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In many areas of computer vision, such as multiscale analysis and shape

description, an image or surface is smoothed by a non-linear parabolic par-

tial di�erential equation to eliminate noise and to reveal the large global

features. An ideal ow, or smoothing process, should not create new fea-

tures. In this paper we describe in detail the e�ect of a number of ows

on surfaces on the parabolic sets, the ridge curves and umbilic points. In

particular we look at the mean curvature ow and the two principal curva-

ture ows. Our calculations show that two principal curvature ows never

create parabolic and ridge curves of the same type as the ow, but no ow

is found capable of simultaneously smoothing out all features. In fact, we

�nd that the principal curvature ows in some cases create a highly degen-

erate type of umbilic. We illustrate the e�ect of these ows by an example

of a 3-D face evolving under principal curvature ows.
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1. INTRODUCTION

Geometry-driven ows have been proposed and studied for smoothing surfaces or

getting a hierarchical description of surfaces. It is believed that shape features are

only meaningful over a particular range of scale [1]. Some features are pure noise

associated to the measurement process, some are �ne details (think of wrinkles on

a face), some are of intermediate scale and some are present on the coarsest scale

(think of the nose as a feature of facial shape). Therefore, in order to describe

a shape, it is extremely important to get a multiscale representation of it. This

basic idea led to the development of scale-space theory [2, 3]. Initially the work

was focused only on linear scale-spaces, but later many non-linear and geometric

scale-space methods were also developed (for example, the anisotropic di�usion

proposed by Perona et al. [4, 5], the level set method described in Osher-Sethian

[6], and Olver et al.'s work based on di�erential invariants [7]. See also Brakke [8],

Gage-Hamilton [9], Alvarez-Lions-Morel [10], etc.)

Descriptions of a shape at di�erent scales are obtained by continuously deforming

it to smoother ones. Ideally, this deformation process should be causal [1], in the

sense that it should maintain a hierachical structure of geometric features and not

introduce any new ones. Usually, these features can be characterized as certain

types of singularities of a shape. The simplest example of a causal ow is given by

the smoothing of a plane curve by its curvature. The main features of a plane curve

are its points of inection where the curvature is zero, and the `vertices' where the

curvature has a local maximum or minimum. Under curvature ows, these features

are never created. For surfaces there are two principal curvatures and the features

we will be interested in are (a) the parabolic curves where one of these curvatures

is zero, (b) the ridge curves where one of them has a maximum or minimum on its

corresponding line of curvature, and (c) umbilic points where they are equal.

Parabolic points are associated with inections on object contours. It has also

been shown that they are closely related to pairs of specular points on surfaces[1].

Ridge curves are highly signi�cant features of a surface for shape recognition and

analysis as they correspond roughly to what we perceive as the convex and concave

`edges' of a shape. Recent applications include medical imaging, for example the

description of the cortical surface in MRI scans using ridges [11, 12], and face

recognition by ridges [13, 14], among others. The last reference also contains a

detailed exposition of the basic de�nitions and properties of these special curves

and points on surfaces.

We will consider the class of curvature ows based on functions of the two princi-

pal curvatures. In particular we would like to know whether a certain ow creates

those singular sets (features). In a rather discouraging article 10 years ago, Yuille

[15] showed that both parabolic curves and ridge curves can be created under mean

curvature ows. However, each parabolic and each ridge curve is associated to only

one of the two principal curvatures. This suggests studying ows that can decouple

the two. Our main result is that if we use the ow de�ned by one of the principal

curvatures, then ridges and parabolics associated to that principal curvature are

never created. However, umbilics are precisely those points where the two principal

curvatures become equal, hence they intertwine the two ows. In fact, surfaces ap-

parently become non-C2 at umbilic points under principal curvature ow, this ow
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existing only as a viscosity solution. We �nd that umbilics can be created under

both these ows, and, in fact, in some cases, umbilic points collide in a remarkable

way under the principal curvature ows. Presumably, this is connected to the fact

that on the simplest of all surface, namely the sphere, all points are umbilics. More-

over, our numerical experiments strongly suggest that all parabolics will eventually

be eliminated under the principal curvature ows and the ridges reduced to the

bare minimum (e.g. on all ellipsoid, there are three ridges on the three coordinate

planes). This means that these ows are basic tools to use in connection with the

application of curvature to three-dimensional object recognition.

