions because they would then define a 

scale-invariant probability measure on functions. However, it turns out that, like samples 
from the scale-invariant Gaussian model, random wavelet expansions live "just outside" 
functions. 

Let us fix our notation. It is no extra work to consider "images" on Rd for any 
dimension d. Define as usual: 

D = D(IRd) = C' functions with compact support, 

= D'(1":(i ) = dual of D, generalized functions, 
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Figure 2: A computer simulated sample of random wavelet images, one with low

clutter and disk-like primitives, one with higher clutter and textured rectangular

primitives. See text for details.
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Figure 3: Computer simulated samples of two random wavelet image with

ribbon-like primitives. See text for details.

Finally de�ne

H0
loc = functions with

Z
K
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DP I 	E D 	f(x)dx, =0}, 

Did 
	dual of Dd = DI /R • 1. 

H' 
	

Hilbert-Sobolev space with norm, 

Ilf 
	= f o_ + 112 r/21.t(6 24' 

= 	 A)8/2 f • ,ndi, 

KsV) = ((1 + 012)- 
2
) (i), the semigroup of "Bessel" kernels. s > 0 

= const.11-11 	, (114), where K is the classical Bessel function. 

Thus. 

Ks * IP = IP+', all t, s > 0. 

Finally, define 

f
K 

..) 
= functions with 	t-  < DO, all bounded K, 

Hluc = 	)8/  2  (11i,),),s > 0. 

As above, let v,„ be the reduced Levy measure supported on functions whose support, 
is contained in the unit ball (and no smaller ball). We want to assume v„ is supported 
in a fractional Sobolev space. The reason this is useful is that natural models for the 
elementary components of images may include functions that are smooth on a domain K 

with smooth boundary, but 0 outside K and thus discontinuous on OK. Such functions 

are typically in 11-' for all s < 1/2. We shall prove: 

THEOREM. Assume that for some E > 0 

114:2dliu(J) < DC. 

Then the random wavelet series: 

I(Y) = 	aiT'o - 	E 

converges almost surely in 	• 1, all s < 0. 

Proof. We shall show that for all .9 > 0, the series K,. * I converges almost surely in 
1-/i( ) ./R • 1. Break up the formal series for I as follows: 

Ike (x), 
E77  

k (Y) = 	 Ji (AiY - 
2k<,\ ; <2h 

Then Ik. is a locally finite sum, i.e., on all bounded K, only a finite number of terms 
of I. are nonzero on K. Note that the summands I. are independent random functions. 
To show convergence, we use the basic fact (the easy case of Kohnogorov's Two Series 
theorem): 

fp) 
1(I(' 
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PfioPosrrioN. Let {fk} be independent random variables in a Hilbert space H. Then 
Exp(f j.) = 0 and E Exp ( fk  2) < oc implies that E fk  converges almost surely in H. 

Thus we need to show 
a) Exp (K,* Ik) = constant function ak, which will be independent of k. 
b) Fix a large ball D and let f = 	' f Then 

, I) ,  ' 

Exp 	(K .*J - K , * 	10 2) <x.  

The basic calculation is an application of Campbell's theorem ([Ki], §3.2) to find the 
mean and variance of (K,,. * 4)(4 Recall that Campbell's theorem states that if {x i} is 
a Poisson process with density v(x), then 

Exp 
	

f(x,) = f (x)dv(x), 

Var 	f (. = f f (x) 2  dv(x). 

This gives 

21I-  d  
Exp((ics  * /k)(i)) = 	 f dv.,,(J) if Ks  (fj) J (rY - 37") di dc 

f r 

log(2) • f K (04' • f f J(i) di dv„(J) 

log(2) Exp (f J.) , 

which proves the simple estimate (a). Campbell's theorem also shows 

Var ((K.. * k)(x)) = f drr  f dv„(J) f di 	K s (Y)J (rY - i)d0 
2 

= I dr  f dv„(J) f K 	s(Y-2)J (ryi - i)J (r y7; - 	dil 

Let 

C (WI  ,u7'2 ) = I dv„(J)J (14)J (1V2). 

