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Abstract 
This paper presents a novel theory f o r  learning 

generic prior models f r o m  a set of observed natural 
images based o n  a minimax entropy theory that the 
authors studied in modeling textures. W e  start by 
studying the statistics of natural images including the 
scale invariant properties, then generic prior models 
were learnt t o  duplicate the observed statistics. The 
learned Gibbs distributions confirm and improve the 
forms of existing prior models. More interestingly in- 
verted potentials are found to  be necessary, and such 
potentials f o r m  patterns and enhance preferred image 
features. The learned model is  compared with existing 
prior models in experiments of image restoration. 

1 Introduction and motivation 
Many generic smoothness models have been widely 

used in visual computation ranging from image 
restoration, motion analysis, to  3D surface reconstruc- 
tion. For example, In image segmentation (Geman 
and Geman 1984, Blake and Zisserman 1987, Mum- 
ford and Shah 1989), these smoothness prior models 
take the forms as the following joint probability dis- 
tribution: 

where V , I ( x ,  y )  = I(z+l, y ) - I ( $ ,  y ) ,  and V , I ( z ,  y )  = 
I ( z , y  + 1) - I ( x , y )  are differential operators. Three 
typical forms of the potential function $0 are dis- 
played in figure (1). The functions in figure lb ,  and 
IC have flat tails to  preserve edges and object bound- 
aries, and thus they are said to  have advantages over 
the function in figure (1.a). 

These prior models enjoy nice explanations in 
terms of regularization theory (Poggio, Torre, and 
Koch 1985), physical modeling (Terzopoulos 1983), 
Bayesian theory (Geman and Geman 1984) and robust 
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Figure 1: Three existing forms for $0. a,  Quadratic, 
b, Line process, c T-function. 

statistics (Geiger and Yuille 1991, Black and Rangara- 
jan 1997), there is, however, little rigorous theoreti- 
cal or empirical justifications for applying these prior 
models to general images, and the following questions 
are not answered in the literatures. i). Why are the 
differential operators good choices in capturing image 
features? ii). What are the best forms for p(1)  and 
$()? iii). Real world scenes are observed at arbi- 
trary scales, thus a good prior model should remain 
the same for image features at multiple scales. How- 
ever none of the existing prior models on 2 0  images 
has scale-invariant property, i.e, they are not renor- 
malizable in terms of the renormalization group theory 
(Wilson 1975). 

This paper presents a novel theory for learning 
generic prior models from a set of observed natural 
images based on a minimax entropy theory that the 
authors studied in modeling textures (Zhu, Wu, and 
Mumford 1996). We start by studying the statistics 
of natural images including the scale invariant prop- 
erties, then generic prior models were learnt to dupli- 
cate the observed statistics. First, instead of being 
limited to differential operators, our theory examines 
whatever filters capture the structures of natural im- 
ages, such as Gabor filters (Daugman 1985). An in- 
formation criterion is put forth for choosing the most 
informative features (or filters) in p(1 ) .  Second, un- 
like previous prior models which subjectively assume 
some parametric forms for the potential functions $0 

2Here, natural images refer to an arbitrary view of the world, 
indoor or outdoor. 
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our theory uses non-parametric forms and learns them 
from observed images. The learned Gibbs distribu- 
tions confirm and improve the forms of existing prior 
models. More interestingly inverted potentials are 
found to be necessary, and such potentials produce 
patterns and enhance preferred image features. The 
learned model is compared with existing prior models 
in experiments of image restoration. 

This paper is arranged as follows. Section (2) dis- 
cusses the objective and theory of learning prior mod- 
els. Section (3) presents a novel information criterion 
for model selection. Section (4) and section (5) demon- 
strate some experiments on the statistics of natural 
images and prior learning. Section (6) compares differ- 
ent prior models by experiments of image restoration. 
Finally section (7) concludes with a discussion. 

2 Learning prior models by maximum 
entropy 

We define an image I on an N x N lattice L,  and 
we assume that there is an underlying joint proba- 
bility distribution f ( 1 )  on the image space for gen- 
eral natural images - arbitrary views of the world. 
Let NIobS = { I f S ,  n = 1,2 . . ,M} be a set of ob- 
served images which are independent samples from 
f ( 1 ) .  Then the objective of learning a generic prior  
model is to  look f o r  common features and their statis- 
tics f rom the observed natural images, based o n  which 
a modelp(1)  i s  inferred as a n  estimate to  f ( 1 ) .  p(I), as 
a prior model, will bias vision algorithms against im-  
age features which are not  typical in natural images, 
such as noise distortions and blurring. For purpose 
of learning a generic prior model, it is reasonable to 
assume that any image features have equal chance to  
occur at any location, so f ( I )  is translation invariant 
with respect to ( z , y ) .  