This paper proceeds as follows. Section 2 derives the equations characterizing

the ows we will consider, and includes a discussion on the existence of solutions

of the equations. Sections 3 through 5 describe the local e�ects of curvature ows

on parabolic points, ridge points, and umbilics, respectively. Section 6 shows a

numerical simulation of a 3-D face under two principal curvature ows, and gives

some intuition on how the two ows simplify a surface in di�erent ways.

2. CURVATURE FLOW ON A MONGE PATCH

2.1. The Equation for Curvature Flows

In this paper, we shall consider a smooth surface patch locally described inMonge

form:

z = f(x; y)

=
1

2
(�1x

2 + �2y
2) +

1

3!

3X
j=0

�
3

j

�
bjx

3�jyj

+
1

4!

4X
j=0

�
4

j

�
cjx

4�jyj +
1

5!

5X
j=0

�
5

j

�
djx

5�jyj + o
�
(x; y)5

�
(1)

At the origin, the tangent plane is the x � y plane, �1; �2 are the two principal

curvatures, and the x- and y-axes are in the principal directions (provided �1 6=
�2). After a suitable translation and rotation, any point on the surface can be

represented this way. Without loss of generality, we always assume that �1 � �2.

In the following sections we will only look at a small neighborhood of the origin.

In each case we shall assume that the origin is of the singularity type in which we

are interested. Then we will analyze how the features change locally by examining

the corresponding equations, in terms of the coe�cients of Eq. (1).

Now consider a one-parameter family of surfaces fStg parametrized by t, which

is often referred to as `time' or `scale'. At time t, we want to deform St along the

normal direction of each point, with a `speed' of �:

dSt
dt

= � ~Nt (2)

Locally, St can be represented in Monge form as

St = f(x; y; z) : z = F (x; y; t)g;
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and the normal vector ~Nt on St is

~Nt =
(�Fx;�Fy; 1)q
1 + F 2

x + F 2
y

Using �rst order approximation, Eq. (2) becomes

St+�t � St = (�x;�y;�z) = �
(�Fx;�Fy; 1)q
1 + F 2

x + F 2
y

��t+ o(�t);

where

�z = �F = Fx�x+ Fy�y + Ft�t+ o(�t):

Therefore

Ft =
� ��tq

1 + F 2
x + F 2

y

� Fx�x� Fy�y
�
=�t+ o(�t)=�t

= �
q
1 + F 2

x + F 2
y : (as �t! 0)

If we suppose S0 is described by z = f(x; y), as in Eq. (1), then Eq. (2) leads to

the following initial value problem:

Ft(x; y; t) = � �
q
1 + F 2

x + F 2
y (3a)

F (x; y; 0) = f(x; y) (3b)

For small t, we can approximate the solution by

F (x; y; t) = F (x; y; 0) + Ft(x; y; 0)t+ o(t)

= f(x; y) + �
q
1 + f2x + f2y � t+ o(t) (4)

If � is chosen to be a function of the principal curvatures K1(x; y);K2(x; y) (by

convention, we always assume K1 � K2), then we call this process of deformation

a curvature ow. One of the most important types of ows is the mean curvature

ow, i.e., when � = H, where H is the mean curvature of the surface. The family

of surfaces are de�ned by

F (x; y; t) = f(x; y) +H(x; y)
q
1 + f2x + f2y � t+ o(t) (5)

We will also explore principal curvature ows: when � is one of the two principal

curvatures. If � = K1 (resp. K2) we call the corresponding ow K1-ow (resp.

K2-ow). Under Ki-ow (i = 1; 2), the family of surfaces are then given by

F (x; y; t) = f(x; y) +Ki(x; y)
q
1 + f2x + f2y � t + o(t) (6)
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Eq. (2) is a nonlinear parabolic PDE. Even when the initial surface is smooth,

the evolution family of surfaces may develop singularities. In particular, the princi-

pal curvatures are non-di�erentiable functions at umbilic points, hence umbilics will

become singular points under the principal curvature ows. The issue of the exis-

tence and uniqueness of solution to (2) is not trivial. See Appendix for a discussion

on this.

