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I. Introduction 

The term "Pattern Theory" was introduced by Ulf Grenander in the 70s as 
a name for a field of applied mathematics which gave a theoretical setting 
for a large number of related ideas, techniques and results from fields such as 
computer vision, speech recognition, image and acoustic signal processing, 
pattern recognition and its statistical side, neural nets and parts of artificial 
intelligence (see [Grenander 76-81]). When I first began to study computer 
vision about ten years ago, I read parts of this book but did not really 
understand his insight. However, as I worked in the field, every time I 
felt I saw what was going on in a broader perspective or saw sonic theme 
which seemed to pull together the field as a whole, it turned out that this 
theme was part of what Grenander called pattern theory. It seems to me 
now that this is the right framework for these areas, and, as these fields 
have been growing explosively, the time is ripe for making an attempt to 
reexamine recent progress and try to make the ideas behind this unification 
better known. This article presents pattern theory from my point of view, 
which may be somewhat narrower than Grenander's, updated with recent 
examples involving interesting new mathematics. I want to define pattern 

theory as: 

the analysis of the patterns generated by the world in any modality, 
with all their naturally occurring complexity and ambiguity, with 
the goal of reconstructing the processes, objects and events that 

produced them. 

Thus vision usually refers to the analysis of patterns detected in the 
electromagnetic signals of wavelengths 400-700 nm. incident at a point 
in space from different directions. Hearing refers to the analysis of the 
patterns present in the oscillations of 60-20,000 hertz in air pressure at 
a point in space as a function of time, both with and without human 
language. We may also say that medical expert systems are concerned with 
the analysis of the patterns in the symptoms, history and tests presented 
by a patient: this is a higher level modality, but still one in which the world 
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generates confusing but structured data from which a doctor seeks to infer 

hidden processes and events. Touch, especially in conjunction with active 
motor control, either in an animal or robot, is yet another such channel. 

Let me give two examples to help fix ideas. Figure 1 shows the graph 

of the pressure p(t) while the word "SKI" is being pronounced. Note how 
the signal shows four distinct wave forms: something close to white noise 
during the pronunciation of the sibilant "S" , then silence followed by a 
burst which conveys the plosive "K", then an extended nearly musical note 
for the vowel "I". The latter has a fundamental frequency corresponding to 
the vibration of the vocal cords, with many harmonics whose power peeks 
around three higher frequencies, the formants. Finally, the amplitude of 
the whole is modulated during the pronunciation of the word. 

1 00  m s 
	1 

I 	Ii  
Figure 1. Acoustic waveform for an utterance of the word SKI 

In this example, the goal of perceptual signal processing is to identify 
these four wave forms, characterize each in terms of its frequency power 
spectrum, its frequency and amplitude modulation, and then, drawing on 
a memory of speech sounds, identify each wave form as being produced by 
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the corresponding configurations of the speaker's vocal tract, and finally, 
label each with its identity as an English phoneme. In addition, one would 
like to describe explicitly the stress, pitch and quality of the speaker's voice, 
using this later to help disambiguate the identity of the speaker and the 
intent of the utterance. 

Figure 2a shows the graph of the light intensity I(x,y) of a picture of 
a human eye: it would be hard to recognize this as an eye, but the black 
and white image defined by the same function is shown in Figure 2b. 

Figure 2a. Visual waveform for an image of an eye 

Note again how the domain of the signal is naturally decomposed into 
regions where I has different values or different spatial frequency behavior: 
the pupil, the iris, the whites of the eyes, the lashes, eyebrows and skin. The 
goal of perceptual signal processing is again to describe this function of two 
variables as being built up from simpler signals on subdomains on which 
it either varies slowly or is statistically regular, i.e., approximately station-
ary. These statistics may be its spatial power spectrum or a method of 
generation from elementary units called textons by repetition with various 
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Figure 2b. Identical waveform presented using variable intensity 

modifications. These modifications in particular include spatial distortion, 
contrast modulation and interaction with larger scale structures. This de-
scription of the signal may be computed either prior to or concurrent with 
a comparison of the signal with remembered eye shapes, which include a 
description of the expected range of variation of eyes, specific descriptions 
of the eyes of well-known people, and so on. 

In order to understand what the field of pattern theory is all about, it is 
necessary to begin by addressing a major misconception, namely, that the 
whole problem is essentially trivial. The history of computer speech and 
image recognition projects, like the history of AI, is a long one of ambitious 
projects which attained their goals with carefully tailored artificial input 
but which failed as soon as more of the complexities of real world data 
were present. The source of this misconception, I believe, is our subjective 
impression of perceiving instantaneously and effortlessly the significance of 
the patterns in a signal, e.g. the word being spoken or which face is being 
seen. 

Many psychological experiments, however, have shown that what we 
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perceive is not the true sensory signal, but a rational reconstruction of 
what the signal should be. This means that the messy ambiguous raw 
signal never makes it to our consciousness but gets overlaid with a clearly 
and precisely patterned version whose computation demands extensive use 
of memories, expectations and logic. An example of how misleading our 
impressions are is shown in Figure 3 below. 

Figure 3. A challenging image for computers to recognize 

The reader will instantly recognize that it is an image of an old man 
sitting on a park bench. But ask yourself — how did you know that? His 
face is almost totally obscure, with his hand merging with his nose; the most 
distinct shape is that of his hat, which by itself could be almost anything; 
even his jacket merges in many places with the background because of its 
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creases and the way light strikes them, so no simple algorithm is going to 
trace its contour without getting lost. However, when you glance at the 
picture, in your mind's eye, you "see" the face and its parts distinctly; the 
man's jacket is a perfectly clear coherent shape whose creases, instead of 
confusing you, in fact contribute to your perception of its 3-dimensional 
structure. The ambiguities which must have been present in the early 
stages of your processing of this image never become conscious because 
you have found an explanation of every peculiarity of the image, a match 
with remembered shapes and lighting effects. In fact, the problems of 
pattern theory are hard, and although major progress has been made in 
both speech and vision in the last 5 years, a robust solution has not been 
achieved! 

2. Mathematical formulation of the field 

To make the field of pattern theory precise, we need to formulate it math-
ematically. There are three parts to this which were all made quite clear 
by Grenander: the first is the description of the players in the field, the 
fundamental mathematical objects which will appear in each case. The 
second is to restrict the possible generality of these objects by using some-
thing about the nature of the world. This gives us a more circumscribed, 
more focussed set of problems to study. Finally, since the goal of the field 
is the reconstruction of hidden facts about the world, we aim primarily 
for algorithms, not theorems; and the last part is the general framework 
for these algorithms. In this section, we look at the first part, the basic 
mathematical objects of pattern theory. 

For this there are two essentially equivalent formulations, one using 
Bayesian statistics and one using information theory. The statistical ap-
proach (see for instance [D. Geman 91]) is this: consider all possible signals 
f (Z) which may be perceived. These may be considered as elements of a 
space 	of functions f : D -f V. For instance, speech is defined by 
pressure p : [t1, t2 ] 	R+  as a function of time, color vision is defined by 
intensity I on a domain D C S2  of visible rays with values in the convex 
cone of colors VRGB C R3, or these functions may be sampled on a discrete 
subset of the above domains, or their values may be approximated to finite 
precision, etc. 