To study the properties of images n = 
1,2. . ,  M}, we start from exploring a set of linear filters 
{I?("), a = 1,2 ,  ..., K} which are characteristic of the 
observation. 

Given a linear filter F(")  and an image I ,  the em- 
pirical marginal distribution (or histogram) of filtered 
image F(") * I ( % , ~ )  is, 

where a() is a Dirac function with point mass concen- 
trated at0. I L I is the size of the image lattice 

We compute the average histogram of all observed 

images as the observed statistics, 

, M  

We note that pzL(z)  is an unbiased estimate for 
E f [ H ( a ) ( z ; I ) ] ,  and the latter is an 1D marginal dis- 
tribution of f ( I ) .  

Given a set of filters {F(" ) ,  a = 1,2 ,  ..., K}, and 
observed statistics {p$!,  a = 1,2,  ..., K}, a maximum 
entropy distribution is derived as the following Gibbs 
forms: 

p ( I ; A , S )  = ,e- U(I;A,S) l 
L 
K 

U ( 1 ;  A, S )  = X(a)((F(")  * 1 ) ( x I y ) ) , ( 3 )  
a=l ( Z , Y ) E L  

where A = {A( l ) ( ) l . . . ,A(K) ( )}  is a set of potential 
functions on the features extracted by S.  In practice, 
the filter responses are divided into a finite number 
of bins, thus A(")() is approximated by a piecewise 
constant functions, i.e., a vector, which we denote by 

The X(")'s are computed in a non-parametric way so 
that the learnt p(1 ,  ; A, S )  can reproduce the observed 
statistics: 

X("),a = 1 , 2  ,... , K .  

So as far as the selected features and their statistics are 
concerned, we cannot distinguish between p(1;  A, S )  
and the "true" distribution f ( I ) .  

Unfortunately, there is no simple way to express the 
A(a) 's in terms of the pzi 's.  We adopted the Gibbs 
sampler (Geman and Geman 1984), which simulates 
an inhomogeneous Markov chain in image space (Win- 
kler 1995). This Monte Carlo method iteratively sam- 
ples from the distribution p(1 ;  A, S ) ,  followed by com- 
puting the histogram of the filter responses for this 
sample and updating the to bring the synthesized 
histograms closer to  the observed ones. For a detailed 
account of the computation of X(@)'S, the readers are 
referred to (Zhu, Wu and Mumford 1996). 

In our previous papers, the following two proposi- 
tions are observed. 

Proposition 1 Given a filter set S ,  and observed 
statistics { p y l ,  a = 1,2,  ..., K } ,  there is a n  unique so- 
lution for  pa), a = 1,2 ,  ..., K } .  

Proposition 2 As  M + CO, K + CO, with only lin- 
ear filters used, p(1; A, S )  converges to  the underlyzng 
distribution f ( I ) .  
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We shall discuss how to choose filters in the next sec- 
tion 

3 Information criterion for model se- 
lection 

We notice that the statistics of natural images vary 
from image to image. For each image I$' or a group 
of images in a given domain, it is desirable to  have 
a specific underlying distribution fn(I). Given a set 
S ,  and an ME distribution p(1; A,  S ) ,  the goodness of 
p(1; A, S )  with respect to  Igbs depends on S ,  and is 
often measured by the Kullback-Leibler information 
distance between fn(I) and p(1; A,  S )  (Kullback and 
Leibler 1951), 

Then for a fixed model complexity K ,  the best feature 
set S* is selected by the following criterion, 

we assume Ef,, [H(") (z ;  I)] = H(")(z ;  Igbs). Thus fn(I) 
is better estimated by p(1; AA, S )  than by p(1; A, S ) ,  as 
stated in the following proposition. 

Proposition 3 Given two ME distributions p(1; A,  S )  
and p(1; A:, S )  defined above, KL(  fn(I),p(I; A, S ) )  = 
KL(f,(I),p(I; A:, S))  + KLbK A:, S) ,P(I;  A, S ) ) .  

[Proof]. The proof follows proposition 4 in (Zhu, Wu, 
and Mumford 1996). 

By proposition 3, we obtain 

The following proposition measures the distance of 
two ME distributions in terms of the difference of their 
marginal distributions. 