2.2. Good Flows vs. Bad Flows

A `good' ow should always simplify a surface. That is, as t increases, no new

geometric features or singularities should be generated. Analogously, as the scale t

increases, no new detail is created on the surface. In fact, features should eventually

be destroyed. This monotonic decrease of features is desirable because it gives us

a good hierarchical description of the surface.

First, let's look at the analogous 2-D case. Consider the ow

dCt
dt

= � ~Nt;

where fCt = (x; F (x; t))g is a family of curves, � is the curvature and ~Nt is the

normal direction of Ct. One can show that the ow leads to the equation

Ft = Fxx=(1 + F 2
x ):

As an example, consider the curve y = x4, which has a double inection point at

(0; 0). One can derive

F (x; t) = x4 + 12x2t+ o(x4; tx2)

@2F

@x2
= 0 () 12(x2 + 2t) + o(t; x2) = 0

Thus there are two inection points if t < 0 and none for t > 0, i.e. the ow does

not create inection points. Similarly, the ow does not create 'vertices', where the

curvature assumes extremal values. Thus, this ow has the desired property.

In the 3-D case, the important types of singular points include parabolic points,

ridge points, umbilic points and cusps of Gauss. Again, good ows are those which

do not generate new such singular points on the surface.

There is a standard bifurcation for the birth/death of each type of singularities.

We will adopt the terminology in Bruce-Giblin-Tari [16, 17] to refer to these bifurca-

tions. We shall examine in which direction each bifurcation moves, under di�erent

types of ows.

Remark. There are two points we'd like to emphasize here. Firstly, the results

we state in this paper are local ones, concerning surface patches rather than closed

surfaces. Secondly, unless otherwise mentioned, we will focus on generic surfaces,

for which the features occur and change in a stable way, i.e., if we slightly perturb

the surface the pattern in which the features evolve doesn't change. In contrast,

surfaces of revolution are not generic, because the symmetries would be broken by

small perturbations.
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3. PARABOLIC POINTS

At parabolic points the Gaussian curvature of a surface vanishes. They are the

boundaries between elliptic and hyperbolic regions. Alternatively, they are the

points where the tangent planes have a specially higher order contact with the

surface [16]. Parabolic points can be further classi�ed distinction by assigning

`colors' to them as follows: a point is called a blue parabolic point if the larger

principal curvature �1 is 0; likewise, a red parabolic point is where the smaller

principal curvature �2 equals 0. A more degenerate type is the at umbilic, where

�1 = �2 = 0.

If the surface is closed and oriented so that the curvature is positive at convex

regions, then the red parabolics are the boundaries between convex elliptic regions

and hyperbolic regions and the blue parabolics are the boundaries of the concave

elliptic regions.

Generically, in a one parameter family of surfaces, parabolic curves can only be

created through a non-versal A3 transition [16]. At the moment of transition there

is (locally) a single parabolic point. Then it either disappears or evolves into a

parabolic loop.

The red parabolic set (i.e., K2 = 0) of S0 around the origin satis�es

0 = fxxfyy � f2xy

= �1(b2x+ b3y) +
�1
2
�1c2 + b0b2 � b21

�
x2

+ (�1c3 + b0b3 � b1b2)xy +
�1
2
�1c4 + b1b3 � b22

�
y2

+o
�
(x; y)2

�
:

If a red parabolic loop is to be created, then there must exist a moment when an

A3 transition takes place at some point on the surface. For the rest of this section,

we will suppose that t = 0 corresponds to the moment of an A3 transition; and

that the origin is an isolated red parabolic point on S0. Thus b2 = b3 = 0, and the

quadratic form

Q(x; y) = (
1

2
�1c2 � b21)x

2 + �1c3xy +
1

2
�1c4y

2

is either positive de�nite or negative de�nite in a neighborhood of the origin.