The first basic assumption of the statistical approach is that nature 
determines a probability gobs  on a suitable a-algebra of subsets of I201„, and 
that, in life, one observes random samples from this distribution. These 
signals, however, arc highly structured as a result of their being produced 
by a world containing many processes, objects and events which do not 



Pattern Theory: A Unifying Perspective 	 193 

appear explicitly in the signal. This means many more random variables 
are needed to describe the state of the world. The second assumption is 
that the possible states w of the world form a second probability space 

S2wid and that there is a big probability distribution p„,,, on gobs  X S2wid 

describing the probability of both observing f and the world being in state 

w. Then gobs  should be the marginal distribution of po,„ on Slobs. The goal 
of pattern theory is to infer the state of the world w, given the measurement 
f , and for this we may use Bayes's rule: 

p (w I f ) = 
P( f I w) • P (w )  

P( f ) 

leading to the maximum likelihood reconstruction of the state of the world: 

ML estimate of w = arg max[p( flu]) • p(w)] 
u, 

(2) 

The statistical approach entails constructing the probability space Mobs  x 

Qwld Po,w) and finding algorithms to compute the ML-estimate. 
In the information theoretic approach (see for instance [Rissanen 89]) 

we assume D and V, hence gobs  are finite. The idea is that instead of writ-
ing out any particular perceptual signal f in raw form as a table of values, 
we seek a method of encoding f which minimizes its expected length in 
bits: i.e., we take advantage of the patterns possessed by most f to encode 
them in a compressed form. We consider coding schemes which involve 
choosing various auxiliary variables w and then encoding the particular f 

using these w (e.g., w might determine a specific typical signal f„„ and we 
then need only to encode the deviation (f — f w )). We write this: 

length(code(f, w)) = length(code(w)) length(code(f using w)). 	(3) 

It might appear that such optimal encodings of signals would lead you 
to odd combinatorial schemes that have nothing to do with what is actually 
happening in the world. Remarkably, this isn't the case and, in fact, it 
seems to lead you automatically, without prior knowledge of the world, to 
the same hidden variables on which the Bayesian theory is based. This 
link between the two approaches comes from Shannon's optimal coding 
theorem. This theorem states that, given a class of signals f , the coding 
scheme for such signals for which a random signal has the smallest expected 
length satisfies 

(1) 

len(code(f)) = — log2  p( f ) 	 (4) 
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(where fractional bit lengths are achieved by actually coding several f's 

at once, and in doing this, the LHS gets asymptotically close to the RHS 
when longer and longer sequences of signals are encoded at once). Using 
Shannon's theorem, and taking log2  of (2), we get the minimum description 
length reconstruction of the world: 

MDL est. of w = arg min[len(code(w)) len(code(f using w))]. 	(5) 
'U) 

The information-theoretic approach entails constructing a coding 
scheme {w} and finding algorithms to compute (5). Its great strength 
is that, as opposed to the Bayesian approach, it does not require a prior 
knowledge of the physics, chemistry, biology, sociology, etc. of the world, 
but gives you a way of discovering these facts. In Section 5.4, we will give 
an example of how this works. 

3. Four universal transformation of perceptual signals 

The above formulation of pattern theory provides a framework in which to 
analyze signals, but it says nothing about the nature of the patterns which 
are to be expected, what distortions, complexities and ambiguities are to 
be expected, hence what kinds of probability spaces Slobs  are we likely to 
encounter, how shall we encode them, etc. 

What gives the field its characteristic flavor is that the world does 
not have an infinite repertoire of different tricks which it uses to disguise 
what is going on. Consider the coding schemes used by engineers for the 
transmission of electrical signals. They use a small number of well-defined 
transformations such as AM and FM encoding, pulse coding, etc. to convert 
information into a signal which can be efficiently communicated. Analogous 
to this, the world produces sound to be heard, light to be seen, surfaces to 
be felt, and so on, which are all, in various ways, reflections of its structure. 

We may think of these signals as the productions of a particularly per-
verse engineer, who presents us with the problem of decoding this message, 
e.g., of recognizing a friend's face or estimating the trajectory of oncoming 
traffic, etc. The second contention of pattern theory is that such signals are 
derived from the world by four types of transformations or deformations, 
which occur again and again in different guises. The had news is that 
these four transformations produce much more complex effects than the 
coding schemes of engineers, hence the difficulty of decoding them by the 
standard tricks of electrical engineering. The good news is that these trans-
formations are not arbitrary recursive operations which produce unlearn-
able complexity. For instance, in the formal study of language learnability, 
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Gold's theorem gives very strong restrictions on what can be learned (see 
[Osherson-Weinstein 84] for an excellent exposition). But the study of per-
ceptual signals suggests that this is largely irrelevant, that the languages 
in which perceptual signals speak are of very special types. In the termi-
nology of [Grenander 76], simple unambiguous signals from the world arc 
referred to as pure images and the transformations on them are called de-

formations, which produce the actually observed perceptual signals which 
he called deformed images. 

The four transformations that I propose as the basic types occurring 
in natural perceptual signals are: 

1. Noise and blur. These effects are the bread and butter of standard 
signal processing, caused for instance by sampling error, background 
noise and imperfections in your measuring instrument such as imperfect 
lenses, veins in front of the retina, dust and rust. A typical form of 
this transformation is given by 

* 0-)(X,) 	 (6) 

where a is a blurring kernel, xi  are the points where the signal is 
sampled and ni  is some kind of additive noise, e.g., Gaussian, but of 
course much more complex formulae are possible. Especially significant 
is that Gaussian noise is usually a poor model of the noise effects, for 
example when the noise is caused by finer detail which is not being 
resolved. Rosenfeld calls such an n clutter, which conveys what it often 

represents. These transformations are part of what Grenander calls 
changes in contrast. When they are present, the unblurred noiseless I 
should be one of the variables w as getting rid of noise and blur reveals 
the hidden processes of the world more clearly. 

2. Multi-scale superposition. Signals typically reveal one set of structures 
caused by one set of phenomena in the world when analyzed locally, 
at high precision, and other structures and phenomena when analyzed 
globally and coarsely, at low precision. For instance in images, local 
properties include sharp edges, texture details and local irregularities of 
shapes, which coexist with global properties like slowly varying shading.  
or texture statistic gradients and the overall shape of an object. In 
speech, information is conveyed by the highest frequency formants, by 
the lower frequency vibration of the vocal cords and the even slower 
modulation of stress. A typical form of this transformation is given by 

11,12 —>(I1 + /2) or (1). /2) or a(/1, /2) 	 (7) 

where Ii  and /2  represent band pass signals in disjoint frequency 
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bands, which can be combined either additively (the usual superpo-
sition of high and low frequency effects), multiplicatively (as in am-
plitude modulation of a carrier signal for example) or by some more 
complex rule Q. This type of deformation does not seem to have been 
made explicit by Grenander. The individual components II, of I should 
be included in the variables w. 