Substituting 14 = rye  - x and using the fact that KS  is even, we find 

Var (K * Ik (x)) 

= 
' dr 	 ui 	122 

	

dill due  C (1.6 ,u72)r-d  K8( 	± i) K ,(- 	- i')di 1 
r  

• dr 

	

dif du-  C WI  u72)K 2 ( u-)  - 	'1-6  ). = 1 7.d+ 	1 i f 	 1' 

A similar calculation with two points fi,..77-:2  shows 

Coy (K 3  * A. (317-1 ) K , * 1,.(i.'2)) 
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7-'1 	
C(u-i,u7:2)K2s 	 

dr 	 uI  — uz 
+1 
	 + x, — 

The norm we want, however, is an integral: 

Exp 	(K „ * k  — 	* Ik ) 
2) 1  

ID I 

where 

2 D 

1 

2  
	Exp (If 

Dx D (K5 * k (37-1) — K * Ik (f:2)) 	dx:'2) 

= Var (K * -1-k(i)) f w(Illl) Coy (K „ * 	K * 	+ ,F))(IF 

IDn(D-HF)I  
w(gli) = 	 • ID12  

Using our pointwise estimate, we get 

1 _, 
IDI Exp (JD  (K, k — K s * 1-0 2) 

dr 	
duq du_

,
2C 2

,,
„ (

WI — /2 ) 

rd+1  

where 

K2, =Ke y w * K2s. 

We can now sum this estimate over k. We need to treat k 	oo and k 	—Do 

separately. For k large and positive we use the fact that 

C(u-Ti , u-:2) 	0 	Ilul — n7:211 < 2 

and that 

small . K 9 (x) 	 for MA 

This gives us 

1 	
2 k  11 1  

des 
u 
f (Ks * Ik  Ks * Ik)2) < const. f2k 	r1+2s DI 	D 

whose sum converges as k --- Do. For Ikl large, k negative, we pass to the Fourier 
transform. Let 

D() = 	duu(J)ii ()12  

Then Plancherel's theorem gives us 

f
*  (tri    —   1172 )  

  f C 	7r2) K  2s  	thri    C12172  =   f   D(17-)K2*,(64. 

Now K2*, is smooth and 0 at 0. Thus for any € > 0, 

() <Cx I  
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But 

€1:), () = 
	

f 	(612  4'  

oe if € is small enough. 

Combining these, we get 

1  

I D I 
Exp 	(K, * k 	* k)2) 

• D dr f
D(6C kr' 

 

< const. 
f2k  

dr 

whose sum converges as k -Do. 

1-, 

9. Experiments. In this section, we will review the experiments that have been 
carried on with small and large databases of natural images which address the question 
of whether the four axioms adopted above are reasonable. The first axiom is that of 
scale-invariance. For this, there are now quite a substantial number of experimental 
tests, which, altogether, give quite strong support for the thesis that any reasonably 
large and representative set of natural images of the world can be viewed as samples 
from a scale-invariant stochastic model. 

9.1. Scale-invariance. To test for scale-invariance, one must select specific measurable 
statistics, which can be estimated from storable databases, and see whether their values 
are consistent with a scale-invariant model. The statistics that have been examined 
include: 

(1) second-order statistics: the power spectrum and/or auto-correlation; 
(2) higher-order statistics on filter responses: moments and histograms; 
(3) order statistics of pixel values in small windows; 
(4) topological statistics obtained from morphological operations. 

The study of the power spectra of natural images originated with television engineers 
studying band-width issues for the transmission of TV signals in the 1950s ([De],[Kr]). 
These old results were rediscovered quite recently by Ruderman and Bialek [R-B], who 
analyzed a small set of images of woods near Princeton finding near scale-invariance. As 
noted above, the second-order statistics of all scale-invariant models are identical and 
predict that the power spectrum will fall off like C/C, where is the spatial frequency. 
Ruderman and Bialek's results actually gave the best fit as C/V.81 . This experiment 
was repeated by many people and it was observed that individual images have a wide 
range of spectra and that, when fit with power laws, the exponent varied from around 
1.5 to around 3. Nonetheless, numbers near 2 seemed to appear whenever the database 
was large. 

An especially careful version of this experiment has been conducted by J. Huang [H-
M2] using a database of 214 calibrated images collected by British Aerospace. The images 
are outdoor scenes shot near Bristol England containing 512 x 768 pixels each and show 
urban and rural scenes of all kinds. Being calibrated, these images are described by 
numbers representing energy received by a sensor and have not been subjected to the 
usual gamma-correction, let alone any free-wheeling histogram manipulation in Adobe 
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Photoshop. This means that if we take logs of these values and apply any linear filter 
with mean zero, we get values that are dimension-free and represent objective measure-
ments of light in the world. We have taken this approach. Moreover, British Aerospace 
has laboriously segmented each of these images into 11 classes of pixels: these include 
categories such as vegetation, roads, buildings, etc. This database makes possible the ex-
amination of second-order statistics for each category separately as well as for the whole 
ensemble. Since the pixels in each category are not whole images, the approach must be 
modified to get the exponent. But since all second-order statistics of a stationary process 
are given by the power spectrum, we must get the same exponent. The method chosen 
was to look at adjacent pixels in the original image belonging to the same category, adja-
cent 2 x 2 blocks of such pixels, adjacent 4 x 4 blocks and adjacent 8 x 8 blocks. At each 
scale, the variance of the difference of the average pixel intensities in the two adjacent, 
blocks was computed. Then the log of these variances was plotted against scale and a. 
linear regression was done. 

