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This volume contains two papers dealing with compu-
tational approaches to face recognition, and it seems
worthwhile to make explicit one of the key differences
between them.

Turk and Pentland’s article extends a method due to
Kohonen for learning categories and reconstructing ex-
emplars of these categories from degraded input, using
linear methods. This approach is based on the idea of
describing exemplars by individual feature vectors in
some vector space V, and the hope that all exemplars of
a single category will have feature vectors in or near a
high codimensional subspace W of V;, in particular, the
distribution of these feature vectors might be approxi-
mately multidimensional gaussian, with only a few large
eigenvalues, and W would be the span of the correspond-
ing eigenvectors.

Yuille’s article extends ideas of Elschlager and Fischler
on characterizing categories of images by a configuration
of feature points. This approach is based on the idea of
describing exemplars by vectors from one feature point
to another, or some geoinetrically derived quantities.
This idea is extended by having a measure of fit of some
kind of template for each feature at each location, and
doing a gradient descent over ways to overlay the com-
posite template with suitable proportions over the orig-
inal image.

I want to make explicit what seems to me a key dif-
ference between these approaches, which contrasts the
method of representation used by the two approaches.
To illustrate the difference, it is convenient to take a toy
example in which we can work everything out, instead
of trying to imagine what happens right away with such
complex stimuli as faces. Let us imagine a category of
widgets, which are simply black lines with one white dot
on them. Faces are often imagined as relatively bland
areas of skin on which the eyes, nose, and mouth are
placed in differing configurations (e.g., the eyes closer
or further apart), and what we seek to abstract with
widgets is the placement of such strongly salient readily
located parts as the pupils of the eyes within the face.
We make the example one-dimensional to simplify the
math.

We imagine the image of the widget normalized to

w~s>fixed position-and scale (to eliminate the background),

and sampled on a fixed grid, say with N sample points.
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The widget then produces a feature vector of N values.
Depending on where the white dot is, the feature vector
will be N — 1 zeroes and 1 value of some positive
quantity, call it one. Or if we allow interpixel locations,
we may instead have two adjacent pixel values of ¢ and
1 — ¢, some t between 0 and 1. The mean of this “cluster”
of possible feature vectors is simply

(UN, UN, ..., UN)

which may be thought of as a very blurry view of a
generic widget. The “shape” of the cluster is either N
points forming a basis of V, or, if interpixel dots are
allowed, a polygonal curve snaking around V, spanning
it. The eigenvalues of this cluster are all equal or nearly
equal and the only possible widget subspace W is all of
V. This leads to N coordinates for a widget. The alter-
native, of course, is to measure the widget by the location
of the white dot, using 1 coordinate! In other words, if
the spatial location of key features is one of the main
variables among exemplars of a category, the eigenspace
approach leads to an inefficient representation, in which
the number of coordinates goes up like the number of
possible locations of the feature (up to the desired ac-
curacy of the representation). On the other hand, the
strength of the eigenspace approach is that many exam-
ples of cluster variability do lead to approximately gaus-
sian distribution in feature space, and then this approach
does isolate the independent dimensions of variability
very well.

This tension between these two methods of describing
a signal also occurs in the theory of wavelets, a recent
attempt to use linear methods to achieve the most com-
pact representations of various classes of signals. The
idea of wavelets is to start with a basic wave function f{x)
and represent all signals as superpositions of translates
and scalings of f, specifically via the functions:

fifx) = f2x +j)

This approach has problems if the signal has disconti-
nuities which are not located on the integral grid, or its
refinements by powers of 2. Mallat and others instead
have proposed a radically new approach! in which many
more functions than needed for a basis are used to
represent the signal, e.g., the whole two-dimensional
family:
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Jap(x) = fax + b)

Then, in the expansion of each signal, only those func-
tions fup with large coefficients are retained, This rep-
resents a merging of the two schemes for representing
signals, or exemplars. To summarize, I feel that to effi-
ciently describe faces, it will be very useful to make a
thorough empirical study of what the “shape” of the

88  Journal of Cognitive Neuroscience

cluster of face images really is, and what is the most
efficient way to encode the variation present.

Note

1. cf. Mallat & Zhong, Complete signal representation with mul-
tiscale edges, preprint, Courant Institute, NYU, 1990.
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