3. Domain warping. Two signals generated by the same object or event 
in different contexts typically differ because of expansions or contrac-
tions of their domains, possibly at varying rates: phonemes may be 
pronounced faster or slower, the image of a face is distorted by varying 
expression and viewing angle. In speech, this is called "time warping" 
and in vision, this is modeled by "flexible templates". In both cases, 
a diffeomorphism of the domain of the signal brings the variants much 
closer to each other so that this transformation is given by 

/ 	(/ o 0) 	 (8) 

where IP represents a diffeomorphism of the domain of I. These trans-
formations are what Grenander calls background deformations. The 
diffeomorphism 1p should be one of the variables w. 

4. Interruptions. Natural signals are usually analyzed best after being 
broken up into pieces consisting of their restrictions to subdomains. 
This is because the world itself is made up of many objects and events 
and different parts of the signal are caused by different objects or 
events. For instance, an image may show different objects partially 
occluding each other at their edges, as in Figure 3 where the old man 
is an object which occludes part of the park bench. In speech, the 
phonemes naturally break up the signal and, on a larger scale, one 
speaker or unexpected sound may interrupt another. Such a transfor-
mation is given by such a formula as 

11, 12 	> (-1-11D' 
	

( 9 ) 

where /2  represents the background signal which is interrupted by the 
signal /1 on a part D' of its domain D, (or /2  may only be defined on 
D — D'). This type of deformation is called incomplete observations by 
Grenander. The components /k  and the domain D' should be included 
in the variables w. 

What makes pattern theory hard is not that any of the above trans-
formations are that hard to detect and decode in isolation, but rather that 
all four of them tend to coexist, and then the decoding becomes hard. 
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4. Pattern analysis cannot be done without pattern synthesis 

Taking the Bayesian definition of the objects of pattern theory, we note 
that the probability distribution (0 - -obs X C2w1d Po,w)allows us to do two 
things. On the one hand, we can use it to define the ML-estimate of the 
state of the world; but we can also sample from it, possibly fixing some of 
the world variables w, using this distribution to construct sample signals f 
generated by various classes of objects or events. A good test of whether 
your prior has captured all the patterns in some class of signals is to see if 
these samples are good imitations of life. For this reason, Grenander's idea 
was that the analysis of the patterns in a signal and the synthesis of these 
signals are inseparable problems: computer vision should not be separated 
from computer graphics, nor speech recognition from speech generation. 
This is the third part of our definition of pattern theory. What gives it force 
is the idea of constraining not merely your theory but also your algorithms 
to require that they explicitly model the universal transformations, hence 
can be used to generate signals as well as analyze them. 

Many of the early algorithms in pattern recognition were purely bottom-
up. For example, one class of algorithms started with a signal, computed 
a vector of "features", numerical quantities thought to be the essential 
attributes of the signal, and then compared these feature vectors with those 
expected for signals in various categories. This was used to classify images 
of alpha-numeric characters or phonemes, for instance. Such algorithms 
give no way of reversing the process, of generating typical signals. The 
problem these algorithms encountered was that they had no way of dealing 
with anything unexpected, such as a smudge on the paper obscuring a 
character, or a cough in the middle of speech. These algorithms did not 
say what signals were expected, only what distinguished typical signals in 
each category. 

In contrast, a second class of algorithms works by actively reconstruct-
ing the signal being analyzed. In addition to the bottom-up stage, there is 
a top-down stage in which a signal with the detected properties is synthe-
sized and compared to the present input signal. What needs to be checked 
is whether the input signal agrees with the synthesized signal to within nor-
mal tolerances, or whether the residual is so great that the input has not 
been correctly or fully analyzed. This architecture is especially important 
for dealing with the fourth type of transformation: interruptions. When 
these arc present, the features of the two parts of the signal get confused. 
Only when the obscuring signal is explicitly labelled and removed, can the 
features of the background signal be computed. We may describe this top-
down stage as "pattern reconstruction" in distinction to the bottom-up 
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purely pattern recognition stage. A flow chart for such algorithms is shown 
in Figure 4. 

'features" of difference off f, 

Bottom-up Path 

Top-down Path 
Synthetic reconstruction fw  

Figure 4. The fundamental architecture of Pattern Theory 

We will not develop this aspect of pattern theory in this paper, but 
would like to mention briefly several papers where these ideas are devel-
oped. A strong argument for the necessity of a top-down stage for the 
recognition of heavily degraded signals, such as faces in deep shadow, is 
given in [Cavanagh 91]. Neural net theory has gone in several directions: 
while "feed-forward" nets categorize in an exclusively bottom-up manner, 
the "attractive neural nets" with symmetric connections ([Hopfield 82], [D. 
Amit 89]) seek not merely to categorize but also to construct the proto-
type ideal version of the category by a kind of pattern completion which 
they call "associative memory". What these nets do not do is to go back 
and attempt to compare this reconstruction with the actual input to see if 
the full input has been "explained". One demonstration system that does 
this is Grossberg and Carpenter's "adaptive resonance theory" ([Carpenter-
Grossberg 87]). A proposal for the neuroanatomical substrate for such 
bottom-up/top-down loops in mammalian cortex is put forth in [Mumford 
91-92]. 

5. Examples 

In this section, we want to present several examples of interesting mathe-
matics which have come out of pattern theory, in attempting to come to 
grips with one or another of the above universal transformations. These 
examples are from vision because this is the field I know best, but many of 
these ideas are used in speech recognition too. 

5.1 Pyramids and wavelets 

The problem of detecting transformations of the second kind, i.e., of analyz-
ing functions that convey information on more than one scale, has arisen in 
many disciplines. The classical method of separating additively combined 
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scales is, of course, Fourier analysis. But what is usually required is to 
analyze a function locally both in its original domain and in the domain of 

its Fourier transform, and Fourier analysis does not do this. In computer 
vision, at least as far back as the early 70s, this problem led to the idea 
of analyzing an image by means of a "pyramid", e.g., [Uhr 72], [Rosenfeld-
Thurston 71]. In its original incarnation, the main idea was to compute 
a series of progressively coarser resolution images by blurring and resam-
pling, e.g., a set of (2' x 2n)-pixel images, for n = 10,9, ... , 1. Putting these 
together, the resulting data structure looks like an exponentially tapering 
pyramid. Instead of running algorithms that took time proportional to 
the width of the image, one ran the algorithms up and down the pyramid, 
possibly in parallel at different pixels, in time proportional to log(width). 
Typical algorithms that were studied at this time are morphological ones, 
involving for instance linking and marking extended contours, which have 
nothing to do with filtering or linear expansions. The bottom layer of 

this so-called Gaussian pyramid held the original image, with both high 
and low frequency components, although it was used only to add local or 
high-frequency information. 

