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SECTION I: INTRODUCTION

This paper addresses the problem of how animals categorize
visual stimuli according to their shapes, a problem that has proved to
be surprisingly subtle., The difficulty may arise in part from the
very richness of the stimulus domain. Not only are there any number
of shapes, but there are any number of ways to represent a given
shape, and some representations will be more useful than others for a
particular purpose. This paper examines the performance of natural
intelligences, both human and avian, in recognizing a small collection
of arbitrary shapes, and compares this with the performance of
mathematical algorithms devised for computer recognition of the
shapes. The comparison across species may reveal differences in shape
representation that reflect differences in the two species”
adaptation to their respective environments., Such findings may have
implications for the design of machine algorithms, which could be
modeled after the different species, as appropriate for accomplishing
different tasks.

The experiments reported here focus on the perception and
recognition of shape so that the appropriate stored representations
can be compared with each other and with new stimuli. We draw
inferences about the nature of shape representation by examining the
patterns of confusions made by visual systems when given the task of
differentiating among different shapes. The logic of the method is
based on the principle that how shapes are represented determines

which pairs of shapes look similar and which look different., For
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example, some schemes for the representation of shapes make mirror-
image shapes unlike each other (e.g. any scheme with even crude
coordinate localization of prominent parts would do so), but mirror-
image confusions are common in human and pigeon performance, though
perhaps not equally so (Vaughan & Greene, 1984). This observation
underlies the central idea behind the present research: the pattern of
confusions displayed by humans and pigeons in experimental situations
should allow us to draw inferences about the ways shape is represented
by the two species.

The focus of this study is on shape per se: the categorization of
single, simple, uniformly colored figures on a contrasting uniform
background. Qualities such as color and texture and motion are not
varied in our stimuli. Moreover, we are interested here only in 2-
dimensional shape, so shading and other depth cues from illumination,
texture gradients, occlusion, etc. are excluded. What we are left
with are just black and white silhouette images of simple shapes.

Why look at what might seem to be so restricted a world of visual
stimuli? One reason is that the essence of vision, the characteristic
qualities that make visual input distinctive, seems to be present in
even this simple class of images. Another reason is that shape cannot
be described easily in mathematical terms, whereas other visual
qualities often can be. For example, there is a simple and satisfying
way of describing color, at least to a first approximation (e.g., by
three numbers representing the amounts of red, green and blue light

that must be added to obtain the given color as seen by humans). No
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analogously straightforward description of 2-dimensional shape has
yet been formulated.,

To be precise, it is possible to define mathematically a space S
of all 2-dimensional shapes: each point x of S stands for a particular
shape A(x), and every shape in the plane (say with a smooth outline
and a finite set of corners2) is equal to A(x) for exactly one point x
in S. In S one may talk of points x and y being near or far: this
corresponds to the shapes A(x) and A(y) being similar to each other or
not3. Then the question arises: what is the simplest way to define,
for each point x in S, a set of coordinates a(x), b(x), ..., so that
two points x and y are close if and only if their coordinates are
close. First of all, one needs an infinite set of coordinates, not
three as with color. Thus one says that the space S is infinite-
dimensional. Secondly, the space S apparently is not “flat” but has
holes.4 This means that if you find coordinates a(x), b(x),... as
above, you cannot require that every possible set of values of the
coordinates actually comes from a shape. Thirdly, it is not clear how
to find an infinite set of coordinates a(x),..., even with this
caveat.>

The principal case where confusabilities of shapes has been
studied with human subjects is that of the confusions of the letters
of the alphabet. Such studies were pioneered by the Gibsons (cf.
Gibson, 1969) and continued by many others (e.g. Coffin, 1978;
Holbrook, 1975; Keren & Baggen, 1985; Podgorny & Garner, 1979;

Townsend, 1971; Wolford, 1975).
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It seems fair to say that, despite all the work on letter
confusions, there is as yet no good general-purpose theory of shape
representation that can be used even to explain patterns of letter
confusions for human subjects with a reasonably high degree of
precision. The problem with the available theories may be with their
formal structure as such, or may be with the particular choices made
to make the theory precise. For example, the notion that shape can
be appropriately described in terms of spatial relations among parts
or "features" may be correct, but the appropriate relations and
features may not yet have been identified.

Recently, Blough (1985) taught the roman upper case letters to
pigeons and recorded their errors during learning. He compared his
results with the human alphabet confusion data, finding substantial
commonalities between the two data sets. It may seem odd to suggest
that such inter-species comparisons may be illuminating. However,
recent work on the pigeon”s extraordinary capacity for visual
classification implies that the species possesses mechanisms of great
power, comparable to those of the human system and well beyond
anything yet achieved by artificial systems. The pigeon (and other
birds) have a brain structure, the Wulst (see Karten, Hodos, Nauta &
Revzin, 1973; Pasternak & Hodos, 1977), that may give it a special
visual capacity as an adaptation to the visual way of life of this
class of animals. With a relatively small nervous system especially
adapted to visual perception, and its proven capacity to match at
least some of the human ability to classify shape (see also

Herrnstein, Loveland, & Cable, 1976), the pigeon may be an
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exceptionally useful model for the development of artificial visual
processing systems.