3.1. Mean Curvature Flow

Under mean curvature ows, the family of surfaces (for small t) is given by Eq.

(5). The parabolic set of St is given by

0 = FxxFyy � F 2
xy

=
�1
2
�1(c2 + c4) + O(x; y)

�
t+ o(t)

+(
1

2
�1c2 � b21)x

2 + �1c3xy +
1

2
�1c4y

2 + o((x; y)2):
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For each �xed t, the parabolic set satis�es

t = � Q(x; y)

�1(c2 + c4)=2
+ o((x; y)2) (7)

Here Q(x; y) is either positive de�nite or negative de�nite, depending on the sign

of �1c4:

- If �1c4 > 0, then 1
2
�1c2� b21 > 0, so that �1c2 > 0. Hence, �1(c2+ c4) > 0, and

the right hand side of (7) is always negative. Thus for su�ciently small t > 0, no

red parabolic loop is created;

- If �1c4 < 0, it is possible to create red parabolic loops for some surfaces, since

the right hand side of (7) could be positive.

The case �1c4 > 0 corresponds to the bifurcation when a hyperbolic area appears

or disappears inside an elliptic region; �1c4 < 0 corresponds to the opposite case[16].

Thus, no hyperbolic regions can be created under a mean curvature ow. However,

elliptic regions can be created. By symmetry, this is also true when we start from

an isolated blue parabolic point.

3.2. Principal Curvature Flow

Now consider the K2-ow. Recall that �2 = 0. The smaller principal curvature

around the origin is

K2(x; y) = (
c2

2
� b21
�1

)x2 + c3xy +
c4
2
y2 + o((x; y)3)

Substituting this into (6), we can obtain F (x; y; t), and the parabolic set of St is
given by:

0 = FxxFyy � F 2
xy

=

�
1

2
�1c4 + O(x; y)

�
t+ Q(x; y) + o(t; (x; y)2)

t = � (1
2
�1c2 � b21)x

2 + �1c3xy +
1
2
�1c4y

2

�1c4
+ o((x; y)2)

The numerator and the denominator above always have the same sign, which

means that for t > 0 and small, the isolated red parabolic point is always eliminated,

and no (red) parabolic loop is created. A similar argument shows that K1-ows do

not generate blue parabolic loops.

In addition, we believe that the blue (resp. red) parabolic loops are always

eliminated by K1-ows (resp. K2-ows), although a rigorous proof has yet to be

found.

3.3. Conclusion

� Under mean curvature ows, parabolic loops (either blue or red) can be created.

More precisely, hyperbolic regions cannot be created inside elliptic regions; elliptic

regions can be generated inside hyperbolic regions.
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� Under K1- (resp. K2-) ows, no blue (resp. red) parabolic loops are generated.

4. RIDGE POINTS

A ridge point is a point where the surface has a higher order contact with one

of the osculating spheres; or equivalently, where the principal curvature has an

extreme value along the corresponding line of curvature. Ridge points can also be

colored: those associated with the larger principal curvature are blue ridges, and

those associated with the smaller principal curvature are red ridges. Here we shall

restrict ourselves to ridge points away from umbilics.

Let K2(x; y) be the smaller principal curvature, and ~V2(x; y) be the principal

direction corresponding to K2. Then the condition for a red ridge point is

rK2(x; y) � ~V2(x; y) = 0:

From this we can get the equation for red ridge points (in a su�ciently small

neighborhood of the origin):

0 = b3(�1 � �2)�
�
3b1b2 � (�1 � �2)c3

�
x

�
�
3b22 � (�1 � �2)(c4 � 3�32)

�
y

+ Q(x; y) + o
�
(x; y)2

�
; (8)

where

Q(x; y) = (� � �)x2 + (� � �)xy +
 
1

2
d5(�1 � �2) � 9

2
b2c3

+
6b1b

2
2

�1 � �2
� 9(�1 � �2)�

2
2b3 �

4b22b3
�1 � �2

!
y2

represents the quadratic terms.

Generically, in a family of surfaces, ridges are created or killed through a Morse-

transition [17]. At the moment of transition there is (locally) an isolated ridge

point. Then this point either disappears or develops into a ridge loop.