The results show that 
(1) for the vegetation category, the power spectrum scales like C/V.8  similar to Bialek 

and Ruderman's results, 
(2) for manmade categories, the power spectrum scales like C/e.3 , 
(3) for road surfaces, the power spectrum scales like C/ '•1, 
(4) for the sky (including clouds), the power spectrum scales like Cg, 
(5) for all categories together, the power spectrum scales like C/ 2 . 

These results confirm that there is great local variability in the second-order statistics, 
with blank and/or white-noise-like regions in some parts of some images at some scales, 
shifting power to higher frequencies; and with large objects and less clutter, e.g., in man-
made settings, shifting the power to lower frequencies. Taking the whole database, there 
is very good fit with scale-invariance. 

Looking beyond second-order statistics, Mallat, Meyer and others have proposed that 
Besov spaces are natural spaces for images, Besov norms being computable from suitably 
scaled p-norms on wavelet coefficients. This leads you to the statistics given by higher 
moments and by quantile measures of filter responses. To get to the heart of all potential 
statistics derived from single filter responses, it seems best to consider the whole his-
togram of filter responses and ask whether this entire histogram remains the same when 
the filter is scaled. If this histogram is scale-invariant, then so are all expected filter 
moments, quantiles, etc. The basic test, then, is to select a wavelet expansion of the 
image and measure the histogram of wavelet coefficients for a fixed wavelet at different 
scales. Huang and one of the authors have carried this out for a) the simplest possible 
Haar-type filter, namely the difference of adjacent pixels and b) a sophisticated wavelet 
filter from Simoncelli and Freeman's steerable pyramid [S-F]. To do this, we used an even 
larger, though unsegmented database, of 4000 1024 x 1536 calibrated images of Holland, 
assembled by J. H. van Hateren 	In both cases, the histograms show an amazingly 
precise scale-invariance, out 8 or more standard deviations. Moreover, the histograms 
are consistent between the Dutch and the British databases. In Fig. 4, we show the logs 
of the histograms for the steerable pyramid wavelet at scales 1,2,4 and 8 (to "see" what 
is happening in the tails, it is useless to plot the frequencies themselves: one must plot 



-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

106 	 DAVID NIUNIFOriD AND BASIL'S GIDAS 

2 

0 

-2 

-4 

-6 

-8 

FIG. 4. Histograms of wavelet coefficients on four different scales. 
The vertical axis is log probability and the four curves have been 
shifted vertically to separate them. The wavelet scheme used is Si-
moncelli and Freeman's steerable pyramid [S-F] and the images are 
from the database of van Hateren [vH]. 

the logs of the frequencies). These curves are completely on top of each other; so to see 
this clearly, we have shifted them vertically. 

Going beyond linear filters altogether, D. Geman and A. Koloydenko [G-K], have 
proposed analyzing 3 x 3 blocks in images by a modified order statistic. They first order 
the 9 pixel values al  < a2  < • • • ag  (assumed to be in [0,255]) and then map them to 
small numbers by mapping al  to 0 and ak  either to the same or one more than the 
image of ak _ i  depending on whether ak  — ak _ 1  > 16 or not. The result is a simplified 
3 x 3 block of small numbers, which most often is either all O's (background blocks with 
intensity variation less than 16: about 65%) or all 0's and l's (blocks showing edges or 
corners with roughly two grey levels present: about 20%). They look at the following two 
statistics: a) z defined by the range [0, z] of the simplified block and b) conditional on 
z = 1 and the block being divided into a connected set of 0's and a connected set of l's, 
the number y of pixels in the component not containing the center pixel. They calculate 
the distributions of z and y for their database of 80 images and for downscaled (2 x 2 
block averaged) images. The two histograms appear identical to within experimental 
fluctuations. 

