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1. Introduction

One of the primary goals of low-level vision is to segment the domain D of
an image I into the parts D; on which distinct surface patches, belonging to
distinct objects in the scene, are visible. Although this sometimes requires
high level knowledge about the shape and surface appearance of various
classes of objects, there are many low-level clues about the appearance of the
individual surface patches and the boundaries between them. For example,
the surface patches usually have characteristic albedo patterns, textures,
on them, and these textures often change sharply as you cross a boundary
between two patches. Therefore, one approach to the segmentation problem
has been to try to merge all the low-level clues for splitting and merging
different parts of the domain D and come up with probability measures
p({Di}) of how likely a given segmentation {D;} is on the basis of all
available low-level information, and what is the most likely segmentation.
Alternately, one sets E({D;}) = —log(p({D;})), which one calls the ‘energy’
of the segmentation, and seeks the segmentation with the minimum energy.
In general, these models have two parts: a prior model of possible
scene segmentations, possibly including variables to describe other scene
structures that are relevant (e.g. depth relationships), and a data model of
what images are consistent with this prior model of the scene. If we write
w for the variables used to describe the scene, e.g. the subsets D; or the
set of all their boundary points I, then the prior model is some probability
space (€, p), where Q, is the set of all possible values of w. The model is
specified by giving the probability distribution p(w) on all these values. The
data model is a larger probability space (Quw,d,p), Where Q.4 is the set of

135



136 5. Bayesian Rationale for tke Variational Formulation

all possible values of w and of all possible observed ,images I. This model
is completed by giving the conditional probabilities p(I|w) of any image /
given the scene variables w, resulting in the joint probability distribution:

p(I,w) = p(I|w) - p(w)

The discussion above assumes implicitly that the spaces £, and Qq
are finite, although huge (e.g. the set of byte valued images I on a grid
of size 256x256 has cardinality about 10!5%°%0), In many situations, it is
more convenient to consider images as real-valued functions of continuous
variables, and to consider segmentations as sets of suitable measurable
subsets of D: then more complicated probability spaces are needed, often
using distributions as well as actual functions. We will not worry about
this, as the expressions for the probability densities we use all look like
p = Z~!.p', where p' has a simple limiting expression as the exponential
of an integral and Z is a normalizing constant introduced to make p into
a probability measure. The only problem in the continuous limit is that
Z = oo, hence p — 0. But we can work with p’ in the continuous limit,
knowing that in finite approximations, the normalizing constant Z is finite.
In terms of energy, this means that the E we work with should have an
infinite constant added to it, which, in finite approximations, is finite.
These models are always used in conjunction with Bayes’s theorem, which
factors the joint probability distribution the other way:

pl,w) = p(wll)-p(I)
_ p(w) - p(w)
hence p(w|lI) = —p(l)

o< p(Ilw) - p(w)
The probability of w given the data I is called the posterior probability of

w, and this what we want to calculate. In terms of energy, we can write:

E(w) = -—log(p(w,1))
~ log(p({|w)) - log(p(w))
Ed(la w) I Ep(w)

where the goal is now to minimize E(w). The log of the prior term, E,, is
sometimes called the ‘regularizer’ because it was initially conceived of as a
way to make the variational problem of minimizing Ey; well-posed. In what
follows, it will play a much more central role of measuring how reasonable
each scene model is, lower values being the more common scenes and higher
values the less common ones.
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What we want to do in the rest of this chapter is to present four such energy
models for image analysis of increasing sophistication, which attempt to
capture more and more of the subtleties of actual world scenes. It will be
clear that none of these models captures all the important scene variables
and that this is just the beginning of the exploration of probabilistic models
for low-level vision. For instance, none of these models include explicit
illumination variables, which are often essential to disambiguating scene
structure. Also, we have not included any models of this type which build
on multiple images, i.e. stereo pairs or motion sequences. Multiple images
without a doubt make it infinitely easier to properly segment images (how
many animals understand the content of photographs?). Notable models of
this type are due to Belhumeur [29] and to Weber and Malik [375]. It is
my belief that a robust solution to the general low-level vision problem can
be found using this approach. The main obstacle is to find more effective
and faster ways of estimating the w minimizing E(w) than those presently
available.

Although this energy approach seems on the surface to be totally different
from the non-linear PDE’s investigated in the rest of this book, they are
in fact closely linked to each other. Some of these links can be seen in the
contributions by Mitter and Richardson and by Nordstrom to this book.
Others can be found in Geiger and Yuille’s work [130].