1 
S* = arg min DK = arg min - KL(f,(I),p(I; A,  S ) )  

ISl=K ISI=K M n=l Proposition 4 Let 

where S is chosen from a general filter bank B such 
as Gabor filters a t  multiple scales and orientations. 

Enumerating all possible sets of features S in a 
filter bank and comparing their entropies is compu- 
tational too expensive. Instead, we propose a step- 
wise greedy procedure for minimizing the average KL- 
distance. We start from S = 0 and p(1; A, S )  a uniform 
distribution, then it sequentially introduces one filter 
at a time. At each time the added filter leads to  the 
maximum decrease in the average KL-distance, and 
keep doing this until the decrease is smaller than a 
certain value. 

Let S be the currently selected set, and p(1; A, S )  
the ME distribution duplicating the observed statis- 
tics. For the next step, let S+ = S U ( F ( 0 ) )  be a new 
feature set, and p(1; A+, S+) the new ME distribution. 
Our greedy procedure chooses the next filter by mini- 
mizing the following information criterion IC*, 

To compute the above equation, for each f n ( I )  
and S we introduce a new ME distribution p(1; AA, S )  
which reproduces the statistics of Igb', 

E ~ ( ~ ; A ~  ,SI [H(")  ( z ;  I)] = ( z ;  1 ~ ~ ' )  

H(") ( z ;  IEbs) is a closer estimate to  the marginal distri- 
bution Ef,, [El(") ( z ;  I)] than ~ $ 2  (z) .  In the following 

and 
p(1) be two M E  distributions, Ep,(~)[H(")(z; I)] = h,") ( 

and E,(I)[H(")(z; I)] = h(") f o r  a = 1,2, ..., k. Denote 
ho = (hc) ,  h r ) ,  ..., h c ) )  and h = (h('),  h('), ..., h(')). 
Fixing ho, KL(po(I),p(I)) is  a function of h, and 
K L ( p o ( I ) , p ( I ) )  = (h-  ho)Var-'(h*)(h - ho)T, where 
Var(h*) is  a variance matrix of h* and h* lies between 
ho and h. 

[Proof] The proof follows proposition 3 in (Zhu,Wu 
and Mumford 1996). 

In practice, for computational convenience, we use 
the L1 norm distance to  replace the quadratic term, 

In summary, if we use the L1 norm distance, to- 
gether with equation (4), we approximate IC* by IC 
defined below. 

. M  

we call the first term average information gain (AIG) 
of F(P), and the second term average information f luc- 
tuation (AIF). 
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In practice, we need to  sample p(1; A,  S), thus syn- 
thesize images { I ~ ~ , y " ,  n = 1,2,  ..., M ' } ,  and use aver- 
aged histogram of these synthesized images to  esti- 
mate %(I,A,s) [ H(fl)(z;I)]. For a filter F(f l ) ,  the big- 
ger AIG is, the more information F(fl)  captures, as 
it measures the error between the current model and 
the observations. A I F  is a measure of disagreement 
between observed images. The bigger AIF is, the less 
common F(a)  is shared by all images. 

4 Statistics of natural images 

Figure 2: 4 out of the 44 collected natural images. 

We start from studying the statistical properties of 
natural images. We collect a set of 44 natural images, 
four of which are shown in figure 2, and these images 
are normalized to have intensity between 0 and 31. 

As stated in proposition (2) , marginal distributions 
of linear filters alone are capable of characterizing f(1). 
In the rest of this paper, we shall only study the his- 
tograms of linearly filtered images. 

Firstly, for some features, the statistics of natural 
images vary largely from image to image. As an ex- 
ample, we study the 6() filter, the filter response is 
the intensity itself. The average intensity histogram 
of the 44 images p& is plotted in figure (3.a), and 
figure (3.b) is the intensity histogram of an individual 
image (the temple image in figure (2)). It appears that 
p& is close to an uniform distribution (figure (3.c)), 
whereas the difference between figure (3.a) and fig- 
ure (3.b) is very big. Thus IC for filter 6() is very 
small. 

a b C 

Figure 3: The intensity histograms, a, averaged over 
44 natural images, b, an individual natural image, c, 
an uniform noise image. 

Secondly, for some other filters, the histograms of 
filtered images are amazingly consistent across all 44 
natural images, and they are very different from those 
of noise images. Therefore the IC is relatively large 
for these features. For example, we look at filter V, 
and the histograms are plotted in figure (4). The av- 

a b c .  

