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Thalamus
David Mumford

Introduction

The thalamus is a subdivision of the brain of all mammals. 1t
is situated at the top of the brainstem, in the middle of the
inverted bowl formed by the cerebral hemispheres. [t is shaped
roughly like a pair of small eggs, oriented on the posterior-
anterior axis and side by side, one in cach hemisphere. Its cell
count is approximately 2%-4% of the cortex.

The thalamus has a striking position in the flowchart of data
in the brain: essentiafly all input to the cortex is relayed through
the thafamus. The main exceptions are the diffuse projections of
several brainstem nuclei carrying neuromodulators such as ace-
tylcholine, but presumably not carrying detailed information-
bearing signals such as those encoding sensory or motor data;
the lateral olfactory tract that conveys the sense of smell to the
cortex; and a connection from the amygdala to the prefrontal
cortex, which duplicates a thalamic connection, The majority
of the input to the cortex—visual, auditory, and somatosen-
sory information; planning-tuning-motor output of the basal
ganglia and cerebellum; and emotional-motivational outpot of
the mammillary body—reaches the cortex exclusively through
the thalamus, The thalamus is thus the principal gateway (o the
cortex, the cortex's window on the world at every level. What
is cqually striking is that the thalamocortical pathways are re-
ciprocated by feedback pathways from the cortex back to the
thalamus, forming 2 massive system of local! loops between
the thalamus and the entire cortex. For instance, Sherman and
Koch (1986) estimate that in the cat, there are approximately
108 fibers from the lateral geniculate nucleus (LGN), the visual
area of the thalamus, to the visual cortex but 107 fibers in the
reverse direction. In other words, there are approximately 10
times more feedback than feedforward paths.

As knowledge of the anatomy and connections of the thala-
mus developed, the initial be)igf was that the principal functiop
of the thalamus was simply to relay information from subcor-
tical structures to the cortex. This View was reinforced by the
simplicity of the internal circuitry of the thalamus and the ap-
parent faithfulness of transmission shown by neurophysiologi-
cal studies. Most of the cqlis’in the thalamus-are: excited by
subeortical input and send their output directly to the cortex,
with no coliaterals to other thalamic cells (see below for a more
detailed description). This finding suggests that the thalamus is
one of the simpiest structures in the brain, and one that hardly
requires modeling.

The central question concerning the thalamus is, however,
what is the use of the roassive feedback pathways from every
area of the brain lo its thalamic input nucleus? As Jones
(1985:819) puts it: “Can it be that such a highly orpanized and
numerically dense projection has virtually no functional signifi-
cance? One doubts it. The very anatomical precision speaks
against it. Every dorsal thalamic nucleus receives fibers back
from all cortical areas to which it projects.” Jones noted the
central puzele of the thalamus from a modeling perspective.
The existence of these feedback pathways makes it evident that
the thalamus plays an essential cognitive role, engaging in a
dialogue with the cortex in which somc information is being
computed or combined, but what information’?

Anatomy of the Thalamus

The thalamus is not a homogeneous mass ol neurons, but a
collection of smaller nuclei. In humans, there are approximate-

ly 50 of these nuclej in each hemijsphere, with some subdivisions
much clearer than others. An exhaustive survey of our knowl-
¢dge of the nuclei and their connections (through 1984) is pro-
vided by Jones (1983).

Most of the nuclei are called specific nuclei. These nuclei
connect m an ordered topological pattern, one nucleus to one
area of the cortex. The topography of the projection from these
nuclei to their cortical target area varies somewhat, but tends
to follow what Jones calls a rod-ro-column pattern of projec-
tion. In other words, a thalamic nucleys is divided into a family
of disjoint rods, each of which projects to a column of cortical
tissue slicing perpendicularly through the cortical plate {rom
layer 1 to layer 6 (cf. Jones, 1985: figure 3.20, p. 126; figurc
322, p. 129; and p. B11), This tendency has many variations,
but specific thalamic relay cells scem to be constrained Lo syn-
apse in specific cortical columny Lo preserve the relationship of
their data with parallcl data streams. The best known example,
on which the largest amount of research has been dong, is the
projection of the LGN in the thalamus to cortical area V1,
the primary visual area. This projection preserves the two-
dimensjonal retinal layout of the visual image, through the
LGN and onto the cortical surface, preserving in addition the
separation of the signals from the two eyes onto distinet ocular
dominance columns in area V1.