2. Four Probabilistic Models
2.1. The Ising model

This is 2 model which comes directly from statistical physics, where it is used
to describe a two-dimensional crystal of iron atoms subject to an external
magnetic field. It was a very influential model in statistical physics, because
it was the first mathematical model which was rigorously proven to model
phase transitions (for discrete but infinite domains D) [283]. In vision, it
models images which are made up of a set of white blobs against a dark
background (or vice versa) and where one seeks to describe the white blobs
by an auxiliary binary image, or, equivalently, by a subset S C D.

The prior model is very simple: we ask that .S consists of a small number
of compact blobs, i.e. that the length of the perimeter of S is as small as
possible. More precisely, define dS as the boundary of S: in the discrete
case, this is the set of pairs of horizontally or vertically adjacent pixels
(@, B), one of which is in S and the other of which is not. In the continuous
case, this is set of points (z,y) which are in the closure of S and D - S.
Define |3S] as the cardinality of 85 in the discrete case and as the length
(= 1-dimensional Hausdorff measure) of S in the continuous case. Then the
prior model is determined by setting E,(S) = v|8S|: this means that the
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shorter the perimeter of S, the more likely S is to be the model of the scene.
Let xs be the characteristic function of S, and let I be the observed image.
The blobs are supposed to be characterized by being more or less bright
compared to the background. However, we assume that the intensity of
neither the blobs nor the background is uniform, but that it fluctuates
randomly and is corrupted by many kinds of noise. If the image were
simpler, we could recover S by simply thresholding I. However, if there is a
substantial amount of noise present, no matter what threshold is chosen, we
may find not § but S with lots of extra specks and hairs, minus small holes
and cracks. This is exactly what the model seeks to correct. Assume for
simplicity that on the blobs S the image I tends to have values bigger than
0.5 and that on the background, the image has values less than 0.5. (The
data model can be modified for other thresholds: the original Ising model
used 0). Then the data model is given by Ey(I,S) = ¢ [fp(I— xs)*dZ. This
is equivalent to assuming that / = xs +m, where n is white noise.

We may summarize the model by:

w = §ScCcD
E, = v|os|
Eq uf [p(d — xs)*dZ, xs = char.function of §

In figure 5.1, we have illustrated this model by an image I consisting of a
scene with a cow, tree and foreground in deep shade against a background
of the sky and more distant parts of the scene. The figure shows both the
original scene and the binary image given by the Ising model optimal S (for
suitable v, 1),

2.2, The Cartoon Model

The cartoon model is the model which has been most used in vision. It was
invented in the discrefe case, independently by S. and D. Geman in their
influential paper [132] and by A. Blake and A. Zisserman (34]. J.Shah and I
then investigated the corresponding continuous model in [264]. In fact, the
variational problem of minimizing energy functionals of this continuous kind
had also been independently invented by De Giorgi and his school at about
the same time in modeling materials with 2 phases and a free interface [83].
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Figure 5.1. A scene with a cow and trees, and its Ising model results.

Instead of assuming that there exists a binary segmentation of the image
into contrasting light and dark regions, in this model we assume that
the real world scene consists of a set of shaded regions within which the
intensity changes slowly, but across the boundaries between them, the
intensity changes, in general abruptly. Thus what we want to infer is not
the set S of light (or dark) foreground regions, but a cartoon consisting
of a simplified noiseless version J of I. The cartoon has a curve I' of
discontinuities, but everywhere else is assumed to have small gradient ||VJ||.
Thle prior model can be built up by starting with the Ising model prior of I':
E,(, )(I‘) = v|I'|. We then put a prior on J by asking that its gradient be small:
E,(,z)(J, ) = ffp_r ¥(lIVJ||)dZ, where ¢ is some convex even function. The
standard choice is ¥(z) = «2, but ¢(z) = |z| is also very interesting and
should be more investigated. The full prior is E, = E,(,l) + E,(,2). The data
model is again essentially the same as for the Ising model, except that
instead of assuming I = xs+n, where n is white noise, we assume I = J+n.
This gives Eq = [fp(I — J)?dZ. We may summarize this model by saying
that we seek to approximate an arbitrary function / by a piecewise smooth
function J so that three things are kept as small as possible: i) the difference
between I and J, ii) the gradient of J where it is smooth and iii) the length
of the curve I where J has discontinuities.