In the early 80s, the idea of using the pyramid to separate band pass 
components of a signal and thus to expand that signal arose both in com-
puter vision [Burt-Adelson 83] (where they subtracted successive layers of 
the Gaussian pyramid, producing what they called the Laplacian pyra-

mid) and in petroleum geology [Grossman-Morlet 84]. Figure 5 shows this 
Laplacian pyramid for a face image: note that the high-frequency differ-
ences show textures and sharp edges, while the low frequency differences 
show large shapes. 

This work led directly to the idea of wavelets and wavelet expansions 
which now seem to be the most natural way to analyze a signal locally in 
both space and frequency. Mathematically, the idea is simply to expand 
an arbitrary function f(Y) of n variables as a sum: 

f (2) = 
[scale kEZ fiElatticeL fin.# of a 

ak, fi,„1/),,,, (AkY + ii)1 	(10) 

where the tit„, are suitable functions, called wavelets, with mean 0. Usually 
A = 2, and, at least in dimension 1, there is a single a and wavelet,. 
The original expansions of Burt and Adelson, which are not quite of this 
form, have been reinvestigated from a more mathematical point of view in 
[Mallat 89]. The basic link between the expansion in (10) and pyramids is 
this: define a space V„., to be the set of f's whose expansions involve only 
terms with k < Tn. This defines a "multi-resolution ladder" of subspaces 
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Figure 5. The Gaussian and Laplacian pyramids for a face image 

of functions with more and more detail: 

. . . C V-1 C Vo C V1 C . . . C L2( ) 

such that f(x) 	f(2x) maps Vm  isomorphically onto Vm+1. Then 
one may think of Vm  as functions which have been blurred and sampled 
at a spacing 2': i.e., the level of the pyramid of (2 x 2m)-pixel im-
ages. The mathematical development of the theory of these expansions is 
due especially to Meyer and Daubechies (see [Meyer 86], [Daubechies 88], 
[Daubechies 90]), who showed that (i) with very careful choice of //), this 
expansion is even an orthogonal one, (ii) for many more 0, the functions 
on the right form an unconditional but not orthogonal basis of L2(11') 
and (iii) for even more Y), the functions on the right form a "frame , a set 
of functions that spans L2  (Rn) and gives a canonical though non=unique 
expansion of every f. 

From the perspective of pattern theory, we want to make two comments 
on the theory of wavelets. The first is that they fit in very naturally with 
the idea of minimum description length. Looked at from the point of view 
of optimal linear encoding of visual and speech signals (i.e., encoding by 
linear combinations of the function values), the idea of wavelet expansions 
is very appealing. This was pointed out early on by Burt and Adelson 
and data compression has been one of the main applications of wavelet 
theory ever since. Moreover, its further development leads beyond the 
classical idea of expanding a function in terms of a fixed basis to the idea 
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of using a much larger spanning set which oversamples a function space 

and using suitably chosen subsets of this set in terms of which to expand 
or approximate the given function (see [Coffman-Meyer-Wickerhouser 90] 
where wavelet libraries are introduced). Even though the data needed to 
describe this expansion or approximation is now both the particular subset 
chosen and the coefficients, this may be a more efficient code. If so, it should 
lead us to the correct variables w for describing the world (cf. Section 2): 
for example, expanding a speech signal using wavelet libraries, different 
bases would naturally be used in the time domains during which different 
phonemes were being pronounced -- thus the break-up of the signal into 
phonemes is discovered as a consequence of the search for efficient coding! 
It also appears that nature uses wavelet type encoding: there are severe size 
restrictions on the optic nerve connecting the retina with the higher parts 
of the brain and the visual signal is indeed transmitted using something 
like a Burt-Adelson wavelet expansion [Dowling 87]. 

The second point is that wavelets, even in their oversampled form, are 
still just the linear side of pyramid multi-scale analysis. In our description 
of multi-scale transformations of signals in Section 3, we pointed out that 
the two scales can be combined by multiplication or a more general function 
a as well as by addition. To decode such a transformation, we need to 
perform some local non-linear step, such as rectification or auto-correlation, 
at each level of the pyramid before blurring and resampling. An even 
more challenging and non-linear extension is to a multi-scale description 
of shapes: e.g., subsets S C R2  with smooth boundary. The analog of 
blurring a signal is to let the boundary of S evolve by diffusion proportional 
to its curvature (see [Gage-Hamilton 86], [Grayson 87]). Although there 
is no theory of this at present, one should certainly have a multi-scale 
description of S starting from its coarse diffused form — which is nearly 
round -- and adding detailed features at each scale. In yet another direction, 
face recognition algorithms have been based on matching a crude blurry 
face template at a low resolution, and then refining this match, especially 
at key parts of the face like the eyes. This is the kind of general pyramid 
algorithm that Rosenfeld proposed many years ago, many of which have 
been successfully implemented by Peter Burt and his group at the SRI 
Sarnoff Laboratory. 

5.2 Segmentation as a free-boundary value problem 

A quite different mathematical theory has arisen out of the search for al-
gorithms to detect transformations of the fourth kind, interruptions. Ev-
idence for an interruption or a discontinuity in a perceptual signal comes 
from two sources: the relative homogeneity of the signal on either side of 
the boundary and the presence of a large change in the signal across the 
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boundary. One approach is to model this as a variational problem: assum-
ing that a blurred and noisy signal f is defined on a domain D C Rn, one 

seeks a set F C D and a smoothed version g of f which is allowed to be 
discontinuous on F such that: 

• g is as close as possible to f, 
• g has the smallest possible gradient on D — F, 
• F has the smallest possible (n — 1)-volume. 

These conditions define a variational problem, namely to minimize the 
functional 

E(g, F) = 112  f - 	g)2  f • I 11V911 2  + 
D 

(12) 

where Lt and v are suitable constants weighting the three terms and 1F1 is 
the (n —1)-volume of F. The g minimizing E may be understood as the op-
timal piecewise smooth approximation to the quite general function f . In 
Grenander's terms, the function g is the pure image and f is the deformed 
image; I like to call g a cartoon for the signal f . The F minimizing E is a 
candidate for the boundaries of parts of the domain D of f where different 
objects or events are detected. Segmenting the domain of perceptual sig-
nals by such variational problems was proposed independently by S. and 
D. Geman and by A. Blake and A. Zisserman (see [Geman-Geman 84] and 
[Blake-Zisserman 87]) for functions on discrete lattices, and was extended 
by [Mumford-Shah 89] to the continuous case. 

In the case of visual signals, the domain D is 2-dimensional and we want 
to decompose D into the parts on which different objects in the world are 
projected. When you reach the edge of an object as seen from the image 
plane, the signal f typically will be more or less discontinuous (depending 
on noise and blur and the lighting effects caused by the grazing rays emitted 
by the surface as it curves away from the viewer). An example of the 
solution of this variational problem is shown in Figure 6: Figure 6a is the 
original image of the eye, 6b shows cartoon g and 6c shows the boundaries 
F. This is a case where the algorithm succeeds in finding the "correct" 
segmentation, but it doesn't always work so well. 