Our working hypothesis is that the problem of shape
representation is basically the same for the vision of a computer, a
human, and a pigeon, in the broad sense that each visual system must
solve the problem of extracting invariance from varying exemplars.
Although our research has an inductive component —- the point of
departure is a set of confusions for human or pigeon subjects —— it is
also guided by theories of shape representation. We are particularly
interested in whether specific representational schemes will prove
useful for interpreting the confusion data, and whether the same
scheme will apply to both human and avian data.

The main types of shape representations that have been proposed

may be classified as follows:

I) Geometric data structures
a) Two—dimensional structures: These

representations are two—-dimensional arrays, whose
elements are called pixels, which may simply record
which points are in and which are out of a shape or may
result from further processing such as filtering,
thresholding, segmentation, or more abstractly
"annotation" (which to say, the assigning of special
labels to particular pixels)6. Comparison of this sort
of representation with stored information is usually

done via template matching. Most theorists argue that
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this representation is not appropriate for the end-
product of the encoding process in humans (e.g.
Lindsay & Norman, 1977), but nevertheless may be used
in some tasks (cf. Lowe, 1987a and 1987b; Ullman,
1986).

b) One—dimensional structures: The boundary of the
shape may be described by splines, chain-codes and
"image files" (as in Kosslyn, 1980). They can be
compared directly or indirectly via generation of an
intrinsic image. The comparison algorithm is either
some sort of template match or the use of grammars that
generate all descriptions in each class to be
recognized (Fu, 1982).

II) Combinatorial data structures

a) Feature lists: These representations are used
in the classical approach, either specifying necessary
and sufficient features (a la Aristotle) or more
complex weighted sets. There is no organization among
features in this scheme. The comparison algorithm here
is a simple part-for-part match,

b) Structured networks: These representations make
explicit the most salient parts of the shape, which are
linked by a small class of universal relations (e.g.
"attached to', "right of", "inside'", etc.). The whole
representation is a tree or a graph, often organized

hierarchically, (cf. e.g. Palmer, 1977; Reed, 1974;
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Reed & Johnsen, 1975; Marr, 1982). Comparison here
involves graph matching, by either combinatorial
algorithms or by relaxation,

ITI) Distributed, non—locally interpretable data structures,
Boltzmann machine, and other neural networks. Here
information is stored in the weights of the
connections in a network, and matching is done by
“running” the network, often finding the best (or
"lowest energy") fit between a pattern of input and a
pattern of activation in the network (as in Rumelhart &
McClelland, 1986). If this model is correct, it may be
impossible to infer the nature of the represented
features or dimensions that underlie confusions; they
may be accidents of the "weight space'" formed by the
network, with no particular semantically interpretable

meaning.

In order to identify the representation scheme used by humans and
pigeons, we need to have definite quantitative predictions of what
kind of performance to expect if a visual system uses one or another
scheme. To get these, we have implemented computer programs based on
several of these schemes, implementing them in the ways which seemed
most plausible in light of the data. Details will be given below in
the sections devoted to each scheme.

In short, we chose one set of simple shapes and presented these

as stimuli i) to pigeons in a learning experiment, ii) to humans in a
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discrimination experiment and iii) to computer programs for matching.
In each case, we obtain a table of either errors, response times, or
degrees of match. These tables are analyzed by the same techniques
and directly compared with each other. Our goal is to clarify the
similarities and differences in these patterns of data. Of course,
computer programs to match two shapes typically have various
parameters in them, as well as numerous variants, in which similar but
not identical procedures are followed. Thus, one of the main parts of
our analysis has been to explore the choice of parameters and variants
in such a way as to find a computer program of the class in question

that best predicts the human or pigeon data.
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SECTION II: METHOD

Pigeon Experiment

Subjects. Six adult male White Carneaux pigeons, maintained at about
80% free-feeding body weights, served as subjects. None had worked
previously in any experiment requiring complex visual-form
discriminations.,

Apparatus. The chamber in which the birds were tested was 30 cm long,
30 cm wide, and 33 cm high. Centered on the front wall was a 6.3 by
4.4 cm translucent panel, onto which slides could be back-projected
and which, when pecked by a pigeon, sent a signal to the computer. On
either side of this screen panel were standard pigeon keys, of which
only the left one was used. Below the panel was the opening for a
standard mixed grain hopper. This chamber was enclosed within a
sound-attenuating plywood shell, with a fan that provided masking
noise. A Kodak Carousel projector was mounted outside the shell, and
projected onto the screen panel through a hole. The experiment was
controlled by means of a PDP-8/e computer running SuperSKED software.
Stimuli. The stimuli used in this experiment consisted of 35mm slides
of 15 solid black polygons on a white background, illustrated in
Figure 1; all of the polygons have the same perimeter. They were
constructed so as to fall, intuitively, into three classes of five
polygons each. The first class consisted of nearly square shapes,

some with corners removed and some with one edge partly deformed. The
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second class consisted of diamond, and modified diamond, shapes,
whereas the third consisted of modified and/or truncated isosceles
triangles. The size and orientation of each stimulus were not

varied, though their location was (see below).

