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Elastica and Computer Vision

David Mumford

31.1 Introduction

I want to discuss the problem from differential geometry of describing those
plane curves €' which minimize the integral

/ (ar® + B)ds. (1)
C

Here o and /3 are constants, & is the curvature of €', ds the arc length
and, to make the fewest boundary conditions, we mean minimizing for
infinitesimal variations of C' on a compact set not containing the endpoints
of ", Alternately, one may minimize

/ K2ds
.

over variations of (" which preserve the total length.

This problem has a very long history: it was first proposed and solved
by Euler [4] in 1744 in the appendix “De curvis elastica” to his monumen-
tal work “Methodus mveniendi lineas curvas maximi minimive proprietate
gaudentes”. These curves have been called “clastica” ever since then, at
least by those who knew of Euler’s work. Curiously for such an elementary
problem, Euler’s solution is not even mentioned in any textbooks on varia-
tional calenlus and therefore it has been rediscovered innumerable times by
people like me who needed a description of these curves. I want to thank
Garrett Birkhofl for steering me first to Love's treatist [11] on elasticity,
thence to Born's prize-winning Ph.D. thesis on these curves and finally to
Euler. T guess that the reason these beautiful curves have remained so ob-
scure is a) because they can only be described by non-elementary functions
and b) because they were developed chiefly by applied mathematicians and
pure mathematicians never looked at this literature.

Among pure mathematicians, a recent but surely not the only rediscovery
is due Brvant and Griffiths [3]. Among applied mathematicians, they were
proposed as potential interpolating curves by Birkhoff and collaborators
and called non-linear splines (cf. [2], p. 171, and [1]). This application has
been pursued by Golumb and Jerome (cf. for instance [5] and the references
cited there). My own interest in them was motivated by computer vision
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problems and 1 discovered later not only that 1 was redoing Euler but also
an earlier computer vision scientist, [8] who had similar ideas. Maybe this
paper will serve to forestall yet more rediscoveries of this 200 year old topic!

In this paper, in §§32.1-32.3, [ want to present the problem from the point
of view of Bayerian computer vision, which leads to elastica as a maximum
likelihood reconstruction of occluded edges. Then, in §§32.4-32.5, 1 want to
present what 1 think are new formnlae for elastica using theta functions.
The manipulation of elliptic functions has remained something of a black
art ever since Euler and | believe that in spite of sporadic efforts for 200
years, nmy formulae for them are in some ways the simplest, yvet don't seem
to appear in the literature.

31.2 Edges in Computer Vision

From one point of view, the central problem of computer vision is this: One
is given a function /(x,y) representing the light intensity produced by a 3D
world and striking a lens from direction , y. One seeks to compute a second
function d(z,y), the distance from the lens to the nearest opaque surface in
direction x,y, hence reconstructing the 3D geometry. A simplified but still
useful idealization of the problem assumes that the 3D world consists of
a small number of opaque objects with smooth boundaries with smoothly
varying albedo illuminated by a smoothly varying light source. Then both
the intensity image [(x.y) and the range image d(x,y) will be piecewise
smooth functions, with discontinuities along “edges™ T in their domain R.
These edges are the directions where a more distant object is just visible
along a ray from the lens grazing a closer object (see Figure 1)! Thus
discontinuities in [ are the first major clue to the 3D-geometry.

A second clue are the singularities of I'. Suppose for instance that there
are 3 objects: a nearest one A, a further one B and a farthest object,
or background €. Suppose the edge of B, viewed against ', disappears
behind A. Then the locus of visible edges I' looks like the letter “T™: the
edges of A and B are smooth curves but the edge of B ends at a point
on the edge of A. See Figure 2 which depicts schematically 3 blades of
grass against a distant background. In fact, from a generic viewpoint, our
simplified world produces an edge I with only 2 types of singularities: these
so-called T-junctions and cuspidal crack tips which arise when a smoth
object develops a crease. The latter is the “elementary catastrophe” given
in suitable coorindates by

"One may think of T" as the visible part of the branch locuses of the maps of
surfaces p : 84, — R.if A; are 3D objects and p : U — R, U7 ¢ R*, maps the
points of the 3D-world to rays through the lens.
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FIGURE 1. An Image of a 3D Scene

d(r,y) = (smallest solution z of 2 — 2z —y=0)+d0,0).

This d(x, y) has discontinuities along the curve 27y? = 4a*, y > 0 ending
in acusp at ¥ = y = 0 (see Figure 3). Note that although I' comes to
an endpoint. a crack tip, at which it has a cusp, it is the visible part
of a smooth 3-dimensional curve I'* 1 r = 32%,y = 2% and only gets a
singularity because I'* turns directly away from the lens at z = 0 and
afterwards becomes invisible in the crease.