Suppose that S0 is the surface at the transition moment; and that the origin is

an isolated red ridge point. Then the linear terms in Eq. (8) vanish, which yields

b3 = 0; 3b1b2 = (�1 � �2)c3; 3b
2
2 = (�1 � �2)(c4 � 3�32)

Eq. (8) now reduces to

Q(x; y) + o((x; y)2) = 0;

with

Q(x; y) = (� � �)x2 + (� � �)xy

+
1

2

�
d5(�1 � �2) �

15b1b
2
2

�1 � �2

�
y2
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being either positive de�nite or negative de�nite in a neighborhood of the origin.

4.1. Mean Curvature Flow

It can be shown that the mean curvature ow can move in either direction; i.e.,

it can either generate a ridge loop or not. The calculations, which are omitted here,

are similar to those in the following subsection.

4.2. Principal Curvature Flow

The equation for the red ridge curve on St is described by

rK2(x; y; t) � ~V2(x; y; t) = 0;

which leads to

0 = Q(x; y) +
�
d5(�1 � �2)� 15b1b

2
2

�1 � �2

�
t

+ o(t; (x; y)2):

Solving for t we get

t = � Q(x; y)

d5(�1 � �2)� 15b1b
2
2

�1 � �2

+ o
�
(x; y)2

�
:

Notice that the denominator and the coe�cient of y2 in Q(x; y) always have the

same signs. By assumption, locally Q(x; y) is either positive de�nite or negative

de�nite. Thus t would always be negative when x and y are small. This means

that when t > 0 there is no ridge point, and therefore the K2-ow cannot generate

any red ridges. By a similar argument, we can prove that K1-ows do not generate

any blue ridges.

In conclusion, K1- (resp. K2-) ows do not generate blue (resp. red) ridge loops.

As in the parabolic case, we suspect that these ows always eliminate the ridge

loops of the corresponding color.

5. UMBILICS

At an umbilic point the two principal curvatures are equal. The ridge curves

change `colors' at umbilic points.

When a family of surfaces goes through a non-versal D4 transition, a pair of

umbilics are either created or killed [17]. Suppose at the moment of transition, the

origin is a (double) umbilic point on S0. One can show that S0 is given by

z = f(x; y)

=
1

2
�(x2 + y2) +

1

6

�
b0x

3 + 3b1x
2y + 3b2xy

2 + b3y
3
�

+o((x; y)3);

with the coe�cients satisfying���� b0 � b2 b1 � b3
b1 b2

���� = 0:
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By rotating axes we can assume b1 = b2 = 0. We will consider several di�erent

types of ows in this section.

5.1. Modi�ed Mean Curvature Flow

First consider the modi�ed mean curvature ow

F (x; y; t) = f(x; y) +Hn(x; y)
q
1 + f2x + f2y � t+ o(t); (9)

where

Hn(x; y) = (
Kn
1 (x; y) +Kn

2 (x; y)

2
)1=n:

Here K1(x; y);K2(x; y) are the two principal curvatures.

Hn(x; y) is actually a function of the mean curvature H(x; y) and the Gaussian

curvatureK(x; y). From the Taylor expansion ofH andK, we can get the expansion

of Hn around the origin. The details are omitted here. The result is

Hn = �+
1

2
(b0x+ b3y) +�

� �3 +
1

4
c0 +

1

4
c2 +

n� 1

8

b20
�

�
x2 +�1

2
c1 +

1

2
c3 �

n� 1

4

b0b3
�

�
xy +�

� �3 +
1

4
c2 +

1

4
c4 +

n� 1

8

b23
�

�
y2 + o

�
(x; y)2

�

Suppose that the �rst and second fundamental forms of St are I = Edx2 +

2Fdxdy +Gdy2 and II = edx2 + 2fdxdy + gdy2, respectively. One can show the

condition for an umbilic is

rank

�
E F G

e f g

�
� 1;

which is equivalent to simultaneously requiring

Eg �Ge = 0 (10)

Gf � Fg = 0 (11)

