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We prove that every planar graph on n vertices is contained in a chordal graph 
with at most cn log n edges for some abolsute constant c and this is best possible 
to within a constant factor. 	© 1994 Academic Press, Inc. 

1. INTRODUCTION 

A graph is said to be chordal if every cycle with at least four vertices 
always contains a chord. (A chordal graph is sometimes called a 
triangulated graph in the literature. For graph-theoretical terminology, the 
reader is referred to [4].) A chordal completion of a graph G is a chordal 
graph with the same vertex set as G which contains all edges of G. The 
problem of interest is to find for a given graph a chordal completion with 
as few edges as possible. Also, it is desirable to have a chordal completion 
with small maximum degree. These problems are motivated by applications 
in computer vision and artificial intelligence (for further discussion see 
Section 6). We will prove the following. 

THEOREM 1. Every planar graph on n vertices has a chordal completion 
with cn log n edges for some absolute constant c. 

We remark that there is an 0(n log n) algorithm for constructing a 
chordal completion of a planar graph. Also, we note that Theorem I is best 
possible to within a constant factor by considering the n by n grid graph, 
denoted by L,, which has vertex set 

17(L„)-= 
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and edges joining: 

(i,j) to (i + 1, j), 	oi < n, 0 	n, 

(i,j)to (i,j+ 1), 

THEOREM 2. A chordal completion of the n by n grid L, must contain at 
least cn2  log n edges for some constant c. Furthermore, there is a chordal 
completion of L„ with at most 7.75n2  log n edges. 

Throughout this paper, all logarithms are to the base 2. The proof of 
Theorem 2 is mainly due to Paul Seymour. 

THEOREM 3. A chordal completion of the n by n grid graph must contain 
a clique of size cn for some absolute constant c. 

Consequently, a chordal completion of the n by n grid graph must 
contain a vertex of degree at least cn. 

This paper is organized as follows: Planar separator theorems are used 
to prove Theorem 1 in Section 2. Section 3 contains the proof of 
Theorem 2. Theorem 3 is proved in Section 4 by using the treewidth of 
graphs. We extend and generalize Theorem 1 to several families of graphs 
and random graphs in Section 5. Motivations and applications are 
discussed in Section 6. 

2. SEPARATORS AND CHORDAL COMPLETIONS 

In a graph G, a subset S of vertices is said to be a separator if V(G) — S 
can be partitioned into two parts A and B satisfying the conditions: 

(i) There is no edge joining a vertex in A and a vertex in B. 

(ii) The ratio of IA and 1BI is between z  and 2. 

The separator S is also called a bisector if (ii) is replaced by 

(ii') 	IA I = IBI. 

Tarjan and Lipton [12] proved the following theorem: 

THEOREM A. A planar graph on n vertices has a bisector of size at most 
Co  n. 

The constant Co  in the original bisector theorem was 2 /2/(1 ,/2/3) 
15.413. It was later [7] improved to 3 6 7.348. Also, there is a linear 

algorithm for finding a bisector of size 0( n) in a planar graph. 
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To prove Theorem 1, we need the following lemma. 

LEMMA. Let G be a graph and suppose that its vertices are subdivided 
into three disjoint parts V(G)= V, u Su V2. Assume: 

(i) S is a clique, 

(ii) V, and V2  are not connected by any edge, 

(iii) Vk  u S is chordal for k= 1, 2. 

Then G is chordal. 

The proof of the lemma is immediate: take a cycle C in G. If 
C c ( V, u S), C has a chord; if neither holds, C contains vertices v1  e V1 , 
v 2  E V 2, and because V, and V 2  are not connected directly, C must cross 
S twice 	hence it has a chord. 

Proof of Theorem 1. We use repeatedly the process of taking a graph 
G and a subset S c V(G) and adding all edges between vertices in S, 
making S into a clique. We denote the enlarged graph by G/s. Using this 
concept, what we actually show is the stronger result 

If G is a planar graph with n vertices and He V(G) has m ver- 
tices in it, then G/i., has a chordal completion G,„ with at most 

f(n, m)= C ,nlog(n) + C2 M 	C3 M 2 	(*) 

edges. Here C1 , C2, and C3  are universal constants. 