In addition to the specific nuclei, there are also ronspecific
nucle; which project diffusely, often to the entire cortex. They
play various kinds of regulatory roles and will not be discussed
here. These specific and nonspecific nuclei make up the dorsal
thalamus. In addition, there are several structures called the
ventral thalamus, including the reticular thalamic nucleus (RE)
and pengeniculate nucleus. Thesc structures form a thin layer
of cells covering the anterior, dorsal, and lateral surfaces of the
thalamus (the perigeniculate over the 1.GN) through which all
thalamocortical and corticothalamic fibers must pass and
which sends inhibitory projections back to the thalamus. From
an anatomical point of view, Crick (1984) states that, “'If the
thalamus is the gatceway to: the cortex, the RE ‘nughz be de-
scribed as the guardian of the gateway.” )

The principal cell type in the specific nuclel of the thalamus
is the medium to large excitatory cells known as relay cells.
They make up approximately 65%—80% of all cells. Their
axons go directly to the cortex, giving off no local collaterals,
except on cells in the reticular nucleus as they pass through this
structure. These axons synapse principally in the cortex In layer
4 or deep layer 3, the standard input layers of the cortex, Some
reports show a small group of small excitatory cells which pro-
ject more diffusely, possibly to several areas of the cortex, syn-
apsing principally in layer 1 as well as in layer 6 (Jones, 158S:

158). The remaining cells are inhibitory GABAergic inter-
neurons which provide the only intrathalamic circuitry (for cell
counts, see Jones, 1985:166 -167). They synapse on the relay
cells and on each other. Figure | shows a synopsis of these
cireuits.

The thatamic relay cells do not afways relay information
faithfully as it comes in. In drowsiness, in non—rapid eye move-
ment (REM) sleep, or after the administration of various labo-
ratory preparations, these cells go into an oscillatory mode in
which they alternate between short, high-frequency bursts and
extended periods of hyperpolarization, repeating at a frequen-
cy of 7-14 Hz. This oscillatory mode is a key property of
thalamic relay cells, but it is not clear whether it has any cogni-



982 Part 1T1: Articles

suy‘c olr_!lé.:l
Input

Figure 1. Simplified diagram of the neurons of the thalamus and their
principal connections. The signs indicate which neurons are excilatory
and which are inhibitory.

tive significance (see THALAMOCOR 11CAL OQSCILI.ATIONS IN SLEEP
AND WAKEFULNESS).

Gating and Selective Aftention Through Feedback

Perhaps the most widespread belief about the role of feedback
is that cortical feedback gates thalamic transmission of subcor-
tical data: hence, it 2llows the cortex 1o attend Lo part of these
dala stlectively. Such idéas werc sugpested by Singer (1977,
Crick (1984), Sherman and Koch (1986), Koch (1987). and
Desimone ¢t al. (1990); among others.

To distinguish this model from others, it is useful (o describe
it mathemattically. Consider the visual pathway from the LGN
(o arca V1, and let J(, . 1) represent the visual signal incident
on (he retina as a function ol coordinates on the retina and
time. The ganghon cell output of the retina has been modeled
as a fillered and rectified function of J: J, = (I« E)),. lor a set
of filters F,, one for each class of ganglion cells. If the LGN was
a (aithful refay station. J, would also model the activity X, of
the LGN relay cells. The galing hypothesis is, roughly, that
inslead, the rclay cell activity is modeled by K (x.v.1) =
1, (e N Jo e, vl ) where w, represents weights that seleciively
enhance or suppress parts of the signal. The idea is that weights
w, which gate the sirenpth of the signal as it passes through the
refay cells ¢an be set up either (1) by excitation of the LGN
relay cells on the distal parts of their dendrites by direct
corticothalamic {eedback. possibly using V-micthyl-p-aspartate
(NMDA) channel mechanmisms (Kocl, 1987). or (2) by mhibi-
tion through an intermediate inhibitory cell in RE or LGN,
These mechanisms should be contrasted with possible. much
more complex, Lransformations of the signal J, — K, that the
LGN might perform as a result of cortical feedback (possibly
after several cycles of sending sighals to the cortex. then back,
then to tie cortex again, cte.).