Procedure., At the beginning of each session, a response key to the
left of the main screen key was illuminated red. A single response to
that key produced three sec access to mixed grain. Four sec later the
first slide was shown. Pecking responses to the screen were recorded
for further analysis during the first 10 sec of presentation of a
slide. Following that a variable-interval schedule of reinforcement
with an average interval of 10 sec and a range of 1 to 35 sec (VI 10
sec) was in effect. At the completion of an interval in the VI, if
the slide was positive (i.e., contained the positive polygon), a
response within two sec of the preceding response (which could occur
prior to the end of the VI) operated the food hopper for three sec.
When the food cycle concluded, the projection lamp was turned off for
four sec, then turned on with the same slide in place. After 10 sec
(during which time responses were not recorded), a response within two
sec of the preceding response again produced food for three sec.

After this second reinforcement, the projector turned off, and four
sec later a new slide was shown. If the bird failed to produce
reinforcement 60 sec after timing out of the VI schedule, food was

presented automatically, and events proceeded just as if the bird had
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in fact produced the food. 1In the case of a negative slide (i.e.,
containing a negative polygon), responses were recorded during the
first 10s of slide presentation. Next, a VI 10s was initiated, and,
at the end of an interval in the VI, after five sec had elapsed
without a response, the projector went off, and four sec later the
next slide was shown. Thus, a negative slide could remain
indefinitely, until a five sec interval elapsed between consecutive
pecks. All analyses are based on pecking during the initial 10 sec of
a slide”s presentation, prior to reinforcement or to the operation of
the VI.

There were 75 slides in the slide tray, five copies of each of
the 15 stimuli. The copies differed only in the precise placement of
the polygon, which was either central, or slightly above, below, or to
the left or right of, the center. The point of this variation was to
prevent the pigeons from focusing on specific locations on the screen.
The slides were shown in a different order in each session. The only
constraint on the order of slides was that each set of 15 slides
(e.g., slide sets 1 to 15, 16 to 30, and so on) contained one of each
of the 15 classes (by '"class" we mean the set of five exemplars of
each polygon). It was thus possible for the same class to be repeated
twice in a row, across the boundary between sets of 15 (e.g., the
fifteenth slide might be from class 4, as well as the sixteenth
slide). At the end of the first revolution in a session, the left red
key was again illuminated, and a single peck at it produced three sec

of food; four sec later the first stimulus was again shown. At this
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point the positive class could be different, depending on
contingencies described below.

Each session comprised two revolutions of the slide tray, with
the possibility that a different polygon could be positive during the
two halves of the session. Starting with session 25, a new positive
polygon was introduced as follows. During the first revolution of a
session, the same polygon was positive as on the last revolution of
the last session. On the second revolution, if the polygon had first
been made positive on the previous session, it always remained
positive. If it was first made positive two sessions previously, a
new positive would be selected only if the ratio of average pecks to
positives to average pecks to negatives exceeded 3. If it was first
made positive three sessions previously, the criterial ratio was 2.5.
If it was first made positive four sessions previously, the ratio was
2. If it was first made positive five sessions previously, the ratio
was 1.5, If it was first made positive six sessions previously, a new
positive polygon was selected, whatever the ratio of positive to
negative pecks. In this way, pigeons that learned rapidly would
advance through the set of positive polygons quickly. Slow learners
would advance more slowly, but there was a minimum rate at which all
pigeons were forced to advance.

The order of positive polygons was constrained so that if two
polygons were consecutive in either direction for one pigeon (e.g.,
following polygon 7 as positive, polygon 4 was positive, or vice

versa), they could not be consecutive in either order for any other
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pigeon (for mo other pigeon did 4 follow 7 as positive, or 7 follow 4

as positive).