To prove (*), we use the bisector theorem on G, writing V(G)= 
V, u Su V2, where 171 1=1V2( and I SI Co  ji and S separates V 1  from 
V2. Let Gk — Vk U S, Hk = (H n V k )u S and mk  = n Vk  for k = 1, 2. 
Now use chordal completions (Gk )/„,, of (Gk ) /„, satisfying (*) and construct 

G/H by 

E(O H ) = E((d 010 u  E((d 2)1,12)u ((H n V1) x (Hn V2 )). 

This graph is chordal; in fact, the subgraph of 6,,„ on the vertices: 

(V,— Hn V ,)L.) (Hl ) u (Hn V2 ) 

is chordal by the lemma applied to the three subsets in parentheses. 
Likewise, the subgraph on 

(H n V ,)u (H2)u (V2 — H2  n V2 ) 

is chordal. Apply the lemma again for the three-way decomposition 

V(G)= (V,— H n V ,)u (S u H)u (V2 — H n V2) 
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and the full graph ,„ is chordal. Using this completion of G/„, we obtain 
the bound: 

	

f(n, m) f (-
2 

+ Co 	m 1 + Co  ji) 

	

+f  in ± 	
n, m 2 + Co  Ti) + mi m2. 

For any n, we can always make the theorem hold for graphs G with 
n < no  by making C, sufficiently large. Assuming this has been done, we 
can make an induction for n no ; hence we may assume that (*) holds 
for the two smaller graphs. We assume, in particular, that no ?... 864 so 
that the constant Co  = 1 + (2C01 no) Z. Moreover, take C3  = 0.5. Then 
substituting and simplifying: 

f(n, 	log(n) + 6 	C1  ft; log(n) 

+ 	C2  + 3 ,/-6) 	m + 0.5m2  

+ (log(0.75) C, + 9 -12 C2  + 54)n. 

In order that the right-hand side is bounded by C i n log(n) + 
C2m n + 0.5m2, we first take C2  12 .16 + 18 	e.g., C2  = 55, and we 
obtain 

f(n, in) C log(n) + C2 N/171 	0.5m2  

	

+ ((log(0.75) + 6 N/6log(no) 
	

+ 9 	C2 + 54) n. 
/ no  

If no  is big enough, the coefficient of C1  is negative, hence if C1  is large 
enough, the last term can be dropped and the estimate now follows by 
induction. This completes the proof of Theorem 1. 

3. THE CHORDAL COMPLETIONS OF GRID GRAPHS 

Although the construction of a chordal graph for the grid graph follows 
from the proof of Theorem 1, we here derive a slightly improved upper 
bound because grid graphs are useful for various applications (see 
Section 6). 

We consider the a x b grid graph, denoted by Lab , with vertex set: 

V(Lab )= {(i, j) : 0 	c, a, 0 
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and edges joining: 

(i, j)to (i+ 1,j), 

(i,j)to (i,j+ 1), 

The boundary of Lab consists of all vertices (i, j) with i = 0, a or j = 0, b. 
Instead of considering the chordal completion of Lab, we examine the 

chordal completion of the graph L„, which is formed from Lab by making 
the boundary of Lab into a clique, i.e., by adding all edges joining any two 
vertices in the boundary of Lab. Clearly, a chordal completion of Lab is also 
a chordal completion of Lab. 

We now construct Lab, which will later be proved to be a chordal 
completion of Lab, by combining the chordal completions of two 
subgraphs. f(a, b) will denote the number of edges in Lab. We assume 
without loss of generality that a b, and begin by dividing Lab along the 
"b-axis" into two grid graphs with sizes as equal as possible. The graph Lab  
includes all edges which appear in the chordal completions of the two 
halves of Lab plus the edges in Lab. It is easy to check that, starting from 
the edges in chordal completions of the smaller graphs, adding the edges 
connecting the boundaries of the two pieces and substracting the edges 
counted twice in their common boundary, the number of edges of Lab, 
denoted by f(a, b) satisfies 

f (a, b)--<.,f (a,L
2
]) +f (a,[

2
1) + (a + b — 1)2  — (b mod 2) — (

a +1
). 