Figure 7 gives the same treatment as Figure 6, to the "oldman" image. 
Note that the algorithm fails to find the perceptually correct segmentation 
in several ways: the man's face is connected to his black coat and the black 
bar of the bench and the highlights on the back of his coat are treated as 
separate objects. One reason is that the surfaces of objects are often tex-
tured, hence the signal they emit is only statistically homogeneous. More 
sophisticated variational problems are needed to segment textured objects 
(see below). 
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Figure 6. Segmentation of the eye-image via optimal piecewise smooth 
approximation 
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Figure 7. Segmentation of the oldman-image via optimal piecewise 
smooth approximation 
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From a mathematical standpoint, it is important to know if this vari-
ational problem is well-posed. It has been proven that E has a minimum 
if F is allowed to be a closed rectifiable set of finite Hausdorff (n — 1)-
dimensional measure and g is taken in a certain space SBV ("special 
bounded variation", which means that the distributional derivative of g 

is the sum of an L2-vector field plus a totally singular distribution sup-
ported on F) (see [DeGiorgi-Carriero-Leaci 88], [Ambrosio-Tortorelli 89] 
and [Dal Maso-Morel-Solimini 89]). Unfortunately, it seems hard to check 
whether these minima are "nice" when f is, e.g., whether, when n = 2, 
F is made up of a finite number of differentiable arcs, though Shah and I 
have conjectured that this is true. Of course, if the signal is replaced by a 
sampled version, the problem is finite dimensional and certainly well-posed. 

This variational problem fits very nicely into both the Bayesian frame-
work and the information theoretic one. Geman and Geman introduced it 
for discrete domains in the Bayesian setting. The basic idea is to define 
probability spaces by Gibbs fields. Let D = {x€,} be the domain, {f„} and 

{g„} the values of f and g at xa . To describe F, for each pair of "adjacent 
pixels" a and /3, let f„,0 = 1 or 0 depending on whether or not F separates 
the pixels a and 13: these random variables are called the line process. Then 
we define a prior probability distribution on the random variables {f„,/3} 
by the formula 

e u(  
P({f,i3})= 	 

where Z1 is the usual normalizing constant. This just means that bound-
aries F get less and less probable, the bigger they are. Next, we put a 
conditional probability distribution on {g„} conditional on the line process 
by the formula 

P({90 

_E 	d ( 1 — „ ) • (go  9p)
1  

a  

(14) 
Z2 

This is a discrete form of the previous E: if adjacent pixels a and /3 are 
not separated by F, then 	= 0 and the probability of {g„} goes down as 

—gol gets larger, but if they are separated, then f„,0 = 1 and go„ and go  
are independent. Together, the last two equations define an intuitive prior 
on {g„, fool enforcing the idea that g is smooth except across the boundary 
F. The data term in the Bayesian approach makes the observations fa}  
equal to the model OA plus Gaussian noise, i.e., it defines the conditional 

rd 

Z1 
	 (13) 
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probability by the formula 

( fo, 	)2 

A{f.}1{gc, 	}) = 

Multiplying (12), (13) and (14) defines a probability space (Sloes  x 

CLId,Po,w) as in section 2 and taking —log of this probability, we get back a 
discrete version of E up to a constant. Thus the ML-estimate of the world 
variables {g,, f„,0} is essentially the minimum of the functional E. 

This probability space is closely analogous to that introduced in physics 
in the Ising model. In terms of this analogy, the discontinuities F of the 
signal are exactly the phase transitions of statistical mechanics. 

From the information-theoretic perspective, we want to interpret E 

as the bit length of a suitable encoding of the image {M. These ideas 
have not been fully developed, but for the simplified model in which F is 
assumed to divide up the domain into pieces {Dk} on which the image 
is approximately a constant -Loki-, this interpretation was pointed out by 
[Leclerc 89]. We imagine encoding the image by starting with a "chain 
code" for F: the length of this code will be proportional to its length IFS.  
Then we encode the constants {gk} up to some accuracy by a constant 
times the number of these pieces k. Finally, we encode the deviation of the 
image from these constants by Shannon's optimal encoding based on the 
assumption that f, = gk+ Gaussian noise 11a . The length of this encoding 
will be a constant times the first term in E. (If g is not locally constant, 
we may go on to interpret the second term in E as follows: consider the 
Neumann boundary value problem for the laplacian A acting on the domain 
D — F. We may expand g in terms of its eigenfunctions, and encode g by 
Shannon's optimal encoding assuming these coefficients are independently 
normally distributed with variances going down with the corresponding 
eigenvalues. The length will be this second term.) 

Many variants of this Gibbs field or "energy functional" approach to 
perceptual signal processing have been investigated. Some of these seek to 
incorporate texture segmentation, e.g., [Geman-Geman-Graffigne-Dong 90] 
and [Lee-Mumford-Yuille 92] (which proposes an algorithm that should also 
segment most phonemes in speech) and others to deal with the asymmetry 
of boundaries caused by the 3D-world: at a boundary, one side is in front, 
the other in back [Nitzberg-Mumford 90]. The "Hidden Markov Models" 
used in speech recognition are Gibbs fields are of this type. To clarify 
the relationship, recall that HMM's are based on modelling speech by a 
Markov chain whose underlying graph is made up of subgraphs, one for 
each phoneme and whose states predict the power spectrum of the speech 
signal in local time intervals. Assuming a specific speech signal f is being 

 

(15) 
Z3 



E(A,F) = dist.(f tk+1 , phoneme ak) v 
tk FL 

	
(16) 
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modelled, HMM-theory computes the ML sample of this chain conditional 
on the observed power spectra. Note that any sample of the chain defines 
a segmentation of time by the set F = {tk} of times at which the sample 
moves from the subchain for one phoneme to another, and each interval 
tk < t < tk+1  is associated to a specific phoneme ak. Let A be the string 
{ a ia2 , • • • , aN}. Taking —log of the probability, the ML estimate of the 
chain is the pair {F, A} minimizing an energy E of the form 

which is clearly analogous to the E's defined above. 
Finally, some physiological theories have been proposed in which vari-

ous areas of cortex (e.g., V1 and V2) compute the segmentation of images 
by an algorithm analogous to minimizing (11) [Grossberg-Mignolla 85]. It 
has also been used in computing depth from stereo [Belhumeur-Mumford 
92], [Geiger-Ladendorf-Yuille 92], computing the so-called optical flow field, 
the vector field of moving objects across the focal plane [Yuille-Grzywacz 
89], [Hildreth 84] and many other applications. 

We have not mentioned the problem of actually computing or approx-
imating the minimum of energy functionals like E. Four methods have 
been proposed: in case n = 1, we can use dynamic programming to find the 
global minimum fast and efficiently. This applies to the speech applications 
and is one reason why speech recognition is considerably ahead of image 
analysis. For any n, [Geman-Geman 84] applied a Monte Carlo algorithm 
due to [Kirkpatrick-Geloti-Vecchi 83] known as simulated annealing. Mak-
ing this work is something of a black art, as the theoretical bounds on its 
correctness are astronomical; still it is always an easy thing to try as a first 
step. 