Human Experiment

Subjects. Twenty-eight Harvard University students (14 males, 14
females) volunteered to participate as paid subjects.
Stimuli. The same polygons were used for the human subjects as for
the pigeons, with the only difference being that each was slightly
displaced to the left of the center of the projection field of the
slide projector.
Procedure. The subjects were asked to view a series of polygons back-
projected through a translucent screen. The subjects sat in front of
the screen, and the figures subtended an average of 50 degrees of
visual angle. The subjects were shown a polygon and told that it was
the standard for the next series of test trials. The task was to
decide whether each polygon in the next 21 trials did or did not
match the standard. If it did, the subjects were to press one
response key; if it did not, they were to press the other key. Each
of the other 14 polygons appeared once in a series and the standard
appeared seven times; there was thus a two-to-one ratio of "different"
to "same'" trials. The subjects were not told this ratio and were
asked to make their responses as quickly and accurately as possible.
In order to help the subjects learn the appearance of the
standard stimulus, we asked them, first, to study it, and then to

close their eyes and form a visual mental image of it. Following
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this, the subjects were to open their eyes and compare the mental
image with the actual polygon in front of them. Disparities between
the two were to be noted, and then subjects were to repeat the
process, closing their eyes and forming an image again. A subject
would repeat the process until he or she claimed to be able to form an
accurate mental image of the standard polygon for the series.
Following this were the 21 test trials. An Apple II computer
presented a slide by opening a tachistoscopic shutter, which was left
open until the subject responded by pressing either of the response
keys, at which point the shutter closed. Four sec later a new test
stimulus was presented, and so on through all 21 trials. A new
standard polygon was then presented and the entire process repeated,
until all 15 polygons had served as the standard.

Seven different orders of the standard polygons were prepared,
and then these orders were reversed, creating a total of 14 orders.,
The seven orders of standards satisfied two constraints. First, each
standard appeared equally often in the first and final third of the
presentation orders. Second, for six of the orders, no counsecutive
pair of stimuli appeared more than once; in the seventh order, one
pair that had been used in another ordering also appeared here. The
order of test stimuli was random, with two constraints: a) each slide
appeared first in a list exactly once, and b) no ordered pairs
appeared more than once in the test sequences, excluding pairs that
contained the standard. For each order of standards, the test
polygons were presented in a given order once, and once again in the

reverse order.
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For each of the seven orders in which the standards were

"same" by pressing the key under

presented, two subjects responded
their dominant hand and "different" by pressing that under their non-
dominant hand, and vice versa for another two subjects. For a given
order, the two subjects responding in a given way received the test
trials in the opposite orders.

Subjects were tested individually in a single session typically
lasting slightly more than an hour. No feedback was given for
accuracy. Because subjects were almost always accurate (see below),

response times were the measure of primary interest. The computer

running the experiment also recorded responses and response latencies.
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SECTION III: ANALYSIS

A) THREE PROCEDURES FOR ANALYZING CONFUSION MATRICES

The present experiments were designed to produce matrices whose
rows and columns both correspond to the set of stimulus forms.
Patterns of matrix entries represent the relative difficulty of
discriminating among the stimuli, as reflected either in the pigeon
error data or the human latency data. Matrix entries that are smaller
(i.e., fewer errors or, for human subjects, shorter latencies)
indicate that the shapes being discriminated are relatively different;
entries that are larger indicate that they are relatively similar.

The attraction of experiments of this kind is that such a "confusion
matrix'" contains a great deal of information about the set of stimuli
as perceived by the subject, pigeon or human. Patterns in the
matrices tell us about which dimensions are being employed by the
information processor by showing which stimuli are closest, which
stimuli are clustered, and so on.

The totality of all shapes, and in particular of all polygons,
forms mathematically an infinite dimensional space (see Introduction);
the 15 stimuli used in this experiment probe a few of the dimensions
present here. The initial goal of the analysis of these matrices is
not to find some specific statistic to prove or disprove any specific
hypothesis about confusability, but to see what the data themselves

are trying to say. We seek algorithms that can tell us something of
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the structure of an arbitrary matrix; afterwards compare the results
of the analysis with the predictions of various theories of shape
discrimination to discover whether the present data support these
theories.

In analyses such as this, an important issue is reliability.
There are no accepted tests for reliability of multi-dimensional
scaling or clustering. Nonetheless, one must worry whether the
conclusions are really strongly supported by the data or are artifacts
of too much analysis built on too little data. We have two ways of
establishing reliability of our analyses. One is the so-called
“bootstrap”, an idea due to Efron (Efrom, 1979; Efron & Tibshirani,
1986)., 1If the data are taken from a small set of experimental
subjects, say N of them, one samples randomly from the full set of N
subjects but with replacement. Since sampling is with replacement,
when drawing N cases, some subjects will be chosen more than once and
others, not at all. If the set of subjects was a fair sample of the
population from which it was drawn, this procedure is one way to get
additional samples. Whatever data analyses we have performed with the
original N cases is then performed with the '"new'" bootstrapped samples
(i.e., the one obtained by drawing N times with replacement), checking
to see whether the results are like those obtained originally. The
procedure is repeated several times, always sampling the original N
subjects with replacement randomly.

In the second method for checking reliability, we change the
criterion as to which responses were included. For example, with

pigeon data, we vary the criteria used to select those trials whose
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data are averaged together; for human data, we vary the cut-off beyond
which response latencies are discarded. Again, the analysis is
repeated with matrices obtained for different response criteria. If
the analysis is stable, similar results are obtained with various such

criteria.