Notice that we can replace e; f; g by Fxx; Fxy, and Fyy in the above equations. We

can calculate the Taylor expansions of these terms and substitute them into the

equations. It turns out that (10) is a linear equation for x and y, whereas (11) is a

quadratic one. If we solve for t we get

t = �2�(2b0b3c2 + b20c3 + b23c1 � 2�3b0b3)

b23(2�c1 + 2�c3 � (n� 1)b0b3)
x2 + o(x2) (12)

Since for a generic surface, the right hand side of (12) could be either positive or

negative, our ow can go in both directions, meaning that it can either create or

kill a pair of umbilics.
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The above result is derived for n > 1. A direct calculation shows that it also

holds when n = 1, which is the case for mean curvature ows.

5.2. Some Other Types of Flows

Next consider the principal curvature ows (� = K1 or � = K2). Since the

principal curvatures are not C1 functions at the umbilic points, we cannot directly

expand them into Taylor series. However, it is clear that the K1-ow is the limiting

case of the Hn-ow above (as n ! 1). Also, if the K1-ow can go in both

directions, so can the K2-ow, because they have the same e�ect in this case.

Consequently, the principal curvature ows can go in both directions as well.

Another interesting case is the Gaussian curvature ow, when � = G = K1K2.

By similar calculations as in section 5.1, we get

t = �1

2

2b0b3c2 + b20c3 + b23c2 � 2�3b0b3
b23(�c1 + �c3 + b0b3)

x2 + o
�
x2
�
:

Finally, consider the mean-Gaussian ow proposed by Neskovic and Kimia [18],

in which case

� = sign(H) �
p
G+ jGj:

The result is:

t � �
p
2�(2b0b3c2 + b20c3 + b23c1 � 2�3b0b3)

b23(2�c1 + 2�c3 + b0b3)
x2:

Obviously both ows can create or delete umbilics.

5.3. Conclusion

Under any of the above ows, a pair of umbilics can either be generated or

eliminated. We think this is due to the fact that the natural limit of the smoothing

process is a sphere which is one big degenerate locus of umbilic points. This suggests

that destroying umbilics is not an essential part of the smoothing process. From

another perspective, umbilic points are conformally invariant features, whereas all

the above ows are not. P.Olver (personal communication) has determined the

lowest order conformally invariant formal ow but it turns out to be a parabolic

ow which is everywhere ill-posed, its second order derivatives having one positive

and one negative eigenvalue. A very interesting problem is to describe the form

of singular surface that viscosity solutions of the principal curvature ow generate

from umbilics: we conjecture that these are some sort of \pseudo-umbilic" C1 but

not C2 points.

6. SIMULATING PRINCIPAL CURVATURE FLOWS ON A FACE

The experiment is based on laser range data of the face of a young woman

which has been �rst smoothed to eliminate noisy features. The data comes from

a Cyberware scanner and is in cylindrical coordinates r = r(z; �) describing the

whole head. We only look at the face and we impose Neumann boundary conditions
@r
@�

= @r
@z

= 0 to get a well-posed boundary value problem.

To understand the experiment, you must �rst realize that the lines of curvature

of �1, the larger curvature, tend to be horizontal. Thus, when the face is smoothed
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a great deal, it approaches an ellipsoid with �1 maximum on the nose ridge and its

lines of curvature perpendicular to the nose ridge and running left and right across

the face area. In a fully formed face, these lines make detours around the nose, the

eyes and ends of the mouth. On the other hand, the lines of curvature of �2, the

smaller curvature, tend to be vertical on the smooth parts of the face (see �gures

7.19, 7.21 and 7.26 of [14]).

We expect that principal curvature ows will simplify the surface mainly in the

corresponding principal directions. In fact, what happens is under the K1-ow,

the face in the horizontal direction tends to become circular while in the vertical

direction it retains the original undulating curve caused by eyes, nose and mouth.

On the other hand, under the K2-ow, the face in the vertical direction tends to

become at while in the horizontal direction we have a single peak along the nose,

so after some time, the face looks like a folded paper. See Fig. 1.

FIG. 1. The 3D face under curvature ows.