Figure 4: The histograms of V,I, a. averaged over 44 
natural images, b, an individual natural image (the 
same image as in figure (3.b) ), c, an uniform noise 
image. 

erage histogram in figure (4.a) is very different from 
a Gaussian distribution. Figure (5.a) plots it against 
a Gaussian curve (dashed one) of the same mean and 
same variance. The histogram of natural images has 
higher kurtosis and heavier tails. Similar results are 
reported in (Field 1994). To see the difference of the 
tails, we plot the logarithm of the two curves in fig- 
ure (5.b). 

a b 

Figure 5: a. The histogram of V,I plotted against 
Gaussian curve (dashed) of same mean and variance. 
b, The logarithm of the two curves in a. 

Thirdly, the statistics of natural images are scale 
invariant with respect to  some features. We look at 
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filter V, again. Let p!lbs be the average histogram 
of filtered images, then we scale down all observed 
images from N x N pixels to N/2 x N/2 pixels by 
averaging 2 x 2 pixels, and we compute the average 

this process we obtained &JbS where s = 2,3,  ... is the 
index of the layer or scale in the image pyramid. 

Figure (6.a) plots p!jbs, for s = 0,1 ,2 ,  and they 
are almost identical. In contrast, figure (6.b) plots 
the histograms of V,I with I being an uniform noise 
image at scales s = 0,1,2.  Similar results are observed 
for filter V,. 

histogram pxObs PI over these scaled images. Continuing 

a b 

Figure 6: a. &ibS s = 0,1 ,2 .  b. histograms of a 
filtered uniform noise image at scales: s = 0 (solid 
curve), s = 1 (dash-dotted curve), and s = 2 (dashed 
curve). 

5 Simulations of prior learning 
This section briefly presents the experiments on 

learning generic prior models. We first choose a gen- 
eral filter bank to characterize the interesting features 
of natural images. This filter bank includes the in- 
tensity filter 6 0 ,  the Laplacian of Gaussian filters at 
various scales, and Gabor filters with both sine and 
cosine components at various scales and orientations. 

I I ' I  I 

a b C 

Figure 7: The three potential functions: a. 
b. c. . Dashed curves are the fit- 
ting functions $() with parameters (a, e,  y) being: a. 
(2.1,4.8,1.32), b. (1.25,2.8,1.5), and c. (1.95,2.8,1.5) 

According the information criterion discussed be- 
fore, we found that A,V, ,V ,  are sequentially the 

first three important filters whose IC are the biggest 
among all filters in the filter bank, where A is the sec- 
ond differential operator whose impulse response is a 
3 x 3 window [0,1,0; 1, -4 , l ;  0,1,0].  Detailed account 
for the IC's of each filter is referred to  (Zhu and Mum- 
ford 1996). 

Thus a prior model is learned as following, 

The potential functions A(")(), Q = 1 ,2 ,3  are plotted 
in figure (7). X(")(),a = 1 ,2 ,3  are well-fit by a fam- 
ily of functions $(z) = a(1 - 1/(1+ ( I  2 1 /e)T) with 
(a, e, y) being parameters. A synthesized image sam- 
pled from p3(I) is displayed in figure (8). 

Figure 8: A typical sample of p3(I) (256 x 256 pixels). 

Although we have used the three most informative 
filters to extract the structures and statistics of natu- 
ral images, the synthesized image according to model 
p3(I; A),  as shown in figure (8), is still far from natu- 
ral ones. Especially, even though the learned potential 
functions X(")(z), Q = 1 ,%,  3 all have flat tails to en- 
courage intensity breaks, but it only generates small 
speckles instead of big regions and long edges as one 
may expected. We also sampled the distributions with 
potential function shown in figure (l), the sampled im- 
ages have even less features. 

In the next experiment, we shall study a prior 
model which has the scale invariant property with re- 
spect to filters v, and v, as we find in natural images. 
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Given an image I defined on an N x N lattice L. We 
build an image pyramid by scaling the images as before 
with I["], s = 0 , 1 , 2 , 3  being four layers of the pyramid. 
We set I['] = I, and I["] is defined on lattice LIS], which 
is of size N/2s x N/2" pixels. Let H,(z;I["I) denotes 

the average of H ,  ( z ;  I, ) . Similarly we define and 
H Y ( z ;  I["]) and ,U;!,~~(Z). 

the histogram of V,I["] for s = 0 ,1 ,2 ,3 ,  and P , , , ~ ~ ( Z )  ["I 
obs[s] 

a b 

Figure 10: A typical sample of p,(I;h) (384 x 384 
pixels). 