KYST., Multidimensional scaling is one method for extracting the
underlying structure inherent in a “confusion” matrix. KYST (Kruskal,
1964) seeks a mapping of the stimulus set onto a configuration of
points in a low-dimensional Euclidean space such that for any 4
stimuli A, B, C and D:

[A is closer to B than C is to D in Euclidean space]

if and only if

[the matrix entry AB is greater than the entry CD]
Put another way, one seeks a monotone rescaling of the data that
converts the observed confusion matrix into the matrix of distances
between suitable points in Euclidean space. This is likely to be too
much to ask if the dimension of the Euclidean space is low (it puts
too many constraints on the relative positions of the points, because
the observed matrix reflects many influences including unsystematic
error), so KYST is based on searching for a configuration of points
that minimizes a measure of the misfit after monotone rescaling. This
measure is called the “stress.” I1f the Euclidean space has large
enough dimensionality, stress 0 can always be attained, but the result
is not informative - the stimuli typically space themselves out over a

sphere, adjusting their positions a bit to achieve the necessary
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inequalities. But if the configuration is forced down into a lower
dimensional space, the results are often quite informative. A rule of
thumb is to use at most n-space where

n < (# of stimuli) / 4.
In our case, almost perfect 3-dimensional configurations usually
existed, and the 2-dimensional configurations were the most

informative,?

ADDTREE, Each of the many clustering algorithms in the literature
has its specific advantages and drawbacks (see Duda and Hart, 1973,
Ch.6). However, we were attracted by the recent clustering algorithm
introduced by Sattath and Tversky (1977), called ADDTREE, which seems
to have worked especially well in analyzing other types of confusion
matrices., To carry this out, we have written our own code, following
as closely as possible the published description.

The idea is to examine each 4-tuple A,B,C,D of stimuli and ask
whether both of the matrix entries AB and CD are greater than both of
the entries AC or BD. This means that both pairs, AB and CD, are
thought to be more similar than both pairs, AC and BD. We count up
for each AB how many such pairs CD are found. This gives us a new
matrix whose ABth entry is also large whenever A and B are considered
similar., Finally, A and B are clustered if the entry in this new
matrix for AB is larger than the entry for any other pair, AC,
including A or any other pair, BC, including B. The stimulus set is
collapsed by lumping the clusters together. A smaller confusion

matrix is formed whose rows and columns correspond to these clusters:
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for any pair of clusters, the new entry in the confusion matrix is
computed by averaging the old matrix entries for all pairs AB, A in
one cluster and B in another. Then the process is repeated
iteratively until everything collapses to one cluster. The result is
a tree with the stimuli as its leaves and the conjectured clusters are
the subsets of the stimull obtained by cutting one branch of the tree
and considering all leaves on one side of the break. The strong point
of the algorithm is that the complement of any cluster is also a
cluster: all clusters are thought of as being formed in a context,

relative to other stimuli present.

NEAREST NEIGHBORS. Finally, the most direct way to analyze a
confusion matrix is to examine the largest entries of the matrix, the
“nearest neighbors.” Because we only used 15 stimuli, it was
practical to do this by inspection. For each matrix, we made a
histogram of the entries. Usually, most entries are in the middle and
small range, representing pairs of stimuli that have nothing very
salient in common, and there is a small “tail” of large entries
representing those pairs AB that are clearly very confusable or
similar. We formed a graph by joining consecutively nearest neighbors
starting with the nearest. We use double, single, and dotted lines as
the matrix entry gets larger. Often, a subset appears as a clear
cluster and then we make a check to see if it is a “tight” cluster: a
tight cluster is a subset S of the stimuli such that for all A,B in S

and C outside of S, the entry AB is always greater than AC,
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For each of our experiments, we present the results from the
three analyses in a single display: starting with the best 2-
dimensional KYST plot, we superimpose the ADDTREE clusters that are
most robust with respect to resampling the data by drawing circles
around the clustered stimuli, then we draw links between the nearest
neighbors as double, single or dotted lines. We have found that the
result is a fairly compact and useful presentation of the data

contained in the matrix.

B) PIGEON DISCRIMINATION

In analyzing the pigeon data, there were two specific problems.
One was that the pigeons were far from being equal in their skills in
this task: one (#4) learned each of the fifteen discrimination
problems rapidly and well. Two others were moderately successful, and
three came close to flunking the course. Inasmuch as the criterion
for passing on to a new discrimination was a sliding one, even the
final trials for each positive stimulus reflected widely varying
levels of discrimination. Given the varying criteria for
discrimination, the “bootstrap” is out of the question, so instead we
split the data into #4 vs. the average of the five other birds in
order to do a split-half reliability test.