9.2. Infinite divisibility. We have performed some experiments to see whether the 
infinite divisibility axiom holds approximately for real data. In one experiment, 18 scenes 
were acquired around a house, garden and the nearby streets using an Apple Quick-Take 
camera. The camera's response was calibrated using an optical gray card. These images 
were first tested for scale-invariance. The full images were 480 by 640 and seem to be 
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smoothed by the hardware set-up; hence all measurements were done on block averaged 
2 x 2, 4 x 4 and 8 x 8 blow-downs. If the images had scale-invariant statistics, the 
gradients of these 3 images would have identical histograms. To measure the departure 
from scale-invariance, we fit the log of the variances of the gradients as above. Expressed 
in terms of power spectrum fall-off, we found scaling exponents Cg" with a's in the 

range [1.94, 2.12] for the 14 out of the 18 images showing vegetation and in the range 
[2.18, 2.3] for 4 images of interior scenes without complex textured objects. 

According to the infinite divisibility axiom, we should interpret this as meaning that 
the 4 interior scenes are samples from the prior with less clutter, while the other 14 
are samples from more cluttered priors in the same infinitely divisible family. The four 
interior scenes can be identified by 3 properties: the variances of the image gradient were 
smallest; the histograms of the image gradient were most sharply peaked; and they all 
represented clean clutter-free interior scenes. A second subset of 4 images was chosen 
from the remainder by the opposite properties: the variances of the image gradients were 
the largest; their histograms were broadest; and they all represented cluttered garden 

scenes. 
We then formed the composite histogram of nearest neighbor pixel differences for each 

set. If we have sampled two points in a semi-group of infinitely divisible distributions, 
we should be able to reconstruct approximately one histogram from the other by the 
following procedure. Taking one histogram h1, form its Fourier transform, raise it to 
a suitable positive real power and take the inverse Fourier transform. If the power is 
greater than one, this operation smooths the histogram and hence is stable; but when it 
is less than one, it is unstable. So for powers less than one, we introduce a high frequency 
cutoff, by multiplying the Fourier transform by a Gaussian (or, equivalently, convolving 
the original histogram with a Gaussian). The results are shown in Fig. 5. The best fitting 
powers turned out to be 3.8 and 1/3.8, i.e., the garden scenes were 3.8 times as cluttered 
as the interior scenes. Although this is a rather weak test for infinite divisibility, it does 
lend some credence to our Axiom II. 

9.3. Blue sky. We have no experimental tests for the locality axiom! It is hard to 
imagine how you could have a sensible model of the real world with infinite divisibility and 
without locality. The samples from the Levy measure are meant to represent elementary 
objects or parts of objects and these should be local. 

However, the blue sky axiom has one very strong piece of evidence supporting it: this 
is the presence of sharp peaks in the probability distribution of filter responses at 0. In 
every case we have examined, for every database and every filter with mean 0, this peak 
seems to be present. In the cases where the clutter is less and the filter is matched to 
typical image features (like edges), the peak is much more pronounced. If the clutter is 
greater or the filter has no geometric significance (e.g., a random set of +1's and -1's of 
equal number), the peak is less pronounced. 

This has a clear interpretation for infinitely divisible distributions. Note that if v = 
v' 	v", then the corresponding distributions satisfy p = p' * IP. The basic idea is 
that the bigger the Levy measure, the smoother the distribution. Thus i) p is Cx-' 
whenever the Levy measure has a Gaussian component, and on the other extreme ii) 
p has a delta function component if and only if the Levy measure is finite. A simple 
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FIG. 5. Top: Adjacent pixel statistics for the 4 garden scenes (repre-
sented by dots) versus the 3.8-th convolutional power of the adjacent 
pixel statistics for the 4 interior scenes (represented by the solid line). 
Below: Adjacent pixel statistics for the 4 interior scenes (represented 
by stars) versus the 3.8-th convolutional root of the adjacent pixel 
statistics for the 4 garden scenes (represented by the solid line). 

example to keep in mind is the infinitely divisible gamma family of distributions. Here 
v = 	dx, x > 0 and pt  = 0,1J-1e-1' for suitable constants ct . Note that pt  is 
infinite at 0 if t < 1 and gets more and more differentiable at 0 as t 	Do, but never 
becomes C. A symmetric version of this is given by the family with even Levy measure 
v = I 	eHxIdx and pt  = ct  x "0.5 Kt—o.5(1x1), where Kt  are the modified Bessel functions. 