To construct the completions of the two pieces, now repeat this construc-
tion, but now subdividing the two pieces La _ bi,i  and Lad-b/21  along the 
"a-axis." With a little calculation this gives us 

f(a, b) 
f  (Lad, W) +f([2/ (2b1) 

 +f([ 1, Lbd) 

+f  ([21,  [21) 

+3(a — 1)2  + 4b(a —1) + —23  b2  (a +2  1)— (W2+ 1)— ([112+ 1) 

([3 Lb21) +f  (Lad,  [b21)+f  (rad,  [b2])+f  ([a21,  11) 

5 	5 	13 	9 
+ -

2
- a2  + 4ab + 

4 
— b 2  — 

2  
a —

2 
 b + 3 

The construction continues in this way, subdividing alternately along the 
a and b axes, until a = 1. In this case, the chordal completion is just one 
clique on 2b + 2 vertices, so that 

f(1, b)=-2b2  +3b + 1. 
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It is now easy to prove by induction that 

f(a, 	+ 4ab + ib2)- (log(a)+ 2) 

(handling the four cases a, b even/odd cases carefully.) In particular, for 
n= a = b, we have 

f(n) = f(n, n) 5 7.75n 2(log(n) + 2). 

It remains to prove by induction that Lab  is chordal. Suppose that La b 
is chordal for all a' < a and b' < b. By construction, Lab  is the union of the 
two such smaller chordal graphs, which we denote Q1  and Q 2 , plus edges 
making the original boundary B of Lab  into a clique. Note that in fact 
B* = B v (Q 1  n Q2 ) is a clique in Lab . Now let C denote a cycle in Lab . If 
the vertices of C are entirely contained in B*, it has a chord. If not, C 
contains a vertex in the interior of one of the two subgraphs Q, or Q 2 ; 
suppose it contains v e Int(Q,). If C is entirely contained in Q 1 , it again has 
a chord since Q, is chordal. If not, then it contains some vertex in Q 2 — Q1. 
Let w1  and w2  be the last vertices to the left and right of v on C which are 
in Q1 . These vertices must be on the boundary of Q1 , hence they form a 
chord of C in Lab . Thus every cycle C has a chord. 

To complete the proof of Theorem 2, we consider a chordal completion 
of L,,, which is denoted by Ln. We want to show that L, has at least 
cn2  log n edges. In Ln, there are n2  four cycles each must contain a chord 
in La  and therefore there is a trivial lower bound of n2  for the number 
e(Ln ) of edges in Ln . An edge in La  is said to be k-long if it joins two 
vertices (i, j) and (i', j'), where i— = k or 	= k. We need the 
following useful fact: 

Suppose a cycle C is the boundary of a k-square (isomorphic 
to Lk ) in L,,. Then C contains a chord in La  which is k-long. 	(*) 

Proof of (*). Consider the graph R consisting of C and its chords. Let 
C' denote the minimum cycle in R with the property that C' contains a ver-
tex from each side of C. If C' contains only three vertices, it is easy to see 
that C contains a k-long chord. Suppose C' contains at least four vertices. 
Since La  is chordal, C' must contain a chord {x, y}. Suppose the chord 
Ix, y} is not k-long, vertices x and y must belong to adjacent sides of C. 
We can then form a shorter cycle using the edge Ix, y} and parts of C', 
from y to x. This contradicts the fact that C' is minimal. Therefore {x, y} 
must be k-long and (*) is proved. 

Now there are (n — k + 1)2  different k-squares in L,,. Each k-square 
contains a chord k-long. On the other hand, each edge which is k-long can 
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be a chord of at most (k + 1) k-squares. Therefore in in  there are at least 
(n — k + 1)21(k + 1) edges which are k-long. We then have 

+ 
n (n —kk +11)2  

e(Ln)  E 
	

n2  log n — 2n 2. 
k =1 

Theorem 2 is proved. 

4. THE MAXIMUM DEGREE IN CHORDAL COMPLETIONS 

Before we proceed to prove Theorem 3, we first state a well-known 
characterization of chordal graphs (see [5, 8, 18]). 

THEOREM B. For a chordal graph G, there is a tree H so that each vertex 
of G corresponds to a subtree in H and two vertices are adjacent in G if and 
only if the corresponding subtrees in H have nontrivial intersection. 