Both the K1-ow and the K2-ow kill the parabolic loops: see Figure 2. We also

found that the K2-ow created a blue parabolic loop near the boundary of the face.

Although this is certainly a new structure, it is created in a nearly at part of the

face where the cheek interacts with the Neumann boundary conditions we imposed

and is not a new perceptually salient structure. Moreover, under both principal

curvature ows, a pair of umbilics can be either created or eliminated. A pair of

umbilics is created in Fig. 2.

FIG. 2. The evolution of parabolics, ridges and umbilics.

Another interesting phenomenon in Fig. 2 is that the pair of umbilics of the

same kind always present on the tip of the nose get closer under �1 ow. One

might suspect that this was an artifact of the numerical simulation (as we did)

but one can give a strong heuristic argument that this really happens for pairs of

symmetric double umbilics on a ridge. To make the calculation relatively simple,

assume we have a surface z = f(x; y) symmetric under both (x; y) ! (�x; y) and
(x; y)! (x;�y). This makes the x- and y-axes red and blue ridges respectively on

this surface. In the Monge form, only terms in x2 and y2 remain:

z = f(x; y) =
1

2
�1x

2 +
1

2
�2y

2 +
1

24
(c0x

4 + 6c2x
2y2 + c4y

4) +

1

6!
(e0x

6 + 15e2x
4y2 + 15e4x

2y4 + e6y
6) + :::

Then the two principal directions are x-axis and y-axis. Suppose there are two

umbilics near the origin on the x-axis. We get the following condition for this to

happen:

c2 � c0 + 2�31 > 0:
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In this case, the (x; y) coordinates of the two umbilics are (�
q

2(�1��2)

c2�c0+2�
3

1

+ � � � ; 0).
Under the K1-ow,

F (x; y;�t)

= F (x; y; 0) + Ft(x; y; 0)�t+ o(�t)

= f(x; y) +K1(x; y)
q
1 + f2x + f2y�t+ o(�t)

= �1�t+
1

2
(�1 + (c0 � 2�31)�t)x

2 +
1

2
(�2 + c2�t)y

2

+
1

24

�
c0 + (e2 � 20c0�

2
1 + 24�51)�t

�
x4

+
1

4

 
c2 +

�
(e4 + c0�

2
2 + 2c2�

2
1 � 4�51 � 4�41�2) +

4(c2 � �31)
2

�1 � �2

�
�t

!
x2y2

+
1

24
(c4 + e6�t) y

4 + o(�t; x4; y4)

Hence,

@(�1 � �2)

@t
= c0 � c2 � 2�31 < 0

which brings the umbilics closer together. One can also look at the second deriva-

tive, at the change of C2 � C0 + 2K3
1 :

@(C2 �C0 + 2K3
1 )

@t
= b(x; y) +

4

�1 � �2
(c2 � �31)

2

where

b(x; y) = e4 � e2 + 26c0�
2
1 + c0�

2
2 + 2c2�

2
1 � 40�51 � 4�41�2

is bounded in terms of the coe�cients of z. So, when �1 � �2 is small enough

@(C2 � C0 + 2K3
1)

@t
> 0

These two conditions suggest strongly that the two umbilics will get closer under

�1 ow and eventually become one highly degenerate umbilics with index +1 or �1
depending on the type of the umbilic pair we started with.

7. SUMMARY

We have shown that under principal curvature ows, no parabolic loop or ridge

loop of the corresponding color can be created. We believe that this clears the way

for the application of curvature ideas to 3D object recognition. In contrast, the

mean curvature ow can create all types of singularities which we have considered.

We believe that what this ultimately means is that, in considering the curvature

structure of a surface, one should look at it as two intertwined stories: the story

told by the maximum principal curvature with its ridges, parabolics and lines of

curvature and the story told by the minimum principal curvature. We have seen

how, in the case of the face, these two ows undo its features in very di�erent

ways. These ows should lead to a method of extracting a curvature \portrait" for
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surfaces, generalizing part of the plane curve \portrait" due to Kimia, Tannenbaum

and Zucker [25]. Such a curvature portrait would be a powerful tool for 3D object

recognition.