Then 131 = 0.5 • 	and pt (0) = Do if t < 0.5. These two examples are included in the 
general theory of self-decomposable distributions. These can be defined by requiring 
v 	xi f (x)dx where f, restricted to the positive axis, is decreasing, and restricted to 
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the negative axis, is increasing. In this case, the pt  are all unimodal with maxima at 0 

and pt  (0) = oc if and only if f (0) < t. 

10. A problem: Small objects and the smoothness of filter marginals. The 
main result of this section is that, when images are formed by a scale-invariant process. 
there will be clouds of tinier and tinier objects everywhere and a kind of central limit 
theorem will take over. The effect turns out to be that images will be the sum of a 
Cauchy-like component and a second component independent of this; and the Cauchy-
like piece will have a smooth (C') distribution, hence so will the sum. Here is how we 
make this precise: first assume that the reduced Levy measure vu  is not supported entirely 

on functions with mean 0. We will return later to remove this restrictive hypothesis. We 
introduce the following notation: for any test function f E Dd , the filter response I ( f ) 
is also infinitely divisible and its Levy measure is the image of that of the Levy measure 

v(J) of I under the map J H J(f) (excluding any atom at 0). We call this Levy measure 
v f . Then we have the theorem: 

THEOREM. If the reduced Levy measure is not supported in L id  ={f EL I Iff= 0}, 
and if f is any test function that is constant in some small open set U, then the Levy 
measure satisfies: 

Cl  
f  > x 	12  dx 

[(Lai' 

for some positive constant C1  and nonzero a. 

Recall from §6 that v = dxdYdr  X v,. Hence v f  is the image of the measure 
under the map: 

(x, y, r, J) H f J(ru — x, ry — y) f (u, v) du dv E R. 

dr dycit  x vu ( j) 

Now choose (u0 , v0) E Ur  and assume that U contains a disk around (no, v0) of radius 
r0. Then we are interested in the translated and scaled versions of J whose support lies 
entirely in this small disk: this holds if r > 2/ro  and (1;:, 	(uo,v0) 	ro /2. Let V 
denote this set of triples (x, y, r). When this holds, f is a constant on the support of the 
translate of J and we get 

ff J(ru — x,ry — y)f (u,v)du dv 

Thus 

if J(tt', v')f ( 11' 
 + x v' + y 

r ' 

f (uo,v0) f f J(u1  ,v1 )dui  dvi  

d( 	 x dy dr 
v f  > 0,, 	x v„(J) 

r 	 v) 

where 0(x, y ,r, J) = r -12  f (uo,v0) if J. Now the area of the allowed circle in the (x, y) 
plane is 7(rro /2)2 ; so we have 

o f  > ¢' (  ir(r0 /2)2r dr x v,(J) 
1.>2/r0) 
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where O' (r, J) = r-2  f (uo. v0) ff J. But the image of the measure r dr ,.>,/,.() under the 

map x = r 2  is juSt, 	< (To  / 2)2  . So finally /if  is at least as big as a sum of scaled 

versions of the measure dx/x2  on intervals [0, a], and this proves the theorem. 	❑ 

Recall that the Cauchy distribution is infinitely divisible with Levy measure dx I x 2 . 
This is why we call the random variables defined by 1c. dx1 [0:ai  "Cauchy-like". In fact, it 

is easy to see that these have C' distribution functions. This follows because they are 
self-decomposable and Ix dv I dx goes to c>o as x 	0 ([Sa]). Thus we have: 

COROLLARY. If the reduced Levy measure is not supported in Lid 	If E 	f = 
0}, and if f is any test function that is constant in some small open set U, then the 
distribution function of I ( f) is C. 

It is easy to remove the hypothesis of vu  if we change the selection of f appropri-
ately. In fact, choose the smallest m such that functions J with nonzero rrit h  moments 
have positive measure. Thus there is a set of J's of vu-positive measure for which 
ff yi J(x, y) dx dy 0. We choose the test function f to be equal to xi  yj on some 
open set. Then a similar argument goes through and proves that 

Cl 

x1(4+Ta)/(2-d-in ) dx 

This still imples that /(f) has a C' distribution function. 
The problem is that, although not contradicted by finite data, this result clearly shows 

that the models satisfying our axioms do not correspond well to the data, for which these 
distribution functions look very non-differentiable at 0. We believe this is an important 
clue about what the true stochastic model for generic images must look like. We believe 
that the axioms introduced in this paper are a natural model for images, one of which 
is closer to the truth than Gaussian models but is still short of capturing all the basic 
qualitative properties. 
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