The treewidth of a graph G is defined as follows: A family 	of subsets 
of vertices is said to be a tree-covering of G if 	satisfies the following 
conditions: 

(i) The union of subsets F in g-% is the vertex set V(G). 

(ii) Members of gr.  are indexed by vertices of some tree T. 

(iii) Suppose a vertex v is in both Fa  and Fb, where Fa, Fb  e 9".". . Then 
✓ is in every F, if c is in the path of T joining a and b. 

(iv) If u is adjacent to v in G, then there is a F, in g7.  containing both 
u and v. 

For each tree-covering 	of G, the width of 	is just the maximum size 
of F in 	The tree-width of G is defined to be the minimum width over 
all tree-coverings of G. The following result can be found in [16]. 

THEOREM C. The n by n grid graph has treewidth at least cn. 

We are now ready to prove Theorem 3. 

Proof of Theorem 3. Let in  denote a chordal completion of the grid 
graph L,. By Theorem B, there is a tree H so that each vertex v of L„ 
corresponds to a subtree Ty in H. For each vertex w of H, we define F„, to 
be the set of all v in L„ so that T, contains w. Two vertices u and v are 
adjacent in L, if and only if F„ and F, have nontrivial intersection. It is 
straightforward to verify that {Fw : w E H} satisfies (i) to (iv) and is a tree-
covering of Ln. By Theorem C, one of the F,:s must contain at least cn 
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vertices in L. In addition, any two vertices u and v in F„, correspond to 
trees Tu  and Tv  with nontrivial intersection (including w). Therefore, by 
Theorem B, u and v are adjacent in Lu  and Lu  has a clique of size at least 
cn. Theorem 3 is proved. 

5. CHORDAL COMPLETIONS FOR OTHER TYPES OF GRAPHS 

A family ,F° of graphs is called a closed family if for every G in 	by 
removing one vertex and its incident edges the remaining graph is also in 

A family 	of graphs is said to have a bisector function f if Y.--; is closed 
and every graph G in 	with n vertices has a bisector f(n). For example, 

the family of planar graphs has a bisector function 3 	n. We can now 
generalize Theorem 1 as follows. 

THEOREM 4. Suppose a family ,°"17  of graphs has a bisector function f(n) 
= cn" for fixed positive values c and a. Then every graph in ,97  on n vertices 
has a chordal completion with c i n log n edges if a =1-; with c2n 2a edges if 
a> and with ca n edges if a <1, where constants c,, c2, c, depend only 
on c. 

Proof The proof is quite similar to that of Theorem 1 except that the 
number e(n) of edges satisfies the recurrence inequality, 

e(n),<.,2e(n12 + cn") + c2n2a. 

Of special interest is the case for graphs with bounded genus. 

THEOREM 5. A graph of genus g has a chordal completion with 
c 	n log n edges. 

Proof This follows from the above theorem and the fact that a graph 
of genus g has a separator of size c g  n (see [10]). 

THEOREM 6. A graph with n vertices and with no Kh-minor has a choral 
completion with ch312n log n edges. 

Theorem 7 is a direct consequence of the fact that a graph with no minor 
Kh has a separator of size h312  ji see [1]). 

P. Erdos first raised the question, how large is a chordal completion of 
a random graph on n vertices with edge density k/n for some fixed k (or 
random k-regular graphs). The reader is referred to [4] for models of 
random graphs or random regular graphs. For example, "A random graph 
has property P" means that "a graph on n nodes satisfy property P with 
probability approaches one when n approaches infinity." In particular, we 
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consider random graphs with edge density k/n (i.e., each unordered pair is 
an edge with probability k/n). 

THEOREM 7. A chordal completion of a random graph with edge density 
k/n for fixed k has cn2  edges. In fact it contains a complete subgraph on c'n 
vertices. 

Proof This follows from the following two facts: 

Fact 1. A random graph with edge density k/n for fixed k has a 
separator at least c,n. 

Fact 2. A graph with threewidth k has a separator of size k. 

Fact 1 can be easily proved by standard probabilistic methods [2] and 
Fact 2 can be found in [15]. These two facts imply that a random graph 
with edge density k/n has treewidth c2n and therefore by Theorems A and 
B, its chordal completion contains a complete subgraph of c2 n2/2 edges. 