Evidence for such gating was discovered by Singer and
Schmielau (1976) in their study of LGN relay cell responses to
binocular stimuli. The LGN relay cells are, to first approxima-

—

tion, monocular cells. Different layers of the LGN respond 1o
different eyes. In general. there is an interaction between LGN
relay cells whose receptive fields overlap to inhibit each other,
c.g., center-surronnd cells with adjacent receptive fields, on and
off cells witly the sanme receptive ficlds, and cetls in (he sustainey
versus the {ransicnt pathway inhibit each othev. Tlus observa.-
tion is interpreted by Sinper (1977) as a way ol increasing the
sighal-lo-noise ratio in the refaying process. When signals from
opposite eves are compared. the signals will ditfer by a lel(.
nght disparity shift whose size depends on the distance between
the plane of fixation and the visible surlace in tha! direction,
Wit Singer and Schmiclau discovered was that relay colls iy
laminac A and Al of the eat LGN, responding lo ispilatera}
and contralateral rctinas, inhibit each other as noted above
unless the visible surface lies in the fixation plane. In that case,
their responses are enhanced. Moreover, whereas this inhibi-
tion between left and nght responsive relay cells is mediated by
1.GN inhibitory cells. the suppression of the inhibition and its
replacenient by an enhancement when the visible surface is part
of the fixation plane 1s caused by corticofugul signals. The effect
is 10 highlight objects on the fixation planc and suppress nearer
and farther objects whose binocular signals arc oul of registra-
tton. Their articie contains a proposal for circuitry underlying
this effect.

An influential mode! incorporating this idea of galing was
proposed by Crick (1984). To explain the latency of Jow-level
visual responses, Anne Treisman and others proposed that
some tasks can be performed in parallel on the entire visual
field, while others can be performed only in one small window
of artention at a time. In Crick’s model, these windows are
created by the reticular nucleus RE suppressing the relay cells,
except for those within the window of attention. He proposes
that temporary cell assembilies are then ereated, like a buffer for
the subtmage “in the searchlight” within which further pro-
cessing wilf occur, The mechanisms for such guting of visual
signals ure discussed in Sherman and Koch (1936),

Active Roles for the Thalamic Buffer

Two objections o the hypothesis desenbed in the last section
are that (a) simply suppressing orenhancing difTerent parts of
the subcortical signal wbuld not seem to require such a massive
fecdback pathway, and (B) some (halamic nuclei do not receive
major subcortical input, yel they still are reciprocally con-
nected 10 the cortex with massive pathways.

To my knowledge. the first person (o proposc a moreg com-
plex role for the LGN was Harth. Beginning in 1974, he de-
veloped fiis ALOPEX neural net theory for visual processing
and especially lor corticothalamic feedback. As described in
Harth. Unnikrishnan, and Pandya (1987): “A mode] is pro-
poscd in which the feedback pathways serve to modify aflerent
sensory stimuli in ways that enhance and complete sensory in-
put patterns, suppress irrelevant lcatures, and generate guasi-
sensory patterns when afferent stimulation is weak or absent,”
Alhough formulated as a time-varying gate, as in the previous
section, this theory is an ilerative one in which many signals
traverse the thalamocortical loop, optinuizing by SIMULATED
ANNEALING (q.v.) an ohjective function which seeks to enhance
remenibered patterns partially or noisily present in the input.
Mathematically, the key point is that if we break up the time
mterval within cach fixation into a sequence of times /¢, +, then

15ake
K,(l’»}‘s (n) = F(-’,(XJ- ’n)l LR ] Kﬁ(u! U! In- l)) v )
where £ represents the iteration of some algorithm combining

retinal input with feedback, The idea that an iterative algo-
rthm is carried out in the thalamocortical loop has received



Thalamus 983

interesting experimental confirtnation in the oscillations ob-
served in Ribary ct al. (1991),

Experimental evidence that the LGN js doing much more
than gating comes from Murphy and Sillito (19587). They re-
port that most relay cells in the cat LGN are end-stopped.
i.¢.. they respond to moving bars ol a certain length, but their
response drops off markedly when the length of the bar is m-
creased. However, if cortical feedback is removed by destrue-
tion of those visual areas projecting 1o the LGN, the end stop-
ping ceases. This observation is puzzling because the ¢cells in the
cortex which project 1o the LGN do not show end stopping,
bul the resull §s that Lhe feedback has strong, complex iniibi-
tory cffects. One possible mterpretation is that, under cortical
feedbuck, the LGN cells become more narrowly tuned Lo spe-
cific types ol tocal features, e.g., bars of a particular length or
curved bars.