APPENDIX: EXISTENCE AND UNIQUENESS OF SOLUTIONS

OF PRINCIPAL CURVATURE FLOW EQUATIONS

A theory of \viscosity solutions" has been developed to study nonlinear second

order partial di�erential equations such as Eq. (2) [19, 20, 21, 22]. The existence of

a unique viscosity solution of mean curvature ow equation is proven in Evans [23]

and Chen-Giga-Goto [24]. The latter also shows that the same result holds for a

more general class of geometric, degenerate parabolic equations. We will apply this

result to establish the existence of unique viscosity solutions of principal curvature

ow equations.

Following the notation in [24], consider the second order parabolic equation

ut + F (t;ru;r2u) = 0; (A.1)

u(0; x) = a(x) 2 C�(R
n); (A.2)

where u = u(t; x); x 2 Rn, and for a constant �, C�(A) is de�ned to be the set of

continuous functions a(x) in A such that a � � is compactly supported in A. We

say that Eq. (A.1) is geometric if F has a scaling invariance

F (t; �p; �X + �p
 p) = �F (t; p;X); � > 0; � 2 R; (A.3)

for nonzero p 2 Rn and X 2 Sn�n, the space of n� n real symmetric matrices. F

is called degenerate elliptic if

F (t; p;X + Y ) � F (t; p;X) for Y � O; Y 2 Sn�n (A.4)

where O is the all-zero matrix. Theorem 6.8 in [24] is restated as follows:

Theorem A.1 (Global existence [24]). Let T > 0. Assume that F (t; p;X) is

continuous in (0; T ]� (Rn n f0g)� Sn�n and is geometric and degenerate elliptic,

and that F satis�es

F (t; p;�I) � c (jpj); (A.5 )

F (t; p; I) � �c+(jpj); (A.5+)

lim
p;X!0

F (t; p;X) exists and is �nite; (A.6)

for some c�(�) 2 C1[0;1) and c�(�) � c0 > 0 with some constant c0. Then

for a 2 C�(R
n) there is a unique viscosity solution ua 2 C�([0; T ] � Rn) of Eq.

(A.1)-(A.2).

In order to apply the theorem, we need to regard fStg as level surfaces of some

function u, i.e., St = f(x; y; z) : u(t; x; y; z) = 0g. The shape operator is given

by the matrix �(I � ru
jruj


 ru
jruj

)r2u. It appears as an operator applied to the

tangent spaces in the ambient 3-space. 0 is one of its eigenvalues, and ru is the
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corresponding eigenvector. The other two eigenvectors, which correspond to the

two principal directions, lie in the plane perpendicular to ru.
For K1-ow, Eq. (2) becomes

ut + F (ru;r2u) = 0; (A.7)

with

F (p;X) = � larger eigenvalue of (I � p
 p)X in p?; p =
p

jpj :

where I is the identity matrix, p? is the plane perpendicular to the vector p.

We can show that F is geometric and degenerate elliptic. Conditions (A.5 ),

(A.5+) are satis�ed by choosing c�(�) � 1. Condition (A.6) is also easily seen to

be satis�ed. Therefore we have

Proposition A.1. There exist unique viscosity solutions to the principal curva-

ture ow equations.
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FIG. 1. The 3D face under curvature ows. The �rst one is the original face, the second
and the third ones are the faces under K1 and K2 ows at t = 1000 respectively. Blue ridges are
shown with solid lines, red ridges with dotted lines.
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FIG. 2. The evolution of parabolics, ridges and umbilics. The rirst row is the original face,
second row is the face under K1 ow at t = 100, third row is the face under K2 ow at t = 100,
fourth row is the face under K2 ow at t = 250. On the left, the blue ridges, parabolic lines and

the level sets of K1 are shown; on the right, the red ridges, parabolic curves and the level sets of
K2. Thick solid lines are elliptic ridgs, thin grey solid lines are hyperbolic ridges. Trangled curves
are blue parabolic curves, starred curves are red parabolic curves. Dotted lines are level sets of
curvature. Small solid disks are lemon umbilcs, small solid triangles are star umbilics.