A third method, which seems the most reliable at this point, is the 
graduated non-convexity method introduced in [Blake-Zisserman 87]. It is 
based on putting the functional E in a family Et  such that E = E0  and E1  
is a convex functional, hence has a unique local minimum. One then starts 
with the minimum of El  and follows it as t 	0. The final idea is related 
to the third and that is to use mean field theory as in statistical physics: 
this often leads to approximations to the Gibbs field which allow us to put 
E in a family becoming convex in the limit (see [Geiger-Yuille 89]). 

5.3 Random diffeomorphisms and template matching 

The third example concerns the identification of objects in an image, 
putting them in categories such as "the letter A", "a hammer" or "my 
Grandmother's face". One of the biggest obstacles in these problems is the 
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variability of the shapes which belong to such categories. This variability 
is caused, for example, by changes in the orientation of the object and the 
viewpoint of the camera, changes in individual objects such as varying ex-
pressions on a face and differences between objects of the same category 
such as different fonts for characters, different brands of hammer, etc. If 
the shapes were not too variable, one could hope to introduce average ex-
amples of each letter, of each tool, of the faces of everyone you know 
"templates" for each of these objects 	 and recognize each such object as 
it is perceived by comparing it to the various templates stored in memory. 
Unfortunately, the variations are usually too large for this to work, and, 
worse than that, some variations occur commonly, while others do not (e.g., 
faces get wrinkled but never become wavy like water). What we need to 
do is to explicitly model the common variations and use our knowledge to 
see if a suitably varied template fits! A large part of this variation can be 
modelled by domain warping, the third of the transformations introduced 
in Section 3 and this leads to the study of deformable templates, templates 
whose parts can be changed in size and orientation and shifted relative to 
each other. These were first introduced in computer vision by [Fischler-
Elschlager 73] who called them "templates with springs" but the idea is 
well-known in biology, e.g., in the famous and beautiful book [Thompson 
17] (see Figure 8a, showing the deformations between three primate skulls). 

Figure 8a. Diffeomorphisms between primate skulls 
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Mathematically, we can describe flexible templates is as follows. We 
must construct four things: (i) a standard image IT on a domain DT which 

can be a set of pixels or can also be reduced to a graph of "parts" of the 
object, (ii) a space of allowable maps 1,!) : DT 	D or (D U {missing}), (iii) 

a measure E(5) of the degree of deformation in the map 0, the "stretching 
of the springs", and (iv) a measure of the difference d between the standard 
image IT  and the deformation '0* (I) of the observed image I. Here V) is 
typically a diffeomorphism, "missing" is an extra element in the range of 1j) 
to allow certain parts of the standard image to be missing in the observed 
image, and 1/)* (I) is a "pull-back" of I which may be just the composition 

of I and 1/) if DT  is a set of pixels, or may be some set of local "features" 

of I when DT  is a graph of parts. The basic algorithm is then to compute 

arg min[d(*(/), ) EOM], 	 (17) 

which gives the optimal match of the template with the observed image. 
Figures 8b, 8c and 8d show three examples of this algorithm in action. 

8b from [Yamamoto-Rosenfeld 82] applies these ideas to the recognition 
of chinese characters or kanji. In this application DT  is a 1-dimensional 
polygonal skeleton of the outline of the character, and IP is a piecewise linear 
embedding of DT  in the domain D of the character image. 8c from [Y. Amit 
91] applies these ideas to tracing a hand in an X-ray by comparing it with 
a standard hand. Here V) is a small deformation of the identity defined 
by a wavelet expansion of its (x, y)-coordinates and the prior E(J) is a 
weighted L2-norm of the expansion coefficients. Finally 8d from [Yuille-
Hallinan-Cohen 92] applies these ideas to the recognition of eyes. Here DT  

has two parts, a pair of parabolas representing the outline of the eye and 
a black circle on a white ground representing the iris/pupil on the eyeball. 

is linear on each parabola and on the circle, but the range of the first 
may occlude the range on the second to allow the iris/pupil to be partially 
hidden. This is incorporated in a careful definition of d. 

An interesting mathematical side of this theory is the need for a careful 
definition and comparative study of various priors on the spaces of diffeo-
morphisms V). One can, for instance, define various measures E OM based 
(i) on the square norm of the Jacobian, as in harmonic map theory, (ii) on 
the area of the graph, as in geometric measure theory, (iii) on the stress of 
the map as in elasticity theory, or (iv) on second derivatives of 1/), which 
give more control over the minima. [Mumford 91] discusses some of these 
measures, but the best approach is unclear and restricting maps to be 
diffeomorphisms is not always natural. An interesting neurophysiological 
aside is that the anatomy of the cortex of mammals seems well equipped 
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Figure 8b. Diffeomorphism between kanji 

to perform domain warping. The circuitry of the cortex is based on two 
types of connections: local connections within disjoint subsets of the cortex 
known as cortical areas, and global connections, called pathways, between 
the two distinct areas. The pathways occur in pairs, setting up maps which 
are crudely homeomorphisms between the cortical surfaces of the two ar-
eas which are inverse to each other. These pathways are not exactly point 
to point maps, however, because of the multiple synapses of their axons, 
hence the pair of inverse pathways can shift a pattern of excitation by small 
amounts in any direction. 

5.4 The stereo correspondence problem via minimum 
description length 

As described in Section 2, there are two approaches to the problems of pat-
tern theory: the first is to use all the geometry, physics, chemistry, biology 
and sociology that we know about the world and try to define from this 
high-level knowledge an appropriate probabilistic model (—Oohs  x  Qwld po,w )  
of the world and our observations. The second involves learning this model 
using only the patterns and the internal structure of the signals that are 
presented to us. Almost all research to date in computer vision falls in 
the first category, while the standard approach to speech recognition starts 
with the first but significantly improves on it using the "EM-algorithm" , a 
learning algorithm in the second category. 
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Figure 8c. Diffeomorphism between X-rays of hands 

However, newborn animals seem to rely as strongly on learning their 

environment as on a genetically transmitted knowledge of it. It not hard 

to imagine that a baby growing up in a virtual reality governed by quite 

unusual physics would learn these just as rapidly as the physics of its ances- 



212 	 David Mumford 

Figure 8d. Diffeomorphism from a cartoon eye to a real eye 

tral world. Humans can read scanning electron microscope images, which 
are produced by totally different reflectance rules from normal images. All 
of this suggests the possibility of discovering universal pattern analysis al-
gorithms which learn patterns from scratch. One of the great appeals of 
the idea of pattern theory is the hope that the structure of the world can be 
discovered in this way. It is in this spirit that we present the final example. 
It is not an extensive theory like the previous three, but illustrates how the 
minimum description length principle can lead one to uncover the hidden 
structure of the world in a remarkably direct way. 