(0 )  Figure 9: Learned potential functions: a. A, , b. Ai'), 
c. d. A?). 

We ask for a probability model p(1) which repro- 
duces the observed statistics over 4 scales: 

E,[H,(z; I["])] = p ! $ b s ( ~ ) ,  s = 0,1 ,2 ,3 .  VZ 

EP[Hy(z; I['])] = $,Las(~), s = 0,1 ,2 ,3 .  VZ 
This results in an ME distribution: 

W["]) = Akl(vzI;~,y)) +A; "I ( v y I["] (z,y)). 

( X , Y ) E L S  

Figure 9 displays the learned potential functions 
A i 1  (), s = 0 ,1 ,2 ,3 .  Similar results are observed for 
$ I ( ) ,  s = 0 ,1 ,2 ,3 .  Figure (10) is a typical sample 
image from ps(I;A), which has almost identical his- 
togram for filtered images across 4 scales. 

In contrast to  existing prior models in vision, the 
learned model in figure (9) has inverted potentials 
A!]() for s = 1,2 ,3 .  Such potentials have significant 
meanings in visual computation. In image restoration, 

when a high intensity difference V,I["](z, y) presents, 
it is very likely to  be noise if s = 0. However this is 
not true for s = 1,2 ,3 .  Additive noises can hardly 
pass to  the high layers of the pyramid because at each 
layer the 2 x 2 averaging operator reduces the vari- 
ance of noise by 4 times. When V,I["](z, y) is large for 
s = 1,2 ,3 ,  it is more likely to be a true edge and object 
boundary. So in ps(I), Aio1 () suppresses noise at the 
first layer, whereas A!](), s = 1 ,2 ,3  encourage sharp 
edges to  form, and thus enhance blurred boundaries. 
We notice that figure (10) shows regions of various 
scales, and the intensity contrasts are also higher at 
the boundary. These are missing in figure (8). Model 
p,(I) further leads to  the study a new class of reaction- 
diffusion equations with the inverted terms produce re- 
action and form patterns. For more detailed account, 
the readers are referred to (Zhu and Mumford 1997). 

6 Comparison of prior models 
This section compares the performance of p,(I) in 

image restoration with two previously used models, 
1) the line-process model denoted by pl(1) shown in 
figure (1.b) , 2) the T-function prior denoted by pt(1) 
in figure (1 .c) . 

Figure (1l.a) shows an input image Id, and it is the 
lobster boat image in figure (2) distorted with additive 
i.i.d. Gaussian noises. Thus the data model p(Id I I) is 
known to be Gaussian. Then given a prior model p(I), 
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by Bayesian rule we restore an image I by maximizing 
a posteriori probability (MAP) p(Id I I)p(I). Follow- 
ing (Geman and Geman 1984), we use simulated an- 
nealing to compute the MAP-estimate. The restored 
images using pl(I), pt(1) and p,(I) are shown in fig- 
ure (l l .b),  ( l l .c) ,  (1l.d) respectively. ps(I), which is 
the only model with the inverted potential terms, ap- 
pears to  have the best effect in recovering the boat, 
especially the top of the boat, but it also enhances the 
water. 

a b 

C d 

Figure 11: a. The noise distorted image, b. c. d. 
are respectively restored images by prior models pl (I), 
~ ( 1 )  and ~ s ( 1 ) .  

Due to  space limitation, more experiments, such as 
clutter removal etc, are referred to  (Zhu and Mumford 
1997). 

7 Discussion 
In this paper, a general theory is proposed for learn- 

ing generic prior models for natural images. We argue 
that the same strategy can be used in other applica- 
tions. For example, learning prior models for MRI 
images, and for 3D surfaces, where prior models of 
different forms are expected. 

An important fact in the learned prior models is 
the inverted potentials associated with reaction, pat- 
tern formation and feature enhancement. Although 
the synthesized images bear important features of nat- 
ural images, they are still far from realistic ones. In 

other words, these generic prior models can do very 
little beyond image restoration. This is mainly due to  
the fact that all generic prior models are assumed to 
be translation invariant. This homogeneity assump- 
tion is unrealistic. 

We call the generic prior models studied in this pa- 
per the f irst  level prior. A more sophisticated prior 
model, which we call second level prior, should incor- 
porate concepts like object geometry, and such prior 
model is used in image segmentation (Zhu and Yuille 
1996). It is our hope that this article will stimu- 
late further investigations along this direction to  build 
more realistic prior models. 
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