A third clue to 3D geometry comes from the fact that an edge of an
object A which disappears at a point P behind object B may often reappear
further on at another point . This is seen in Figure 2 where the edges
of the blades of grass reappear and its signature is a pair of T-junctions
in I' which nearly “match up”, i.e., 2 T"s as in Figure 4 where the dotted
line is the inferred invisible part of the edge of object A behind B. Unlike
the previous clues, this one cannot be “read off” from ' hecause the 2
pieces of I' that end at the T7s are unlikely to line up exactly. What we
need is to measure the relative likelihood of two disappearing edges to be
matched up by an invisible edge in terms of how long and how curved an
invisible edge is needed to link them. To measure this probability requires
a stochastic process to model the space of all possible edges. This is an
approach to computer vision that has been pioneered by Grenander and
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FIGURE 4. An Hlusion of Kanizsa

other statisticians and probabilists (see [7] and [6]).

It may be worthwhile to try to convince the skeptic of the psychologi-
cal reality of these probabilistic reconstructions of 3D scenes. Some very
striking “optical illusions” are due to the fact that reconstructions of the
above type are made automatically at an early stage in visual process-
ing so strongly later stages cannot reverse them if they are absurd on the
basis of one’s knowledge of plausible worlds. An example is the man and
woman entwined in the fence in Figure 4. This and many other beautiful
demonstrations are due to Kanizsa [10].

31.3 A Brownian Prior for Edges

What sort of stochastic process is a plausible candidate for modelling the
relative likelihood of different edges appearing in a scene of the world? Our
edges are to be continuous and almost evervwhere differentiable so that,
when occluded in part, they will tend to reappear with approximately the
same tangent line. The simplest way to do this is to allow curvature s(s),
as a function of arc length, to be white noise n(s), so that once integrated,
the tangent direction #(s) is a Brownian motion W (s). Then the positiion
is given hy:

x(s) = [;cosO(t)dt + 2(0)

D)
y(s) = _ﬂ:sin()(fju"f-}-yfll}_ (2)

Let's also assume that the total length ol the curves is exponentially dis-
tributed.
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Choosing a very large N, we may approximate this by a discrete time
system in which the curve I' is a polygon of length ¢:

whose sides have length £/N:

£
Piy1=F+ —ﬁ(COSg.‘,Siﬂgi); 0<i< N

and the 0; are discrete Brownian motion scaled down by £

[ e ;
6i+l:9i+ Fni+ll US?.(.N—I!

n; independent normal random variables with mean 0, standard deviation
o and the random variable ¢ has exponential distribution A - e~ *df, Then

Pr(r) = Vz_ﬁﬁe-ﬁﬂ-’ﬁ"’—-" cdny ---dnpy 1 de

it (Rigr-®i\ i, 2 (3)
= cnst.e Lw( N ) {40 M-dn, coedny ydf

which is a discrete approximation to
& f{un’-H’i)ds

if &« = 515, 3 = A. Thus we see that elastica have the interpetation of being
the mode of the probability distribution underlying this stochastic process
restricted to curves with prescribed boundary behavior, e.g., the maximum
likelihood curve with which to reconstruct hidden contours. Some typical
elastica are shown in Figure 5.

For applications to computer vision, another invariant of this stochastic
process is even more important. When you find some set of T-junctions
in an image, you must decide which pairs are most likely to represent the
disappearance and reappearance of a single contour behind a nearer object.
For this we want the generating function of the stochastic process (2):

r<z(t) <z + Ax z(0)=0
plr,y, 0. ) AzAyA0 = Pr | y<y(t) <y + Ay y(0) =0
B <B{t)<f+ AP o0y =0

The forwards and backwards diffusion equations for p are:

o o : A s I 1
5 = O- g —cosf 5 —sinf- 5{]: and
(1)

a
B el g2 2\,
a = 7 ("' ay ~ Yor .‘)a) P~ ar
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FIGURE 5. Some Elastica

where o measures the amount of noise in the curvature. For each ¢, p(x, y,6.1)
is a probability distribution on R? x S! in the variables =, .6, For t = 0,
it starts at the delta function

b(x)6(y)6(0)

and then spreads out. It spreads in each of 3 directions in totally different
ways — it is transported in the (cosﬂgf_; + sin 3%)-(151‘0{1]()11, it diffuses in
the O-direction and it fills x, y, @-space only as a 2nd order effect, via the
non-integrability of the (sin 8- dx —cos 0-dy)-foliation. We can also integrate
the backwards equation with respect to # and get a diffusion equation for
the marginal probability p(x, y):