In the case where D is discrete, it is always obvious that any energy
functional like our E has a minimum, because we are minimizing over a
finite set of possible I' and the functional is continuous in the values of
J, and goes to infinity if any of the values of J goes to infinity (i.e. it is
‘proper’ as a function of J). However, if D is continuous, it is not at all clear
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that E has a minimum in any sense. This is referred to as asking whether
the variational problem associated to E is ‘well-posed’ or not. This was an
open question in [264]. A so-called ‘weak solution’ was given by Ambrosio
[10) where the cartoon J was allowed to be a very nasty sort of function,
however: a so-called ‘Special Bounded Variation’ function. A first step in
showing this weak solution was not horrendous consisted in proving that I'
was closed, see [83]. Shah and I conjecture that at minima of E, the curve
I' consists in a finite set of C! arcs (possibly with cusps at the ends of
branches which terminate) but this is unproven: a survey of the theory of
this functional is given in the chapter by Leaci and Solimini in this book.
The computer scientist might be tempted to say: what do I care about the
continuous case and the subtle estimates mathematicians require to prove
that problems like min E are well-posed. The remarkable thing is that the
estimates used in establishing the existence of well behaved solutions are
exactly the same as the estimates which enable the engineer who wants to
use the discrete model to be sure that his minima behave predictably: that
this finite model doesn’t produce artifacts or perceptually meaningless zigs
and zags dependent on small details of how the problem is discretized.

In the discrete case, the functional E can be re-written in a suggestive way.

The simplest form of the term E,(,2) in the discrete case is
E= ¥ w(e)- @)
adj. pixels o8

Then it is easily seen that at a minimum of E(J,T'), I cuts an adjacent pair
of pixels a, 8 if and only if ¥(J(a) — J(B)) > v. Thus if we define

Y(z) = min(¥(z),v), (5.1)

EAN = Y WU@-J@B) and (5.2)
adj.pixels

E'(J) = EiJ)+EPW) (5.3)

we find that
m[in E(J,T) = E'(J).

This form enabled Blake and Zisserman [34] to analyze many properties of
E, and to approximate E’ by a third functional in which ¢’ was replaced by
a smooth " which, even though not convex itself, made E” convex! They
use this as a basis for a continuation method of getting good local minima
of the original functional E.

To carry over this approach in the continuous case, however, requires that
we modify the variable I, replacing it by a ‘line process’ ¢(z,y) which is a

Mumford 141

smooth function with values in {0, 1], mostly zero but climbing to one along
I'. One then replaces E(J,I') with

E(J,0) =Ed(J)+//D(1—£)¢(||VJ||)di‘+//D¢c(£)d5:‘

for suitable ¢.. Such ¢. are described in the chapter by Mitter and
Richardson in this book, where they also give theorems on when these
functionals approximate the original F(J,I'). This approach seems very
useful because it offers a way of taming the wildness inherent in having
T itself as a variable.

In a nutshell, here is the cartoon model:

w = (@)
By = [ fpr$(IVJINdE + Tl
By = [[p(I-J)ds

In figure 5.2, we give an illustration of this model applied to a close-up
of Marilyn Monroe’s eye. The original eye is shown on the left, then the
cartoon J and finally the contours I'.

Figure 5.2. An image of the eye and its final cartoon and boundary, produced by
graduated nonconvexity algorithm.

2.3. The Theater Wing Model

Although the model in the previous section is attractive and interesting from
a mathematical point of view, it unfortunately is very crude as a model of
image segmentations. One of its problems is that where 3 domains D; meet
at a point P, so that the boundary I' has a singular point with 3 branches
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meeting at P, the branches will meet at 120° angles. This is because locally
the effect of ] is very weak and I' behaves like soap bubbles do when 3 sheets
meet: they form 120° angles. In images, on the contrary, 3 domains meeting
usually means that the edge of a foreground object cuts across the edge of
a more distant object. This gives instead a “T-junction” on I': T' consists
locally of a smooth curve T'; through P with a second smooth branch I';
ending at P. These singularities are not only typical of real world images,
but they are very powerful psychological clues to depth relations, as the
Gestalt school of psychology and especially Kanisza [172] discovered.

The problem is that we have not included even qualitative depth information
in our model variables {w} and occlusion edges in the real world are
inherently asymmetrical, having a nearer and a farther side. (Nakayama
refers to this by saying that an edge ‘belongs’ to one of its sides.) In the
previous model, no region is considered foreground nor any background.
Working with Mark Nitzberg [270], we sought a model which was a
reasonable first step in modeling sets of regions occluding each other.
This model goes back to the Ising model assumption that the individual
regions have more or less uniform brightness, but it now assumes they
are ordered in depth, and one region can vanish behind another, only
to reappear elsewhere. The regions cannot change their depth relations
however, interweaving like wicker chairs, nor can a region circle round and
occlude itself (like your palm when you bend your thumb over it). This is
why we called it the ‘theatre wing model’.