To clarily the various modcis for active roles of the thalamus,
1 would like 1o distinpusish two distinet idess in Harth's model.
One is the concept of generating completed sensory patterns
from memory when the actual stimulus is noisy and incom-
plete. The roots of this ideu go back al least as far as MacKay
(1956), who proposed thal lecdback in gencral may represent a
process of actively vreating from memory synthetic patterns
which try to match as closely as possible the current stimutus,
According 1o this theory, the feedback signal was the pattern
synthesized from memory. and the feedforward signal con-
tained featurcs of the stimulus or of the differcnce between the
stimulus and the {eedback (the residual). MacKay's ideas were
developed from a Bayesian statistical perspecuve in the Partern
Theory of Grenander (197681, 1994). An influential ncural
net model of this type is the ApApTIVii RESONANCE THEORY
(ART) (g.v.) of Carpenter and Grossberg (1987). Pece (1992}
developed a related (heory in which thalamocortical teedback
implements MacKay's ideas. He proposes thal the area V) 1o
LGN pathway carries negative feedback so that after itcration.
arca V) converges to a pallern of activity whose feedbuck
closcly matches the most salient visual patterns in the stimulus
and then cancels the retinal traces in the LGN, We call this
type of algonithm feedbuck-patiern-synthesis.

A second computational idea in Harth's theory is that (he
LGN is an internal skethpad, or an active hlackboard. on
which various patlerns can be written, misleading patterns can
be supressed. and a best reconstruction can be generated. Evi-
dence for this hypothesis Comes from Siltito et al. (1994). They
find that cortical feedback synchronizes the firing of specific
sets of LGN relay cells, namely those responding to @ common
feature, hike parts of the sume edge. This type of function s a
kind of enhanced image processing, which can be considered
independe¢ntly of the idea of feedback-puttern-synthesis. The
concepl of a blackboard was first introduced in computer sci-
ence in the HEARSAY speech project at Carnegie Mellon Uni-
versity, in the 1970s; it refers to 4 small shared common mem-
ory on which multiple experts can read and write, possibly
combining their results by the convergence of weak pieces of
evidence or one cxpert vetoing another §f their conclusions
conflict (sce DISTRIDUTED ARTIFICIAL INTELLIGENCE).

In Mumtord (1991, 1992, 1994), an inlcgrated theory for the
corticothalamic and corticocortical feedback loops was pro-
posed in which the active blackboard imape processing role is
assigned lo the thalamocortical feedback loop, while feedback -
pattern-synthesis is the role assigned to tie corticocortical feed-
hack loops. The activity of each spicific nuclens in the thalamus
is aysumed Lo act as @ blackboard in representing the curremt
view of the world for those arcas ol the cortex to which it iy
connected. The thalamic buffers connected to primary and sec-
ondary sensory arcas and lo associational and multimodal ar-

eas will contain progressively more abstract representations ol
some aspect of the world. Each view is based on data coming
from conncctions to the external world through subcortical
pathways and on data computed in the cortex and written on
the thalamus by cortical feedback. These top-down dala may
be used to enhance the bottom-up signals, to reconstruct miss-
ing data, or o externalize for further processing views of the
world created purely by mental imagery. For instance, the ac-
tual retinal signals are both noisy and complex, with multiple
physical effects creating a highly coded, but incomplete view of
three-dimensional objects and their illumination, The cortex
must disentangle the effects of lighting, texture, shape, and
depth. The bypothesis is that, instcad of copying the image into
successive buffers in a feedforward architecture as vanous re-
membered patlerns are identified and used to construct the
warld scene behind the viewed finage, small numbers of buffers
in the thalamic nuclei arc used to combine the reconstructions
made by various cortical experts. Many cortical experts can
search independently for a large variety of patterns in the im-
age, sencing them all to the thalamus, where a kind of voting
takes place by summation in the dendritic arbors of the relay
cells and by inhibition through the intecncurons, Thus, the ac-
tive thalamic blackboard can be used to decide which represen-
tation is the most successful, rejecting the weaker matches. The
resulting patiern of activity is then sent back to the cortex as an
cnhanced view of the world.

The funciion of corticothalamic fecedback remains a matter
of speculation. [t is hoped, however, that these speculations
will stimulate another generation of morce sophisticated experi-
ments, with more complex stimuli, that will enable us to see
further.

Road Maps: Mammulian Brain Regions; Vision

Relited Reading: Electrolocation: Sclective Visual Attention; Stereo
Correspondence and Newral Networks; Visual Schemas in Object
Recognition and Scene Analysis
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Time Complexity of Learning
J. Stephen Judd

Introduction

This arlicle delves into questions about learning, specifically
the number of computing steps required to support simple as-
sociative memory in neural networks, and includes comments
on mistake bounds.

Unfortunately, many of the learning algorithms reporied in
the literaturc are often very slow even for the small network
sizes (tens or hundreds of nodes) used in experiments; they
have all been unacceptably slow in large networks. {t is clear
that we need to be able o scale up our applications (o much
bigger networks, and so we need to understand the cause of
these Jearning difficulties and how to deal with large sizes.