We are concerned with the problem of stereo vision. If we view the 
world with two eyes or with two cameras separated by a known distance, 
and either identically oriented or with a known difference of orientations, 
then we can use trigonometry to infer the 3-dimensional structure of the 
world: see Figure 9. More precisely, the two imaging systems produce 
two images, IL and IR  (the left and right images). Suppose a point A in 
the world visible in both images appears as AL E DL and AR E DR in 
the domains of the two images. The coordinates of AL and AR plus the 
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Figure 9. The geometry of stereo vision, in a plane through the centers 

of the two lenses 
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known geometry of the imaging system give the 3-dimensional coordinates 
of A. However, to use this, we need to first find the pair of corresponding 

points AL and AR: finding these is called the correspondence problem. 
Notice from Figure 9 that the geometry of the imaging system gives us one 
simplification: all points A in a fixed 3-dimensional plane 71, through the 
centers of the two lenses, are seen as points AL E 	and AR E fR, where £L 
and £R  are the intersections of it with the two focal planes, and are called 
epipolar lines. Moreover, when we are looking at a single relatively smooth 
surface S in the 3-dimensional world, S is visible from the left and right 
eye as subdomains SL C DL and SR C DR and the corresponding points 
on these subdomains define a diffeomorphism 1// : SL  —> SR carrying each 
epipolar line in the left domain to the corresponding epipolar line in the 
right. This leads us to a problem like that in the last section. But there is a 
further twist: at the edges of objects, each of the two eyes can typically see 
a little further around one edge, producing pixels in one domain DL or DR 
with no corresponding pixel in the other domain. In this way, the domain 
is often segmented into subdomains corresponding to distinct objects. 

My claim is that the minimum description length principle alone leads 
you naturally to discover all this structure, without any prior knowledge 
of 3-dimensions. The argument is summarized in Figure 10. In this fig-
ure, I have represented a series of increasingly complex stereo images in 
diagrammatic form. Firstly, in order to represent the essentials concisely, 
I have used only a single pair of epipolar lines lL  and fR instead of the 
full domains DL and DR. Secondly, instead of graphing the complex in-
tensity function, we have used small symbols (squares, circles, triangles, 
stars, etc.) to denote local intensity functions with various characteristics. 
Thus a square on both lines represents local intensities which are similar 
functions. On the left, at each stage in Figure 10, we see the plane IT in 
the world, with the visible surface points, and the left and right eyes. In 
the middle, we see the left and right images /L and IR  which this scene 
produces, as well as dotted lines connecting corresponding points AL and 
AR. On the right we give a method of encoding the image data. 

Stage 0 represents a simple flat object seen from the front: it produces 
images IL and IR, but we assume that our pattern analysis begins with 
naively encoding the images independently. At stage 1, the same scene is 
seen, but now the analysis uses the much more concise method of encoding 
only /L , the fixed translation d by which corresponding points differ and 
a possible small residual A/(x) = IR(x) — /L (x d). Clearly this is more 
concise. At stage 2, the scene is more complex: a surface of varying distance 
is seen, hence the displacement between corresponding points (called the 
disparity) is not constant. To adapt the previous encoding to this situation, 
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Figure 10. Discovering the world via MDL 
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one could take a mean value of d and have a bigger residual I. But this 
residual could be quite big and a better scheme is replace the fixed d by 
a function d(x) and encode /L, the mean and derivative (d, d') of d and 
the residual I. Now in stage 3, we encounter a new wrinkle: the scene 
consists in two surfaces, one occluding the other. Notice that a little bit 
of the back surface is visible to one eye only. To include this complexity, 
we go over to a more symmetrical treatment of the two eyes and encode a 
combined cyclopean image /c (x), where 

Ic(x) = I R(x 
d(2)

),IL(x 	
2 

d(x)
)  or their average 	(18) 

depending on whether the point is visible only to the right eye, only to 
the left eye or to both eyes. To make this representation unique, it is easy 
to see that we must require that d'(x)1 < 1. Then we encode the scene 
via (/(7,d, d', AI). In the final stage 4, we introduce the possibility of a 
surface disappearing behind another and then reappearing. The point is 
that each surface has its own average disparity, and it now becomes more 
efficient to record d by several means d„ , one for each surface, and the 
derivative d'. Thus we see how the search for minimum length encoding 
leads us naturally, first to the third coordinate of world points, then to 
smooth descriptions of surfaces in terms of their tangent planes and finally 
to explicit labelling of distinct surfaces in the visible field. 

Although this approach might seem very abstract and impossible to 
implement biologically, G. Hinton (unpublished) has developed neural net 
theories incorporating both MDL and feed-back. These might be able to 
learn stereo exactly as outlined in this section. 

6. Pattern theory and cognitive information processing 

The examples of the last section all concern pattern theory as a theory for 
analyzing sensory input. The examples come from vision, but most of the 
ideas could apply to hearing or touch too. The purpose of this section is to 
ask the question: to what extent is pattern theory relevant to all cognitive 
information processing, both "higher level" thinking as studied in cognitive 
psychology and AI, and the output stages of an intelligent agent, motor 
control and action planning. I believe that in many ways the same ideas 
are applicable on a theoretical level and that there is physiological evidence 
that the same algorithms are applied throughout the cortex. 

In the introduction, we gave medical expert systems as another exam-
ple of pattern theory. In this extension, we considered the data available 
to a physician 	 symptoms, test results and the patient's history 	as 
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an encoded version of the full state of the world, a "deformed image" in 
Grenander's terminology. The full state of the world, the "pure image", in 
this case means the diseases and processes present in the patient. Inferring 
these hidden random variables can and has been studied as a problem in 
Bayesian statistics, exactly as in Section 2: see, for instance, [Pearl 88], 
[Lauritzen-Spiegelhalter 88]. In particular, describing the probability dis-
tribution on all the random variables as a Gibbs field, as in Section 5h, 
has been shown to be a powerful technique for introducing realistic mod-
els of the probability distribution in the real world. Figure 11, from the 
article [Lauritzen-Spiegelhalter 88], shows a simplified set of such random 
variables and the graph on which a Gibbs distribution can be based. 

Figure 11. Causal graph in a toy medical expert system 

Whether or not pattern theory extends in an essential way to these 
types of problems hinges on whether the transformations described in 
Section 3 generate the kind of probability distributions encountered with 
higher level variables. To answer this, it is essential to look at test cases 
which are not too artificially simplified (as is done all too often in AI), but 
which incorporate the typical sorts of complexities and complications of the 
real world. While I do not think this question can be definitively answered 
at present, I want to make a case that the four types of transformations 
of Section 3 are indeed encoding mechanisms encountered at all levels of 
cognitive information processing. 