The other problem is this: ideally, we sought a confusion matrix
with comparable entries for every positive stimulus A and every
distractor B. That is, we wanted a matrix in which the number in the
ABth entry can be compared with the number in the CDth entry and the

difference would reflect whether or not it was easier for the pigeon



Human and Avian Categorization 23

to reject B as a variant of A than to reject D as a variant of C.
Unfortunately, each bird learned at a different rate, and the
requirements of counterbalancing orders meant that each bird was given
the positive stimuli in a different sequence. Hence, each subject may
have had a different level of familiarity with the whole stimulus set
when each particular polygon came up as the next positive. So, if
bird b seeing positive polygon p took 8 sessions to meet the
criterion, while bird b~ seeing the same polygon p took 3 sessions,
how was one to average their error rates together? And worse, how
could one compare this to the error rates when b and b~ saw a
different polygon p”~ as positive?

In order to get anywhere, we had to use a model of the learning
process. One simple model of the error rate in acquiring a given
discrimination (Mazur & Hastie, 1978) is that it follows hyperbolic

curves:

init

error rate = -
1 + disc*time

where “init” is the initial error rate (e.g. 0.5 if there are two
equivalent choices), and “disc” depends on how hard the discrimination
is., According to this theory, the ratio of the error rates to two
different distractors will approach discl/hiscz as time gets large.
It also seems reasonable to suppose that this ratio is relatively
independent of the subjects” native intelligence, which, for
relatively simple tasks, would be expected to affect the rate of

learning rather than the limit of discrimination. Therefore, we can
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hope that averaging these ratios over birds and over stages in the
learning curve (after the initial period of learning) will give
reasonable results. The only drawback in this approach is that the
resulting matrix has entries such that the relative discriminability
of distractors B and B” in presence of positive A are comparable, but
the discriminability of B as distractor to positive A vs. that of B~

as distractor to positive A” is not computable.

Several confusion matrices have been derived from the data:

i) In the first one, the last trial for each positive stimulus
for each bird was used (i.e., the last trial before a new
positive stimulus was selected). For each such trial, the number
of erroneous pecks to each negative stimulus was expressed as a
percent of all erroneous pecks due to each negative stimulus.
These percentages were then averaged over all such trials. This

gives a 15x15 matrix, each of whose rows adds up to 1.0.

ii) In the next, the same procedure was followed except that all
trials were used which met the following criterion8 (also see
Herrnstein, Loveland, & Cable, 1976): either rh&ws 0.9 or rho >
0.8 and the positive stimulus was the stimulus most responded
to.9 These so-called "good trials" included many which were not
last trials and many last trials did not meet either criterion.

A matrix ngn was derived by averaging the percent of error to

each distractor over all good trials, which is reproduced in

(AT
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Table 1, and a histogram of the tabulated error rates is given in

Figure 2.

iii) Another procedure was to use method (ii), but separately for
the data from #4 vs the data from all other birds, on the
possibility that #4 used quite different cues from the other
birds.

iv) In order to obtain matrices in which entries across rows are
comparable, one procedure is to assume that the full confusion
matrix is approximately symmetric. Following the hyperbolic
learning curve hypothesis, each row can be multiplied by a
different scalar without changing the relative size of its
entries (which is all the experiment determines). It can be
provenlO that there is a choice of such scalars, one for each
row, such that if each row is multiplied by its scalar, then the
ith row sum equals the ith column sum. Moreover, the resulting
matrix is unique up to multiplication of each entry by the same
scalar. We can perform this row normalization on all of the

matrices described in i,ii, and iii.

One of the advantages of KYST is that it allows input confusion
matrices in which distinct rows are noncomparable. This mode, called
“scale by rows,” sets up independent rescaling for each row before

fitting the matrix against the Euclidean distances of the
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configuration. We have used this option in finding scaling solutions
for matrices of type i,ii and iii, as well as using the row
normalization of iv and standard KYST. As would be expected, the
stress is markedly lower with “scale by rows,” and given the
uncertainties of the model, this seems the preferable way to do a
scaling analysis of the pigeon data.

When the pigeon data were analyzed as in i, ii and iii, the

correlations among the resulting matrices are presented in Table 2.

KYST plots for each set of data were obtained by a) a preliminary
search for a 2-dimensional configuration with independent monotone
scaling on each row; and by b) taking this configuration as the
starting point for a search with quadratic polynomial scaling by rows.
The reason for this compound procedure (often used in scaling
algorithms) is that monotone scaling by itself results in a nearly
degenerate solution, but this is a good starting point for quadratic
scaling (i.e., it gives the lowest stress found by all methods tried).

The rows were then normalized by multiplying by scalars so that
the row sums and column sums were equal., Lack of symmetry in this
normalized matrix indicates that a polygon A is distinguished from a
polygon B more readily than B is distinguished from A. Asymmetry of
this kind can be measured by taking the correlation of the normalized
matrices with their transposes (the matrices formed by interchanging a

matrix”s rows and columns). These correlations were 0.92 for last



last
trials

all good
trials

Subject 4
good trials

other birds
good trials

last
trials

Table 2

all good Subject 4 other birds

trials good trials good trials
0.95 0.86 0.90
= 0.84 0.97
= 0.71
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trials, 0.87 for good trials, but only 0.79 for bird 4 alone and 0.82
for the other birds., This indicates either that there was more noise
in the smaller data sets, or that asymmetric discriminations vary
greatly from bird to bird and so cancel out in the merged data, or
both. The resultant matrices were subjected to ADDTREE and were also
evaluated in a nearest neighbor analysis.