The basic variable for this model is a sequence of regions Dy, Da,-+, Dy in
D, which is ordered, where D; represents the parts of the domain D where
object i would be visible if all closer objects were removed. The ordering
represents depth: object 1 is nearest, object 2 is behind it, object 3 behind
both, etc., while object k, called the background and assumed equal to
D, is most distant. What is the prior model here? Since we assume all
singularities of [ come from T-junctions where one occluding boundary
interrupts another, we can now assume all D; have smooth boundaries and
include not only the length but the curvature of 8D; into the prior. Thus our
model asks for a small number of regions D; with short smooth boundaries.
In some cases, it turned out that we also needed to ask that their areas not
be too big either, so the final prior we chose was Ep = 3 (fpp, ¥(xi)ds +
eArea(D;)). Here a typical choice is ¥(z) = a + bz?.

The data model assumes that the intensity of each region is more or less
uniform, but that its mean intensity may be anything. This leads us to
Eq =Y [fp:(I — m;i)?, where D! is the visible part of D;, i.e. D; minus the
parts D.-nD} occluded by nearer parts j < ¢, and where m, is the mean value
of I on this visible part (we have no way of knowing what is the brightness
of the occluded parts of D;!). In summary:
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w = {DlsDZ""\Dk}=I)|
E, = ¥ [5p, ¥(ki)ds + e} Area(D;), ki = curvature(dD;)
Ei = X[ [p(I-meanpy(D)2dF,  Di=D; - UjciD;

In figure 5.3 we show an example of this model. The image I depicts
a beer bottle, an orange and a potato occluding each other. The figure
shows how the theory correctly reconstructs their occlusion relations and
gives its best shot at guessing how their contours continue behind each
other. It might be thought that this kind of wild reconstruction of occluded
contours is irrelevant to the interpretation of the scene. But curiously,
extensive experiments by the Gestalt school of psychologists and more
recently by Nakayama and his collaborators have shown that people very
frequently make exactly such reconstructions, sometimes choosing one of
several reasonable ‘amodal’ contours for seemingly unaccountable reasons.
If people do it, it may not be absurd for computers to do it too.

Figure 5.9. Still Life and its 2.1-D sketch.

2.4. The Spectrogram Model

So far our models have had one glaring omission: they have assumed that
all visible surface patches have intensities which are slowly varying plus
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we seek a smooth spatial frequency description J (5,5 of the signal on (D -

I') x D. The prior model is just like that of the cartoon: terms for the length

of I' and for the gradient (now 4-dimensional) of J. The data model has an

important subtlety: one of the problems which bedevil texture segmentation
is that spectral filters whose support overlaps the correct boundary between
2 quite distinct textures give erratic responses as a result of the partial fields
visible in each texture. Thus J should not be compared with P([) for such
fields. For the windowed Fourier transform, this will be a strip around I’
of fixed size; for the wavelet transform, this is rather a shadow cast by T
from high frequencies, i.e. at high frequencies, the window is smaller and the
data can be modeled very close to T, while at low frequencies, the window
grows and the strip of mixed responses grows. In either case, call S(I") the
set of points of D x D for which the corresponding filter overlaps I'. Then

the model can be summarized by:

w = (J(EET) .
B, = [J{fip-ryxn¥(IVaJll, ||V5‘J||)_‘ffdf +v|T|
E; = [[[Jfipxp)-sm (P(I) - J)?dzdf, P=local spectral power

In figure 5.4, we show an example of this model for a lady with scarf: note
how it finds most of the edges where the scarf has folds causing a break in
texture statistics, but that it treats as uniform the slow changes where the
scarf bends around her head. It should be noted that the figure probably
does not present the minimizing I" for this figure: rather it shows the best T’
found by either the Geman's annealing algorithm or Blake and Zisserman's
continuation algorithm. I expect that the model will give even better results
when a more effective optimizing technique is devised for energy fu nctionals
like this one.

I would also like to mention that this model should be quite interesting for
speech. In speech, we have a function I(¢) of time, which gives us a time-
frequency local power descriptor P([)(t,w). Speech naturally breaks up into
phonemes each with a typical power spectrum, This power spectrum changes
slowly during a phoneme and changes rapidly when one phoneme succeeds
another. Thus a model like that just given provides a method of segmenting
speech without the detailed modeling of each individual phoneme required

by the standard ‘HMM?’ approach to speech.
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Figure 5.4. Lady with a scarf and the segmentation boundary.
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