N 2 i
(o2 42 2)'s. 2
at iy dxr 00 Ox
I have looked for an explicit formula for p and # but in vain. Still, on the
basis of the results of §32.2, | would conjecture that a formula exists, in
terms of elliptic functions of some kind.
The function we want for computer vision is the probability that an
occluded curve reappears at a particular point (x,y,0) before dying its
exponential death, i.e.,
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FIGURE 6. Graph of q(x,y)

oc
qle,y.0) = [ e M. plx,y,0,t)dt
J0

which solves

2

a q Oq . i)t,f
Ag=o- 557 cosfl - o sin f - f}_f;‘

We have integrated this equation numerically. The marginal ¢(x, y) is shown
in Figure 6 and the conditional ¢(4,y. @) is shown in Figure 7, both with
A = 017 (hall-life of 4 units of distance) and ¢ = 72/128 (in time 1,
standard deviation of @ is w/8). Note the interesting singularity of ¢ at
x =y = 0 where its true value is infinite. The peak of q(4, y, #) corresponds
to a horizantal curve following the x-axis, i.e., y = 0 = 0, and as y increases
or decreases, the corresponding most probable # also increases or decreases.

31.4 Alternate Priors

The stochastic process (2) has a major failing as a model of edges in images;
images are 2D projections of 3D scenes, so edges are 2D projections of 3D
curves. In particular, this means that edges have near singularities when
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FIGURE 7. Graph of g(4.v, )

the 3D curve moves approximately towards or away from the imaging sys-
tem. An alternate model is to generate sample paths in R* by integrating
Brownian motion on the sphere S? of 3D unit tangent vectors. This leads
to:

x(s) = j[: cos@(t) -sing(t) - dt

y(s) = [, sinf(s)-sinp(t) - dt

Gty = DBy(t) + ](: ﬁﬁ O<d<m almost surely (5)
0ty = Bs (J‘,: -"'f:a—;) : 0<0<2n

where ¢ and @ are colatitude and longitude on S and B, and B, are
independent Brownian motions. The point is that to get Brownian motion
on §%, § must be rescaled to go faster near the north and south poles and
¢ must have an extra drift term pushing it towards the equator (cf. [12],
§4.3). This is analytically a bit of a mess, but a simple approximation to
it is given by the Uhlenbeck process: this models a particle in the plane
subject to white noise random forces plus friction pulling its velocity back
to 0. The equations are:

] ]
e a-ny(t) — 3%
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where ny; and ns are independent white noise. This process has the advan-
tage of being a Gaussian process, hence its generating function p(z, y, &, 9, 1)
can be readily calculated and applied to image analysis. Il an exponential
death is inchided, the maximum likelihood curves which reconstruct oc-
cluded edges for this process minimize integrals of the form:

d2z\* d*y * dr\* dy\*
e + | —= + =i z i o 4~ 1. rd
L{“[(cﬂ-’-) (dz?) b (dt) i (d!.) Yt W)
If 3 =~ = 0, there are cubic splines and otherwise they are transcendental
curves generalizing exponential spirals of the form

z(s) = a1eM® +az2e??® + aze™ 0 + age M
y(s) = bre™ +be? fbhgem 2 L he M A S A >0
or
x(s) = aeMsin(us +ag) + aze*sin(ps + ay)

y(s) = bie* sin(ps + ba) + bae™ M sin(pus + by).

Curves which minimize the above integral (7) plus an “external force” term
JoI(x,y)dt have been used in computer vision under the name of “snakes”
[9] to reconstruct edges which are mostly visible but obscured by noise,
gaps, blur, ete.

In Figure 7, we show some sample paths from all 3 priors for comparison,

31.5 The Differential Equation of Elastica

We would like to give an explicit formula for elastica in terms of theta
functions. The first step is to characterize them by a differential equation
for their curvature x(s) as a function of arc length. Using vector notation,
start with the curve itsell #(s) in arc-length parametrization, its tangent
and normal vectors are

Then

Now consider an infinitesimal deformation:

(newr) = T(s) + 6(s) - fi(s).
Then 3 .
(newid) = t+8&-1—06k-1
(1—6K)-(t+ &)
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(since & - & is effectively zero). Then

(newds) = (1—dr)ds
(newt) = t+6 -7
(newii) = ii—& -1

We want the deformation to preserve arc length, i.e.,

/(newds) = fd.s

or

/ ok -ds =10

C
Now 3
(newk) - (newri) = —-(—IM

' newds

or
(mewk)(ii — &' 1) = L (i+¢ i)

= (1+6k) (K7t + 6" -7i— &'k 1)

= (k+8" 4 8x*)(ii — 8't).
Therefore

newk = K + 8" + 6x°.

Thus

new( [ k*ds) J(k+ 6"+ K28)% - (1 — 6K)ds
J K ds+ [(2r8" + K*8)ds
J s+ [(28" + x¥)ods

(integration by parts).

