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Abstract

Bayesian statistical methods are being successfully applied in speech
recognition and language parsing� computer vision �i�e� image analysis
and object recognition� and in medical expert systems� All of these are
instances of Grenander�s general conception of �Pattern Theory�� the sta	
tistical analysis of patterned but noisy and distorted signals produced by
the world� To apply these ideas to a class of signals� we need to con	
struct probability models for the observed random variables and for the
unobserved world variables which caused the signal� and we also need al	
gorithms for inferring high probability values of the unobserved variables�
This talk will introduce a series of such models for visual signals which
incorporate successively deeper layers of unobserved variables� Model 

involves only the observed signal and is the basic scale	invariant Gaussian
process model� Model � introduces local feature variables such as line pro	
cesses and it belongs to the class of Markov random �eld models� Model
 introduces variables describing surfaces� subsets of the domain of the
image and leads to the use of stochastic grammar formalisms� This class
of models is the natural stage at which the three	dimensional structure
of the world producing the signal is made explicit� Finally model � in	
troduces templates for learned classes of objects� which must be matched
to the observed signal by pointers� random variables whose values are ad	
dresses� These are examples of what I call �mixed Markov models� which
I propose as the basic tool in object recognition�

� Introduction

The study of visual signals� commonly referred to as images� and of the pro�
cess of extracting meaning from them has traditionally been studied by two
quite di�erent groups� The �rst group consists of the psychophysicists and
neurobiologists� going back to the great German psychophysicist von Helmholtz
whose monumental work �HvH� started the whole �eld� This group asks how
animals and man in particular can 	see
� how they can use the pattern of light
striking the retina to acquire and construct a mental representation of the
world in front of them� The second group consists of the engineers who sought
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computer algorithms for such tasks as the grasping of objects seen through a
video camera by a robot� the automatic navigation of vehicles without human
drivers and the automatic reading medical scans and X�rays� David Marr was
one of the most in�uential voices in bringing these groups together� In his
book �Ma�� he described what he called the theory of the computation� a level
at which there was one problem of vision for animals and computers� It might
be solved by di�erent algorithms and certainly by using di�erent implementa�
tions in these di�erent classes of agents� but one could analyze the components
of the problem and its computational complexity in a uni�ed way�

As a mathematician� the issue remains however  what sort of a theory is it�
For example� the AI �arti�cial intelligence� school has proposed studying the
problem of vision� as one of many cognitive problems� using logic�like languages�
They would transcribe into formal logic or into prolog databases the facts of the
physics of light� the shapes of the objects of the world and of how these interact
to produce observed images� They propose further to develop heuristics for
e�ciently searching the combinatorially explosive tree of combinations of these
facts to arrive at a high�level scene description compatible with the observed
image�

Ulf Grenander �Gre��� �Gre�� however pioneered a second approach based on
statistics� From his perspective� the problem is to learn from extensive ex�
perience the statistics of images and of the objects represented in them and
to �nd fast algorithms for the statistical estimation of the random variables
not directly observed �such as the distance to and the identity of the objects
being viewed�� given those which are observed �the raw retinal or video sig�
nal�� In this estimation problem� the Bayesian approach  of combining learned
priors on the unobserved variables with an imaging model  has been the dom�
inant approach� This statistical approach to vision has been gaining adherents
though it is by no means universally accepted� Let me note brie�y how similar
trends have grown in related �elds�

� In speech recognition� the Bayesian statistical theory of hidden Markov

models and the asociated EM algorithm for learning the model parameters
have totally dominated the �eld�

� In control theory� the Bayesian statistical tool of the Kalman �lter is the
central technique for dealing with noise and uncertainty�

� In AI itself� statistical theories have grown in importance in medical ex�
pert systems �see work of Pearl� Lauritzen and Spiegelhalter� e�g� �Pe��
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and in the so�called PAC learning models �	probably approximately cor�
rect
� of Valiant� e�g� �K�V��

This article will present one way to codify the statistical approach to vision by
describing a series of classes of probability models in which successively deeper

layers of unobserved variables are incorporated� The inspiration for describing
the various stages in the vision computation in this way came from trying to
understand the analogies between vision and speech�language�

To make clearer what we mean by a series of probability models which succes�
sively approximate a class of real signals� I want to end this introduction by
giving samples from seven successively more re�ned models of English� devel�
oped in Shannon
s early work on information theory �Sh�� While still 	low�level
�
i�e� there is no syntax nor semantics in these models� they make the point that
statistics alone does capture a great deal of the structure of language� First�
here is a random sequence of English letters �plus space�  the linguistic analog
of white noise signal�
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

Second� we sample from a model in which the individual letter frequencies are
those of English�
OCRO HLI RGWR NMIELWIS EU LL NBBESEBYA TH EEI ALHENHTTPA OO BTTV

Third� we sample from a model in which the letter pairs have their correct
frequency  i�e� you compile a table of probabilities of the ��� events xixj in
representative samples of English speech and prose and make a string by choos�
ing each new letter using the conditional probability of its occurence following
the previously chosen letter�
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE

TUCOOWE FUSO TIZIN ANDY TOBE SEACE CTISBE

In the same way� here are strings chosen randomly with the correct letter triple
frequencies�
IN NO IST LAY WHEY CRATICT FROURE BERS GROCID PONDENOME OF DE�

MONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

and ��tuple frequencies�
THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE ABO�

VERY UPONDULTS WELL THE CODERST IN THESTICAL IT TO HOCK BOTHE
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Modeling English further� we incorporate the lexicon and make strings using
only valid English words with their correct frequency�
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT

NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME

Finally� here is a string with correct word pair frequencies�
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE

CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE

These models give a sense of steady convergence to the true probabilities in
English speech or prose� What are the analogs of these random strings in
vision� As we explore this� we will refer back to these and other descriptions
of speech�language for comparison with each class of visual models�

� Model �� The Scale�invariant Gaussian Process

We begin by �xing notation� By an image� in the simplest case� we shall mean
a rectangular array fI�i� j�j� � i � N� � � j � Mg of positive real numbers�
These refer to the light intensity recorded at a rectangular grid of receptors in
either a TV camera or the retina� The sample points �i� j� are called the pixels
of the image� Of course� this may be generalized in many ways� the pixels may
not be spaced on a rectangular grid �in fact� the retina uses an approximately
hexagonal array in the fovea� nor even on a regular grid at all� the incident
light may be sampled by frequency leading to a vector of color values f�I�i� j�g
rather than a scalar brightness� or one may pass to a continuum limit I�x� y� of
pixels or even I�x� y� ��� � being wavelength� Sticking with the simplest case�
however� the main object of study is a probability distribution�

p�� � � � I�i� j�� � � ��
Y
i�j

dI�i� j�

on NM �dimensional space� This should not be taken too literally� p is meant
to capture the statistics of what an average agent in the world 	sees
 as it moves
around in the world� Of course this varies from agent to agent  the visual
world of a mouse living in the forest is quite di�erent from that of a Professor
working in a city  but one seeks a class of such probability models with many
parameters which allow an agent to learn its environment and to capture its
regularities� One can also ask for models using infra�red or radar images which
will di�er even more radically�

The simplest probability distributions in high dimensional spaces are the Gaus�
sian ones and this is what model � is� The general form of such a model would
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be�

p�I� �
�

Z
e�
P

aij�klI�i�j�I�k�l�

Here and in the rest of this paper� Z stands for whatever normalizing constant
is needed to make the various functions p into probabilities�

Now if we consider the image I to be a function on the torus ZZ�NZZ� ZZ�MZZ

rather than the rectangular grid� then we can ask that an image I and a
translate I ��i� j� � I�i� i�� j� j�� of I by some �i�� j�� should be equally likely�
i�e� that p is translation�independent� If we let �I��� �� be the discrete Fourier
transform of I�i� j�� the quadratic form a appearing in a translation�invariant
Gaussian distribution is diagonalized in the new variables �I��� ��� so that

p�I� �
�

Z
e�
P

c��� j�I�����j
�

where c����� represents the expected power of I in the spatial frequency band
��� ���

However visual signals have a fundamental property not shared by other types
of sensory signals� They have no distinguished scale� This means that� if we
now model images as functions I�x� y� of continuous variables so as to allow all
scales� then an image I�x� y� and a rescaled image I��x� �y� are equally likely�
The reason for this is that when an observer moves closer or further from some
scene� then the image is rescaled� when the observer is closer� the image is
enlarged by some factor �� and when further away� the image is reduced by
some factor �� Since the distance of the observer is not �xed by anything�
neither is the scale� This is not true of touch� because the the �nger must
actually contact the sensed object� so the object
s size on the tactile array of
sensors is always the same� And in audition� constants like the frequency of the
vocal cords set a �xed scale on the time axis relative to which all other sound
durations can be calibrated� If we go further and assume rotation invariance
of the probability distribution p� this leads to model �� a Gaussian model for
images I � unique up to one parameter 	�

p��I� �
�

Z
e��
RR

�������j�I�����j�d�d�


This expression poses several questions� a� is it well�de�ned and b� why is this
distribution scale�invariant� Accepting that it is well de�ned in some sense�
the simplest way to argue formally that it is scale�invariant is to note that it
makes j�I��� ��j into independent normally distributed variables with variances
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���	��� � ���� hence if A�r�� r�� is the annulus in the ��� ���plane with inner
radius r� and outer radius r�� then

Z Z
A�r��r��

E�j�I��� ��j��d�d� �
Z Z

A�r��r��

d�d�

�	��� � ���

�
�

	
log�

r�
r�

�

Thus the expected amount of power in a spatial frequency band depends only
on the ratio of the high and low frequencies� not on the frequencies themselves�
On the other hand� letting the high frequency cuto� go to in�nity� we �nd
an in�nite amount of power� hence the typical samples from this probability
distribution cannot be continuous� or even locally L��

The stochastic process formally de�ned by the above probability distribution is
well known to physicists but it is a process which is not supported on any space
of measurable functions� rather its sample paths must be taken as distributions
�R�C�L�� For instance� its samples on a torus are readily constructed as random
fourier series

I�x� y� �
X
��ZZ

X
��ZZ

�p
�	��� � ���

a���e
��i�x��y��

where a��� are an independent normal sequence with variance �� mean � and
�a��� � a����� � Such series 	barely
 miss being measurable functions� On the
other hand� a little re�ection shows that we wouldn
t expect sample scale�
invariant images to be functions Imagine you had the X�ray vision of superman
and could see all the warts on everyone
s face and all the mites crawling on
a leaf� etc� By the laws of re�ectance� these would cause black and white
�uctuations in the image of the same size at arbitrarily small scale� Even on
a macroscopic scale� it is well known to photographers that the visual world is
cluttered with objects of every size so that good photographs must be carefully
composed to emphasize the composition on one scale� This clutter is a basic
problem for all computer vision algorithms too and will come up again in this
article�

The Fourier series in the last formula enables one to construct readily by com�
puter random samples from model �� One of these is shown in �gure �� Note
that it is quite reminiscent of many fractal everyday objects such as clouds�
that one can 	see
 in it various shapes by the use of imagination because it
has lots of structure� By contrast� white noise is quite boring and featureless�
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Figure �� A sample from Model �� an image with power � ��f��

Nonetheless� it is certainly not a typical image of the world� In the linguis�
tic analogy� model � is like the model of English strings in which the letter
frequencies are correct�

Before leaving this model� however� it is helpful to use the inverse Fourier
transform and express model � in terms of the original image I � By the rules
for the Fourier transform of the derivative� we see the beautiful fact that�

p��I� �
�

Z
e��
RR

krIk�dxdy 


Note from this that the dimension of 	 is ��intensity�� �which also followed
from the expression of expected power in an annulus� and does not involve
distance �con�rming the scale�invariance of the model�� A discrete form of this
probability is obtained by replacing the gradient by sums over adjacent pairs
of pixels�

p��I� �
�

Z
e
��
P

p�q adj�
�I�p��I�q���

� Model �� Local Features using Markov Random

Fields

The natural way to improve model � of images is to model the co�occurence of
gray levels at adjacent pixels� i�e� if p� q are adjacent pixels� then one should
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attempt to model the so�called co�occurence statistics for the pair of intensity
values �I�p�� I�q�� The most obvious thing that happens in images is that there
are edges� These are sharp discontinuities of image intensity primarily caused
by pixel p being part of the surface of one object and pixel q being part of
another� e�g� one on the foreground� the other on the background� There are
also edges caused by surface markings� by abrupt changes in the surface normal
�folds� and by other illumination e�ects such as shadows and highlights� It is
clear that �gure � lacks sharp edges�

A simple way to increase the probability of sudden intensity changes is to
replace the squared term �I�p��I�q��� by a robust variant ��I�p��I�q��� where
��x� is a function which approximately x� for x small� but which approaches an
upper bound for jxj large� Examples would be x�����x��� tanh��x�� ���e�x

�
��

Using such a �� we de�ne model � via�

p��I� �
�

Z
e
��
P

p�q adj�
��I�p��I�q��




There is a second very natural way in which model � arises� with a particular
�� This is by introducing an auxiliary set of random variables� the line process�
We imagine the rectangular grid of pixels as being the vertices of a graph with
edges linking each pixel to its � horizontally and vertically adjacent neighbors�
A line process is a function  on the edges of this graph whose values are � or
��

 � fprs of adj pixels p� qg �� f�� �g 


The assertion �p� q� � � means the bond between pixels p and q is intact� so
that I�p� and I�q� try to be equal� while the assertion �p� q� � � means the
bond is broken and I�p� and I�q� are totally independent of each other� This
may be expressed by the formula�

p���I� � �
�

Z
e
�
P

p�q adj�
���I�p��I�q������	�p�q���
	�p�q��


What is quite remarkable is that model � with a suitable choice of � is just the
marginal probability distribution on I from this p���I� � �G�Y� More precisely�

X
all possible 	

p���I� � �
�

Z
e
�
P

p�q adj�
��I�p��I�q��




where
��x� � log�e��x

�

� e�
���
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Figure �� A sample from Model �� a local part of an image with line processes�

It is not simple to sample from model �� but we have used simulated annealing
 hopefully with long enough time  and show in �gure � the kind of sample
we �nd� Unlike model �� model � has a scale parameter� and the �gure should
be considered as a close�up of some scene in which two objects are visible�

Having broken the scale�invariance of model �� this means that images sampled
from model � should be regarded not as real world images but as simpli�cations
of real images in which clutter on smaller scales has been rejected� The observed
image should be regarded as a sample from model � plus �ne detail� The
simplest way to do this is to make the arti�cal assumption that this �ne detail
is white noise� This leads to the full version of model � in which there are
three random processes� the actually observed image I � the simpli�ed version
without clutter which we now call the cartoon J and the line process � The
full probability distribution is now�

p����I� J� � �
�

Z
e
�
P

p
�I�p��J�p��������

P
p�q adj�

���J�p��J�q������	�p�q���
	�p�q��


This model was introduced independently by S� and D� Geman �G�G� and by
A� Blake and A� Zisserman �B�Z�� This model has been used together with
Bayes
s theorem to �nd segmentations of an image� One assumes I is given
and uses the conditional distribution induced by p��� on the remaining variables
J and  in order to �nd probable segmentations of the image� One should not
expect that such an elementary model� which still does not incorporate very
much knowledge of the world� is going to �nd the correct segmentation of the
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Figure �� Image segmentation by Model �� Left� an image I of an eye� center�
the cartoon J � right� the line process �

image into multiple objects� but one does expect that the correct segmentation
has relatively high probability� Figure � shows a typical application of this
model in this way� The �gure shows a real image of an eye� an estimate for the
most probable cartoon J and the line process  from this model� �Because this
�gure was generated by an algorithm approximating the most probable J� �
the result is probably not optimal��

A striking aspect of this approach is that� while the prior model on cartoons
fJ� g is very crude and while the imaging model I � J � �white noise� is also
crude� the results are rather reasonable� It seems as though the de�ciencies in
the prior model and the imaging model are of di�erent sorts and the strengths
of the each model help make up for the weaknesses of the other� Looking again
at language analogies� the same phenomenon was found by Jelinek
s group at
IBM doing machine translation via similarly crude statistical models� They
used word triple �called trigram� statistics to model English language strings�
and using a corpus of ��� million French�English sentence pairs supplied by
the Canadian parliament� they built a statistical English to French dictionary
�example� answer becomes ��# of the time the noun r�eponse� ��# of the time
the in�nitive verb repondre� �# of the time is omitted in the corresponding
French sentence� etc��� For each French sentence F � they computed the English
string E maximizing the product p�E� � p�F jE�� In spite of the obvious de��
ciencies of both probability models and the total absence of any grammar rules�
their translations were ��#���# correct Again� it seems that the strengths of
each model compensate for the weaknesses of the other�

Going back to our table in the Introduction� model � is the most natural vision
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analog of the English string model which incorporates letter pair frequencies�
It can only deal with homogeneous regions in an image with smoothly varying
intensity and sudden jumps in intensity between such regions� But the real
world is made up of many textured surfaces in which the local image is not
homogeneous but have particular types of local statistics� Modeling these is
analogous to looking for higher order letter frequency statistics� We need to
model higher order co�occurence statistics for intensities at local clusters of
pixels� There is no space to elaborate the various theories in this direction�
especially because texture has not proved easy to describe mathematically�
Instead I want to describe the basic mathematical formalism for the class of
models of this type� The basic idea is to introduce local feature descriptors

which respond when a certain pattern or texture is present and to try to group
sets of pixels� or regions� where the same local feature descriptors are active�

The appropriate formalism for this is a Markov random �eld� In the generality
which we need� we assume that the random variables in our model  the ob�
served image and all the auxiliary local feature variables  form the vertices of
a graph� We write these variables as fXvgv�V � where V is the set of vertices�
The edges of the graph are supposed to represent variables which have a direct
in�uence on each other� A Markov Random Field is a probability space with
these random variables with the following Markov property� when some subset
of them fXwgw�V� are �xed� and when v�� v� are two vertices which cannot be
joined by any path not containing a vertex in V�� then Xv� and Xv� are condi�
tionally independent� By the Hammersley�Cli�ord theorem� this is equivalent
to the probabilities being given by a Gibbs formula�

p�fXvg� �
�

Z
e
�
P

cliques C
EC�fXvgv�C 


Here a clique is a subset of the vertices of a graph all of whose vertices are
joined by edges� and there is one term EC in the exponential for each such
clique�

The graph of the Markov random �eld used in model � is shown in �gure ��
Many Markov random �eld models have been used to model textured images�
they include further auxiliary vertices and edges linking nearby pixels over
larger local neighborhoods� Figure � shows the output of an algorithm from
the work of Zhu� Yuille and Lee �Z�L�Y�� Simple local statistics are used together
with a 	region�growing
 algorithm to �nd a high probability segmentation of
the scene�
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Variables I(p)

Variables l(p,q)

Variables J(p)

Figure �� The graph for the Markov random �eld for segmenting an image I
via a line process  and a cartoon J �

Figure �� Segmenting a scene on the plains of Africa by local texture statistics
modeled by a Markov random �eld�

� Model �� Surface Descriptors using Stochastic

Grammars

While local patterns and structures arising from a Markov random �eld can
create images with the local 	look and feel
 of a real world image� there is much
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Figure �� Left� the observed image� right� its representation as a set of three
layers of increasing depth�

more to be captured� The next stage is to make explicit the larger structures
which arise from the three�dimensional geometry of the world� especially ob�
jects in the world and the parts of their surface visible in the image� This is
analogous to identifying in speech or language the larger groups of letters� �rst
words� then grammatical phrases and clauses�

I would like to make this clear from the simplest example� which is what
Nitzberg and I have called the ���D sketch �N�M�� Note that model �� with its
line process implicitly de�nes a decomposition of the set of pixels into regions�
Namely� consider the set of pixels to be joined only by those edges where
�p� q� � �� those edges which are intact after the line process breaks the rest�
Let fRig� � � i � n be the connected components of this graph� These are
the connected regions resulting from cutting apart the image domain along the
edges � In some cases� these may be the objects present in the scene but it may
also happen that an object appears in several places� being partly occluded by
a nearer object� Moreover� each edge has a 	belongingness
 as Nakayama calls
it� it is the edge of one of its two sides� that of the nearer object and lies in an
accidental position on the farther one� There is a strong local cue for this three�
dimensional structure� When one edge vanishes behind another edge� the set
of edges forms a so�called T�junction� and the two objects seen on the stem of
the 	T
 must be further than the object above the top of the 	T
� An example
is shown in �gure �� the observed image consists in a potato in front of an
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orange and a beer bottle at an intermediate distance all against a background
consisting of a cardboard box with faint letters on it� Mentally� you represent
this scene something like the diagram showing the three layers separately� Note
the T�junctions where the beer bottle and the orange disappear behind the
potato� Mathematically� we de�ne a ���D sketch to be an ordered sequence
fRig��i�n� of subsets of the image domain which can overlap in any ways� We
assume the Ri
s are objects projected onto the image domain and that Ri is
nearer than Rj whenever i � j� In particlar� Rn is the background� which we
assume to be the whole domain� Thus R�

i � Ri � �ji�Ri 	 Rj� will be the
visible part of object i� In the �gure� a ���D sketch with � regions R�� R� and
R� has been computed as the most probable values of the ���D variables fRig
in a precise probablity model which relies heavily on the T�junctions�

Before giving details of the model� I want to note that such layered represen�
tations also arise from the analysis of binocular stereoscopic image pairs and
from temporal image sequences� In �gure �� we show an example from the work
of Wang and Adelson �W�A�� on the right� you see three frames from a movie
with thirty images� on the left you see the decomposition of the scene into three
layers� the foreground tree� the intermediate �ower bed and the background
house and trees� In fact� human infants are born able to segment visual signals
into layers on the basis of relative motion� �using� presumably� to the brainstem
structure called the superior colliculus�� They develop the ability to segment
into layers using stereoscopic vision later and the ability to perceive layers in
single images last�

I claim that underlying the ���D sketch is an extremely simple stochastic gram�
mar� Recall that a stochastic grammar is described by giving a set of symbols�
called non�terminals and another set� the terminals� and a set of production
rules of the form A � B�B� � � �Bk� For example� a simple class of sentences
may be generated by the simple rules�

S �� NP VP� Prob
 � �
NP �� Adj NP� Prob
 � p

NP �� N� Prob
 � �� p
VP �� verb v Prob
 � p�v�
Adj �� adj
 a Prob
 � p�a�
N �� noun n Prob
 � p�n�


where S� NP� VP� Adj� N are the non�terminals� p���� p� is the expected
number of adjectives in a random noun phrase� v�a�n stand for a large number
of possible terminals in a lexicon� and the probabilities p�v�� p�a� and p�n� are
the frequencies of occurrence of the various verbs� adjectives and nouns�
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Figure �� Top� two frames from a movie sequence of thirty images� bottom�
their representation as a set of three layers of increasing depth �courtesy of
Wang $ Adelson��

In exactly this way� the ���D sketch is generated by the stochastic grammar�

Im �� Bkg Frg� Prob
 � �
Frg �� Obj Frg� Prob
 � p
Frg �� Obj� Prob
 � �� p

Bkg �� D Prob
 � �
Obj �� R Prob
 � p��R�

where Im� Frg� Bkg� Obj are the non�terminals� ���� � p� is the expected
number of foreground objects in a random image� D� R are the non�terminals�
where D is the whole domain of the image and R can be any subset of the image
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Figure !� In center� �D percept of three bars in front of cube� right� �D
percept persists without bars� left� �gure separates into �D shapes when only
the occluding part of the bars are present �after Kanizsa��

domain and �nally we de�ne the probabilities p��R� as�

p��R� �
�

Z
e�
R
�R

����ds

where �R is the boundary of R� � is the curvature of this boundary� ds is
arc length on this boundary and ��x� is some function like a � bx�� This
prior on regions R encourages regions to have short smooth boundaries and�
in particular� it will try to reconstruct the hidden edges of partially occluded
objects by curves which minimize this functional �a class of curves invented by
Euler and called by him elastica��

Tied together with a simple imaging model� such as�

p��I jfRig� �
�

Z
e
�
P

i
VarianceR�

i
�I��Area�R�

i�

we get model �� the simplest grammatical model for generating global structure
in an image� Just like an ordinary linguistic grammar� the purpose is to pick
out large subsets of the signal that must be interpreted together and which
may be interrupted by other structures� Thus foreground objects occluding
part of the surface of a more distant object are like relative clauses embedded
in a larger clause�

This idea of a grammar of images was invented by the Gestalt school of psychol�
ogy in the early part of this century� They discovered many laws of grouping
which they typically 	proved
 by testing human responses to elegantly con�
structed images� An example is shown in �gure !� which is due to Kanisza
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a

b

c

Figure "� a� Generating by a grammar the part description of the dog using
non�terminals symbols� b� the subsets of the image domain given by the cor�
responding terminal variables� c� the �nal dog silhouette and its medial axis�

�Ka�� Here you see in the middle a wire frame cube occluded by a set of par�
allel diagonal bars� Note that this percept still persists on the right where the
edges of the wire frames end abruptly �a kind of T�junction with invisible top
stroke�� but this percept is absent on the left where the edges of the wire frame
are joined� making each fragment into a self�contained two�dimensional shape�

More complex grammars are called for to deal with other aspects of images� In
particular� there is a set of grammatical rules for the decomposition of complex
articulated objects into ribbons and blobs with protrusions� These ideas go
back to the work of Blum �Bl� and Fu �Fu�� Again� there is a set of abstract
non�terminals and an in�nite number of realizations of these as terminals which
are subsets of the image domain D� The ribbons produce worm�like shapes
described by their axis and their width� the protrusions produce �n�like shapes
described by an angular sector of a circle whose radius is a function of the
angle� In �gure "� we give an example of this type of decomposition from the
work of Zhu and Yuille �Z�Y��

A general characteristic of these grammatical models is that they incorporate a
new class of variable� These are variables whose value is a subset R of the image
domain� It is hard to force these into the Markov random �eld framework�
not only are these global entities� but there has to be an unlimited supply
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of them  a shelf� as it were� of region variables waiting to be called upon�
While perfectly satisfactory from a mathematical point of view� this raises a
big problem when you try to imagine how the brain manipulates such entities�
The brain� looked at neuro�anatomically� is a hard�wired graph of neurons very
reminiscent of the kind of graph in a Markov random �eld� The model which I
favor tries to reconcile these two using an adaptive pyramid architecture of the
sort introduced by Hong and Rosenfeld �H�R�� In their construction� a series of
successively coarser pixel grids are made into the levels of a pyramid with the
original high resolution image at the bottom� They are linked� each level to the
next lower level and the next higher level� by a many�to�many correspondence
�in the original proposal� each pixel had � possible 	parents
 and �� possible
	children
�� making the whole pyramid into a three�dimensional graph� Now
you add a vertical line process which can cut or leave intact vertical links� or
perhaps give them some weight in between� using these� pixels at higher levels
can be adaptively linked to very general subsets R of the original� lowest level�
thus creating subset variables�

� Model �� Object Templates using Mixed Markov

Models

The �nal class of models I want to discuss are those incorporating the seman�

tics of visual signals� Semantics deals with the construction of a database of
individual things the agent has encountered and of categories of these things�
In language you learn the names of objects and the meanings of words so as to
use language correctly� In vision you learn the shape and appearance of objects
and the clustering of objects into categories so as to recognize the object or in�
stances of the category anew �and� in robotic applications� use this knowledge
for navigation� grasping� etc���

I want to start with an extremely simple example� in �gure ��� from the work
of Yuille� Hallinan and Cohen �Y�H�C�� you see an image of a face on which
an outline eye  consisting of two parabolas for the edges of the eyelids and a
circle for the pupil  has been drawn by computer �more or less correctly�� The
theory� which goes back to early work of Fischler and Elschlager �F�E�� is that
to identify objects belonging to a category of known but variable shape in a
given observed image� you must �nd the pixels in the image where some set of
feature points in a model of the object are located� This approach goes under
the name of �exible templates� In speech recognition� time warping plays a
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Figure ��� A �exible template of an eye� �t to a face image �from �Y�H�C���

similar role in matching the expected temporal�frequency pattern of a speci�c
phoneme with the observed sound� In general� we imagine that to recognize
objects� you must learn a model for the object� called a template� which may
be a typical image of the object or it may be cartoon�like with abstract points
and edges or some combination of the two� You must also learn the typical
amount of geometric variability of this template and of how the intensity values
of the image should match the model� Then to recognize an instance of the
object� this model must be �t to the present image�

A very extensively studied example of this approach is known as model�based
matching� Here a precise geometric description of some object� like a machine
part in a factory assembly line� is available� The assumption is that this object
will be seen from an unknown point of view with unknown lighting conditions�
The matching strategy employed is to identify the edges of the object in the
image and also various special points� such as its corners� �A highly successful
trick has been to look for bitangent lines� straight lines in the image domain
tangent at two points to the edge of the object�� You must then solve for the
viewpoint from which the outlines of the model would match up reasonably
closely with the edges detected in the image� often under conditions of partial
occlusion� so that the entire outline of the model cannot be seen in the image�
People are remarkably good at this jigsaw puzzle like ability�

The di�culty of recognizing objects is highly dependent on the type of object�
An unoccluded alphanumeric character from a known font or a �at machine
part such as a gasket in good lighting conditions lie at the easiest end of the
spectrum� Other 	objects
� like a bunch of grapes� possess seemingly unlimited
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Figure ��� Left� the input face� next� the input matched by a warping of the
template� next� the template with the warping indicated by arrows� right� the
template itself� Note how the template is stretched in the mouth area because
the mouth in the input is open�

variability� The case which has received the most recent attention because of its
many applications� is face recognition� This is of intermediate di�culty� while
faces are very stereotyped� their gray�level appearance is especially dependent
on lighting conditions and they have only a small number of sharp internal
edges� There has been extensive work in modeling the variability caused by a�
viewpoint� b� lighting� c� expression� d� gross individual di�erences like glasses�
facial hair and e� subtle individual characteristics like inter�ocular distance�
shape of nose� etc� which identify each person�

To develop these ideas� I will describe one recent model for face recognition�
which comes from the PhD thesis of Peter Hallinan �Ha��� �Ha��� A quite
similar model has been developed by Cootes� Lanitis and Taylor �L�T�C�� Since
the face as a whole has few edges� Hallinan
s model involves a dense set of
feature points� i�e� the template face will be matched to the observed image
via a di�eomorphism % � D� �� D of the domain of the template D� into
the domain of the image D� On the other hand� to model arbitrary lighting
conditions� let J�p� �� �� be the gray�level image resulting from illuminating the
template face with a spot light from the angle ��� ��� Sampling the face with
N pixels� J gives us a set of points �J��� �� 
 IRN � We then take the principle
components of this cluster in IRN and use the �rst � of them� fJk�p�g��k�	� to
approximate arbitrarily illuminated faces as a linear combination

P	
k
� ckJk�

The �nal probability model is�
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where D% is the Jacobian matrix of the di�eomorphism %� �c is the vector
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Figure ��� Ten eigenfaces� the principle components of the set of images ob�
tained by all possible illuminations of the same face�

of lighting components and � is a scale parameter� The prior here is quite
crude as the distortions typical of rotating the head� changing expression and
changing facial proportions should all be modeled explicitly� We give this
example� however� to show that� in principle� probability models involving
�exible templates and variable illumination can be built� In �gure ��� we give
an example of the warping % and in �gure �� we show the largest principle
components Jk �also known as 	eigenfaces
� for one individual�

What is new in this type of model� Fitting any template� whether it has
a small number of feature points like the eye in �gure �� or a dense set as
in �gure ��� involves computing the pixels where template points are found
in the observed image� these pixels are not intensities or weights or Boolean
values� but are the addresses of other variables� namely the image values I�p��
Thus we have address�valued random variables or pointers as they are called
in programming language theory� A natural way to incorporate such variables
into the framework of Markov random �elds is to imagine that all the edges
of the model are not hard�wired� but some may be chosen 	at run time
� More
formally� imagine a graph G � �V�E� whose vertices V are divided into two
groups V � Vt�Vp� We suppose a random variable Xv is given for each vertex
v� that the value of each variable Xv� v 
 Vt� is a real number while the value
of each variable Xv� v 
 Vp� is a vertex w 
 A�v� for some restricted subset
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ΦΦ Φ

Figure ��� Mixed Markov models for face recognition� on left� the clique for
kD%t �D%� ��k�� on right� the clique for �I � %�

P
ckJk���

A�v� � V given as part of the de�nition� The e�ect of assigning values to the
variables fXvgv�Vp is to augment the graph G by a new set of dynamic edges�
This creates a new graph G�� We call this set up a mixed Markov model� There
seem to be several ways to de�ne Gibbs distributions associated to such mixed
Markov models� One of these is the following 	pull�back
 de�nition�

p�fXt� Xpg� �
�

Z
e
�
P

cliques C in G
EC�fXvjv�Cg�fXwjw
 �Xv�v�C�Vpg�


where �Xv is the value of the variable Xv� This de�nition involves 	pulling back

the random variables referred to dynamically by members of a clique in G� This
model includes the probability model p�� as we show diagramatically in �gure
��� It would be quite interesting to �nd a generalization of the Hammersley�
Cli�ord theorem to mixed Markov models�
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