The strongest pattern to emerge is that, no matter how analyzed,

the birds seemed to cluster the polygons into four groups, as follows:

(a) Five convex-skew quadrilaterals, F, H, K, L and O (see
Figure 1), all with some acute angles, and without
horizontal or vertical edges or right angles.

(b) Two triangles, I and J.

(c) Two concave figures, G and N, with “crowns” om top.
(d) Six “boxy” figures, A, B, C, D, E, and M, either with
horizontal and vertical edges and right angles, or with at

least 5 sides and no acute angles.

This pattern emerged in every ADDTREE graph and in most of the nearest
neighbor analyses. Thus cluster (a) is in fact a “tight” cluster in
all data sets; (d) is nearly “tight”, except for some close links to
the polygon I in (b); and both pairs {I1,J} and {G,N} are each others”
nearest neighbors in all data sets except that of Subject 4, Cluster
(d) almost reproduces the intuitive (to humans) classification used to
design the stimuli (see description in Methods section); three of the

five figures in cluster (a) and both of the two figures in cluster (b)
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likewise fall into one of the design categories. Only cluster (c)
violated the design classification, presumably because of the
unanticipated influence of the crown on top, which only figures G and
N shared.

“Good trials” gave a KYST plot with the lowest stress, namely
0.127, and this plot seems to be the best summary overview of the
pigeon errors; we have presented this solution in Figure 3. The four
clusters above appear clearly in this KYST plot too. The most
typical clusters appearing in most of the cluster analyses are

illustrated in Figure 4.

Between clusters, one also finds quite consistent close links (i.e.,

large entries in the error matrices) as follows:

G,N with H,F and less so with L
I with M and less so with B,C

0 with J

The most conspicuous exception to this picture is the data from
Subject 4 alone. Although it is similar in broad outline, there is a
suggestive pattern of differences. To begin with, Subject 47s data do
not seem to have a decent 2-dimensional KYST plot: all plots found
have stress greater than 0,19 and each plot misses at least one major

close pair (i.e. plots a pair with a large error entry too far apart).
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{A,B,C,D,E,F,G,H,I,J,K,L,M,0}

{A,B8,C,D,E,I,J,M} {F,G,H,K,L,N,0}

/ N\

{A,B,C,D,E,M} {I,J} {F,H,K,L,0} {N,G}

{A,B,M} {C,D,E} {F,H,L}

Figure 4
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Moreover, the three clusters (a), (b), and (c) are not really

separate, but rather are parts of a continuum like that in Figure 5.

Thus N is closer to H than G, and J is closer to O than I (compare
Plot 1). Also {B,E} in cluster (d) is fairly close to {K,L} in
cluster (a).

What does this mean? One interpretation is that Subject 4 was
using a significantly more complicated set of features or dimensions
with which to remember the different shapes. Instead of picking a few
features that would do the trick most of the time, this bird had a
more complete data structure to describe the shapes, one which does
not admit a 2-dimensional representation and which drew on different
characteristics of the shapes for different pair comparisons. The
data for Pigeon 4, in its relatively fast and efficient learning
cycle, reflect partial matches of one or another of the features being

used for particular comparisons.

C) HUMAN DISCRIMINATION

The response times for each of the 28 subjects were arranged into
a 15x15 matrix. Entry i,j in this matrix, in case i#j, represented
that subject”s time to judge whether the stimulus polygon j was
different from the remembered polygon i or, in case i=j, represented
the average time over 7 trials to judge whether the stimulus polygon i

was the same as the remembered polygon i. To combine the matrices for
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individual subjects into one matrix summarizing the data, two problems
needed to be resolved: i) some people were on the average slower and
some fasterll, and ii) occasional responses were far slower than the
average (presumably due to the subject”s inattention). The first
problem was handled by multiplying each subject”s matrix by the grand
mean, for all subjects, over the subject”s own mean. To eliminate
exceptionally slow outliers, response times falling in the upper 3% of
the distribution were excluded from the analysis. This resulted in
the elimination of all normalized times greater than 770 msec. For
each individual pair i,j, with i#j, the remaining times that came from
correct responses (i.e., polygon j was indeed different from polygon
i) were then averaged, producing the i,jth entry of the final matrix
Xhum. The diagonal entries (Xhum)ii are simply the average of all
responses to stimulus polygon 1 with the same remembered polygon i,
although these were not used in subsequent analysis. This matrix Xpuny
is reproduced in Table 3, and a histogram of the tabulated response

times is shown in figure 6.