If C is an elastica, J #2ds is a minimum for all deformations which preserve
[ ds, hence for some constant R:

26" + K% = gn. (8)

Conversely, this differential equation implies that €' is a critical point for
f{nz + -,‘;i)ds. We won't consider the question of which critical points are
minima and which are not, but go on to write down the solutions of (8).

31.6 Solving for Elastica

Multiplying (8) by k' and integrating, we get

1
{’—“)2+f. ~RK2-8§=0
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for some constant S, so that s is an elliptic integral in »

q—f g

Now let £ be the real elliptic curve

vP=—u'+ R’ + S

~What this means is that the map

s —s (k(s),2x'(5))

identifies the elastica with the real points £g of £. Under this map, ds
becomes the differential 2du/v, the differential on £ unique up to scalars,
without zeroes or poles. If A is the lattice of periods of ds, then, as usual,
£ is uniformized

£ = C/A
R = R/RNA

and arc length s on the elastica is just the additive coordinate on the elliptic
curve, the variable of the miversal cover C. The curve £ has 2 conjugate
imaginary points P and P at 0o and the function x(s) on the elastica is now
the restriction to &g of the meromorphic function u on & with 2 simple
poles at P and P. What we want to do is to integrate s twice to get the x
and y coordinates of the elastica as functions on £ . To do this, combine
them into the complex-valued function

2(s) = x(s) + V=T y(s)

[Pt

on €R. We must solve:

3__; — ei0(s)

9% = u(s),

which determine z up to rotation and translation.
Note on &£, the identities

[v + i(u® — {,‘—’]] o —=i(u? - %?)] v?+ (u? - Ru® + l_‘ii}

- s
= S+ &,
This shows that v +i(u® — —] are functions on £ with no zeroes or poles at

finite values of (u,v). Examining their behavior at the infinite points P. P.
we compute their divisors (possibly interchanging F, ).

2P — 2P
}} = 2P -2p

(:'+:(u -
(v —i(u

<slael
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FIGURE 8. Sample Paths forom the 3 priors

i.e., P — P is a divisor class of order 2. Now let s, € C map to P, so g
maps to P. Then sy — &g € %A expresses this fact on C.

Let wy be a generator of ANR and {w;,ws} a basis of A. Then the theta
function:

Bals) = Z ewin‘(ﬁ)+21‘rin(ﬁ;] (9)
nEZ
is a very rapidly converging holomorphic function on C such that:
a) Ua(s + wy) = Ja(s)
b) Da(s + we) = €23 TS Ya(s)
¢) ¥4 has simple zeroes at the points %wl + %uz + A and no other zeroes.

(Cf. [13], §1.4).
Let

d ' '
E(s)='¢ (—10g19A(S —s8p+ L‘\'174-(”2)) - as (10)
ds 2
(a and ¢ to be fixed shortly). The a), b), and ¢) imply:
W) Fls +wi) = F(s)



504 David Mumford

b)) F(s+wa) = F(s) — C—ﬂwg
¢’} F is meromorphic with simple poles at the points sy + A and no other

points.

It follows that %‘-:f is periodic mod A, hence is a meromorphic function on
E. It has a double pole at P and now choose the ratio a/c so that

dF -
—&;(P):

a d? wy + wo

= d 210[{19;\ (Sn —8g + 2
Then %—F is zero at P and has one remaining zero. Since 2P — P = P, this
last zero is P too, and

).

dF
ds

Thus, if s € R, u(s),v(s) € R, s0

=d - (v(s)+ tu(s)® - %), some constant d.

(9E) = d-(u(s) —iu(s)? + &)
l%{":r = |d?-(S+ -*-_?;), a constant.
Finally choose a, e so that
4
ds

Il

on R.
It now follows that

R—C
s +— F(s)

is an arc length parametrization of a plane curve. Finally write

aF, . s B dF
FP —(s)=e or f(s) = —lug-i—

and

i'Jirg(q]_ﬂ\(s) or x(s):l‘%%%:’:.

# is again a meromorphic function on &£, now with simple poles at P and
P only and using ds = 2du/v
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g‘{; = d(v+iu® — TR)
%5,'— = d[ dv + Zm £)
= + Zzu 5)

? ‘Fuu"') + tuw)
( (—-1n3 + 2Ru) + iuv)
= qu- d (m -—~—+1.=]

z dff'

Thus x(s) = u and this proves the final result:

l

—-Q.

il

Theorem FElastica are all given in their arc length parametrization by
maps:

R—C
sr——’c‘a‘-f;lngz?,\(s—n)—a-s

where A C C s a lattice such that A = A, n satisfies n — ij € %A, a,c
are suitable constants defined above, and 9y is the theta function defined
in (9).

One can continue the analysis and classify the pairs (A, 1) which give
clastica. It turns out that 2 types suffice:

AN=Z+Z-it, g=-5,
4
and
x\—Z‘}"Z ”——2'_1-— ”:l)‘
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