The type of learning investigated here is known as supervised
learning. In this paradigm, input patterns (called s7imuli) are
presented to a machine paired with their desired output pat-
terns (called responses). The abject of the learning machine is to
remember the associations presenled during a training phase so
that in a futore retricval phase the machine will be able to emit
the associated response fora given stimulus.

It is assumed that the networks can change their behavior
(by changing their weights); in the work reported here, this
change does nol involve aitering the conneglivity structure.

A set of (stimulus, Hesponsc) pairs, or SRpairs, will herein
be called a task. When a small task is drawn randomly from
a large set of possible pairs, the literature usually calls it a
sumple.

An architecture specifies the input lines, the conncctivity
from each node to others, and which nodes will be nelwork
outputs. [t includes all data about a circuit except what func-
tions the nodes perform. In most of this article, we consider
only feedforward networks for which a stimulus fields a unique
response.

Each node in a network is designed to compute one of a
certain family of node functions. Typical examples pass the
weighted sum of inputs through a step function or sigmoid
function.

A configuration, F = {f,f3,....f;}. of a network is an as-
signment of one function from the node function set to each
node in the architecture, to specify what that node computes.
An architecture, A, and a configuration, F, logether define a
mapping lrom the space of stimuli to the space of responses.
This mapping describes how the network will behave during
retrieval.

A goul of ncural network learning research has been to find
a "learning rule” that each network node can follow to adjust
its weights, i.e., to find a configuration such that the retrieval
behavior of the whole network eventually implements some

Sherman, M., and Koch, C., (986, The control of retinogeniculate
transmission in the mammalian LGN, Exp. Brain Res.. 63:1-20.
Sillito. A, Jones, H., Gerstein, G., and West, D., 1994, Feature-linked
synchronizathion of thalamic relay cet) firing induced by fecdback

from (he visual cortex, Nature. 369:479-482.

Singer, W.. 1977, Control of thalamic transmission by corticofupat and
ascending reticular pathways in the visual system, Physiol. Rev., ST
3186 419,

Singer. W, and Schmiclau, F., 1976, The effect of reticular stimulation
on binocular inhibition in the cat LGN, Exp, Brain Res.. 14:210-
226.

desired mapping from stimuli Lo responses. [L was hoped that a
learning, rule. and especially some hiologically plausible learn-
ing rule, would work for any network design. Many rescarchers
have developed candidates for such a tearning algorithm, as
this book altests, but much of this article reports studies where
the biological nature is sacrificed, in recognition of the fact that
the form of the learned representations may be as impor(ant as
how they are obtained,

There are several measures of the difficulty of learning: one
is the amount of time it takes to learn, another is the amount of
data it takes to learn, and another is the number of mistakes
that will be made duning a learning process. For each of these
questions, there arc other issucs that have to be specified: how
“neural™ the algorithms are. how exactly correct they need (o
be, how dependable they need o he. how they get their data,
what they are allowed to manipulate, and how helpful the
teacher is. This article deats with some questions regarding
time and mistikes; sce VAPNIK-CHERVONENKIS DIVENSION OF
NEURAL NETWORKS for some data complexity issues.

Neural Algorithms - ct

The original perceptron had the impact it did because its learn-
ing rule was deemed to be “'biologically plausible.” This attrib-
ute is still a hallmark of many learning schemes. Typically, a
sample of data is collected and then repeatedly presented to the
machine while il incremenlally alters its hypothesis toward the
correct onc.

Roscablatt (1961) and olhers proved a theorem stating that
the varions perceptron learning rules cventually converge to
correct weights il such weights do exist (i.e., if the task is lin-
carly separable). This development demonstrated that the per-
ceptron would learn in finile time, but it gave no scaling infor-
mation. The scaling issues are with respect to s, the number of
input lines in the stimulus vector.

Muroga (1965) showed that there are lincarly separable
functions whose weights are approximately as large as 2% Thus,
even when the function is performabile, it will take the various
perceptron learning rules Q(2*) adjustments before getting ac-
ceplable weights. Hampson and Volper (1986) cxtended the
argument to the average case (as opposed Lo the worst case)
and derived a bound of (1(1.4%). (The Q notation is like the O
notation in that it makes no claim about the constant mulii-
plicr, but whereas O( /() says that the sculing is no worse
than f(n)., Q(f(n)) claims that the scaling is at least as bad as

J().)

Tesauro (1987) studied time-scaling issues in some simple
famjlies of multilayered networks and measured learning time