The first class of transformations, noise and blur, certainly occur at all 
levels of thought. In the medical example, errors in tests, the inadequacies 
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of language in conveying the nature of a pain or symptom, etc. all belong 
to this category. Uncertainty over facts, misinterpretations and confusing 
factors are within this class. The simplest model leads to multi-dimensional 

normal distributions on a vector P of "features" being analyzed. 
The fourth category of transformation, "interruptions", also are ob-

viously universal. In any cognitive sphere, the problem of separating the 
relevant factors for a specific event or situation being analyzed from the 
extraneous factors involved with everything else in the world, is clearly 
central. The world is a complex place with many, many things happening 
simultaneously, and highlighting the "figure" against the "ground" is not 
just a sensory problem, but one encountered at every level. Another way 
this problem crops up is that a complex of symptoms may result from one 
underlying cause or from several, and, if several causes are present, their 
effects have to teased apart in the process of pattern analysis. As proposed 
in Section 4, pattern synthesis 	 actively comparing the results of one 
cause with the presenting symptoms P followed by analysis of the residual, 
the unexplained symptoms, is a universal algorithmic approach to these 
problems. 

The second of the transformations, "multi-scale superposition", can 
be applied to higher level variables as follows: philosophers, psychologists 
and AI researchers have all proposed systematizing the study of concepts 
and categories by organizing them in hierarchies. Thus psychologists (see 
[Rosch 78]) propose distinguishing superordinate categories, basic level cat-
egories and subordinate categories: for instance, a particular pet might 
belong to the superordinate category "animal", the basic-level category 
"dog" and the subordinate category "terrier". In AI, this leads to graphi-
cal structures called semantic nets for codifying the relationships between 
categories (see [Findler 79]). These nets always include ordered links be-
tween categories, called isa links, meaning that one category is a special 
case of another. I want to propose that cognitive multi-scale superposition 
is precisely the fact that to analyze a specific situation or thing, some as-
pects result from the situation belonging to very general categories, others 
from very specific facts about the situation that put it in very precise cate-
gories. Thus sensory thinking requires we deal with large shapes with vari-
ous overall properties, supplemented with details about their various parts, 
precise data on location, proportions, etc.; cognitive thinking requires we 
deal with large ideas with various general properties, supplemented with 
details about specific aspects, precise facts about occurrence, relationships, 
etc. 

Finally, how about "domain warping"? Consider a specific example 
first. Associated to a cold is a variety of several dozen related symptoms. 
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A person may, however, be described as having a sore throat, a chest cold, 

flu, etc.: in each case the profile of their symptoms shifts. This may be 
modelled by a map from symptom to symptom, carrying for instance the 
modal symptom of soreness of throat to that of coughing. The more gen-
eral cognitive process captured by domain warping is that of making an 

analogy. In an analogy, one situation with a set of participants in a specific 
relationship to each other is mapped to another situation with new partic-
ipants in the same relationship. This map is the / in Section 5c, and the 

constraints on 1/), such as being a diffeomorphism, are now that it preserve 
the appropriate relationships. The idea of domain warping applying to 
cognitive concepts seems to suggest that higher level concepts should form 
some kind of geometric space. At first this sounds crazy, but it should 
be remembered that the entire cortex, high and low level areas alike, has 
the structure of a 2-dimensional sheet. This 2-dimensional structure is 
used in a multitude of ways to organize sensory and motor processes effi-
ciently: in some cases, sensory maps (like the retinal response and patterns 
of tactile responses) are laid out geometrically. In other cases, interleaved 
stripes carry intra-hemispheric and inter-hemispheric connections. In still 
other cases, there are "blobs" in which related responses cluster. But, in 
all cases, adjacency in this 2D sheet allows a larger degree of cross-talk 
and interaction than with non-adjacent areas and this seems to be used 
to develop responses to related patterns. My suggestion is: is this spatial 
adjacency used to structure abstract thought too*? 

To conclude, we want to discuss briefly how pattern theory helps the 
analysis of motor control and action planning, the output stage of a robot. 
Control theory has long been recognized as the major mathematical tool 
for analyzing these problems but it is not, in fact, all that different from 
pattern theory. In Figure 12a, we give the customary diagram of what 
control theory does. The controller is a black box which compares the 

* I have argued elsewhere that the remarkable anatomical uniformity 
of the neo-cortex suggests that common mechanisms, such as the 4 uni-
versal transformations of pattern theory, are used throughout the cortex 
[Mumford 91-92, 93]. The referee has pointed out that "the uniformity 
of structure may reflect common machinery at a lower level. For exam-
ple, different computers may have similar basic mechanisms at the level 
of registers, buses, etc., which is a low level of data handling. Similarly 
in the brain, the apparent uniformity of structure may be at the level of 
common lower-level mechanisms rather than the level of dealing with uni-
versal transformations". This is a certainly an alternative possibility, quite 
opposite to my conjectural link between the high-level analysis of pattern 
theory and the circuitry of the neo-cortex. 
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current observation of the state of the world with the desired state and 
issues an updated motor command, which in turn affects the black box 
called the world. 

Desired 
Controller  

Motor 
World 

state 	 command 	 

I Observation of effect  

Figure 12a. The flow chart of control theory 

This diagram is very similar to Figure 4, which described how pattern 
analysis and pattern synthesis formed a loop used in the algorithm for 
reconstructing the hidden world variables from the observed sensory ones. 

High-level 
area 

Synthetic 
• 

motor pattern 

Low-level 
area 

Analysis of error 

Desired 

state 

Figure 12b. A motor task via pattern theory 

Figure 12b presents the modification of Figure 4 to a motor task. Here 
a high-level area or "black box" is in a loop with a low-level area: the 
high-level area compares the desired state with an analysis of the error 
and generates an updated motor command sequence by pattern synthesis. 
The low-level area, either by actually carrying out an action and observ-
ing its consequences, or by internal simulation, finds that it falls short in 
various ways, and send its pattern analysis of this error back up. Notice 
that the four transformations of Section 3 will occur or should be used 
in the top-down pattern synthesis step. Noise and blur are the inevitable 
consequences of the inability to control muscles perfectly, or eliminate ex-
ternal uncontrollable interference. Domain warping is the bread-and-butter 
of control theory 	 speeding up or slowing down an action by modifying 
the forces in order that it optimizes performance. Multi-scale superposi-
tion is what hierarchical control is all about: building up an action first in 
large steps, then refining these steps in their parts, eventually leading to 
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detailed motor commands. Finally, interruptions are the terminations of 
specific control programs, either by success or by unexpected events, where 
quite new programs take over. In general, we seek to anticipate these and 
set up successor programs beforehand, hence we need to actively synthesize 
these as much as possible. 

In summary, my belief is that pattern theory contains the germs of a 
universal theory of thought itself, one which stands in opposition to the 
accepted analysis of thought in terms of logic. The successes to date of 
the theory are certainly insufficient to justify such a grandiose dream, but 
no other theory has been more successful. The extraordinary similarity of 
the structure of all parts of the human cortex to each other and of human 
cortex with the cortex of the most primitive mammals suggests that a 
relatively simple universal principal governs its operation, even in complex 
and deep thinking (see [Mumford 91-92, 93] where these physiological links 
are developed). 
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