6. MOTIVATIONS AND APPLICATIONS 

Increasingly, artificial intelligence has turned to the theory of Bayesian 
statistics to provide a solid theoretical foundation and a source of useful 
algorithms for reasoning about the world in conditions of uncertain and 
incomplete information. This is true both in familiar high-level applica-
tions, such as medical expert systems, and in low-level applications such as 
speed recognition and computer vision (see [13] for an overview, [11] for 
medical applications, [14] for speech, [9] for vision). However, all serious 
applications demand probability spaces with thousands of random 
variables, and some simplification is required before you can even write 
down probability distributions in such spaces. The reason this approach is 
even partially tractable is that one assumes that there are many pairs of 
random variables which are conditionally independent, given various other 
variables. One extremely useful way to describe this sort of probability 
space is based on graph theory: one assumes that a graph G is given, whose 
vertices V(G) correspond to the random variables in the application and 
whose edges E(G) denote pairs of variables which directly affect each other. 
What this means is that if v, W E V(G), S c V(G), and every path from v to 
w crosses S, then the corresponding variables Xv , X,„ are conditionally 
independent given X. As is well known, this assumption implies that the 
probability distribution has the Gibbes form: 

e — EC EC({XK } C) 

Pr(X) 
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where C runs over the cliques of G, E, is a measure of the likelihood of the 
simultaneous values of the variables in the clique C, and Z is a normalizing 
constant. 

A typical problem in this setting is to find the maximum likelihood 
estimate of the variables X, i.e., the minimum of the so-called energy 

E(k)=1E„,({X,,}„,„-). 

Unfortunately, minimizing such complex functions of huge numbers of 
variables is not an easy task. One situation in which the minimum can be 
quickly and accurately computed is that studied in dynamic program-
ming [3]. This is the case where the variables can be ordered in such a way 
that X, is conditionally independent of all but a few of the previous Xi's, 
given the values of these few. A Markov chain is the simplest example of 
this, and this approach, under the name of the Viterbi algorithm, 
dominates research in speech recognition. However, it has turned out that 
modifications of the dynamic programming perspective are much more 
widely applicable [11]. In [11], the authors propose using a chordal 
completion G of a given graph G. If the cliques in G are not too large, one 
can carry out a variant of dynamic programming for Gibbs fields based on 
G and compute essentially all marginal and conditional probabilities of 
interest. 

In computer vision, one seeks to analyze a two-dimensional signal, 
finding first edges and areas of homogeneous texture, second, using these 
to segment the domain of the signal, and third, identifying particular 
regions resulting from the play of light and shadow on known types of 
objects such as faces. The random variables that arise in this analysis are 
first, 	the light intensity measured by a receptor at a position (i, j) of the 
camera's or eye's focal plane, second, "line processes" lu  indicating an edge 
separating adjacent "pixels" (i, j) and (i, j+ 1) or (i + 1, j), and many 
higher level variables. What interests us is that the measured variables are 
parametrized by points of a lattice and that the structure which one 
calculates are found by examining local interactions of these variables. In 
fact, even a high level variable like the presence of a face is linked to local 
areas of the image, rather than the whole image, because a face will usually 
be a subset of the image domain and its presence is more or less inde-
pendent of the scene in the background. What this means is that the cliques 
of the graph involve local areas in the lattice and do not require long range 
interaction of the pixel values I,J . The simplest example of such a graph is 
the simple n by n grid graph Ln . In order to apply a dynamic programming-
like algorithm to computing the ML estimate, we would like to know how 
big are the chordal completions of graphs of this sort, how many edges do 
they have, and what are their degrees? 
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In previous sections, we answer these problems for grid graphs and 
planar graphs. Unfortunately for the application to computer vision, the 
lower bounds on the size of the chordal completions of grids are still too 
big to make use of dynamic programming or its invariants practical in 
vision: typical values of n are 100 or more and probability tables for the 
values of 100 random variables are quite impractical. However, the 
construction given above for a chordal completion of L, is strongly 
reminiscent of the approach to vision problems called "pyramid algo-
rithms" [17], e.g., wavelet expansions [6]. This link is interesting to 
explore. 
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