To test the reliability of Xpyp, we used the “bootstrap”
procedure (see above). On average, if the 28 subjects are resampled,
it turns out that the correlation of Xh,yp with the resampled matrix
Xhum”™ is 0.90. Matrix Xhum is not symmetric but, like all matrices,

it can be decomposed into a sum of a symmetric and an anti-symmetric

matrix:



445
455
539
451
426
410
383
426
427
393
439
432
439
418

427

436
439
454
477
469
445
370
386
393
404
415
452
440
412

439

450
429
489
489
469
424
413
433
474
428
392
437
493
452

429

413

481

425

481

529

408

410

383

413

428

445

433

404

443

463

414

418

492

584

478

441

379

414

432

417

400

442

411

413

453

402
408
419
413
417
445
390
595
468
487
444
491
491
431

438

Table

412
454
449
404
449
423
440
410
453
439
471
432
419
529

451

3

i

um

418

431

423

387

429

554

437

487

550

458

434

517

467

441

489

417
414
401
405
457
462
438
467
451
456
451
475
467
424

455

410
432
426
450
459
424
429
424
482
500
414
526
430
438

519

488

431

416

402

407

435

403

434

453

433

463

460

468

465

452

406

415

482

410

422

469

414

464

456

462

431

512

416

452

519

401

419

434

415

420

444

415

477

481

436

503

435

462

464

458

465

406

464

415

422

464

448

445

415

401

427

437

453

498

436

390
466
462
418
457
429
379
430
445
539
444
539
417
410

511



NUMBER OF RESPONSES

380

400

420

440

460 480

TIME (msec)

FIB ure 6

500

_I-A 4 -|
T ¥ T

520

540

560 580



Human and Avian Categorization 31

Xhum = (Xhum)symm *+ (Xhum)anti,
+

Xhum)symm = [Xhum + Xhum 1/2,

(Xhum)anti = [Xhum = Xhum 1/2,

(where Xgum is the matrix obtained from Xnuy by interchanging rows
and columns). The symmetric part of Xhum, i.e., (Xhum)symm, has an
average correlation of 0.93 with the symmetric part of Xpyp“, and the
anti-symmetric part of Xpuny, i.e., (Xhum)anti, has an average
correlation of 0.80 with the anti-symmetric part of Xpyp~. We may

therefore conclude that Xyyp, and especially its symmetric component,

are quite reliable, and that the anti-symmetric component also
contains stable, though somewhat noisier, data.

The main analysis involved Xpyp and ten variants of Xhym obtained
by resampling Xpyp by the bootstrap. We applied KYST, ADDTREE and the
nearest neighbor analysis to the symmetric part, (Xhum)symms of all
eleven matrices., The ADDTREE clusterings were the most informative.
The first result of note is that six of the variants gave clusterings
completely identical to those for Xpyp itself, and the others had only

small variations. The clustering for Xjyp is presented in Figure 7.

The only clusters that did not appear in 8 out of the 10 resamplings
were the two highest level clusters {F,H,I1,J,L,0} and {G,K,M,N}.

Here, as for the pigeon data, the clusters echo, albeit imperfectly,
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/| / \ |\

{a,c} {B,D,E} {J,L,0} {F,H,I} ({K,M} {G,N}

{D,E} {J,0} {F,H}

Figure 7
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the intuitive classification used to design the stimuli: {A,B,C,D,E},
{f,G,H,1,J}, and {K,L,M,N,O0}.
The derived clusters show an interesting combination of
characteristics. Thus:
a) The clusters {J,0}, {F,H}, {G,N} and {K,M} are
all cases that can be explained as “template”
matches, that is, the two polygons can be nearly
superimposed on each other and most of the
vertices paired up so that the polygons nearly
match and corresponding sides and vertices are
close to each other.
b) The cluster {D,E}, however, cannot be explained by
appeal to template matching because the notch in the
two boxy figures is on opposite sides. Here it seems
that the similarity is a case where the “features” one
would naturally use to describe D and E are the same:
both have only horizontal and vertical sides and right
angles, both have six sides and both can be made by
taking a rectangle and removing a notch. Only the
"feature" of global orientation distinguishes the
figures.,
¢) The clustering of L with {J,0} also does not reflect
template matching. Here the cluster seems to include a
mirror-image confusion of L and O, which seems totally
natural to us, but which would not take place if one

were using template matching.
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d) The clustering of the triangle I with the diamonds
{F,H}, especially with the bottom—heavy diamond H, may
show that "sharp point" is a feature we use to encode
shapes, regardless of orientation. All share a sharp
point at the bottom, but two also have a point at the
top.

e) Finally, A and C are clustered, perhaps as an
example of opposites being confused. Both can be coded
as squares with the bottom side dented, but in one case
the dent is inward and in the other case, it is
outward. Again, the '"feature" appears to be somewhat
abstract, not being bound to a particular direction or
orientation.

Thus, it would appear that numerous features underlie the pattern
of response times. Given this observation, it is not surprising that
none of the two-dimensional KYST plots were really good
representations of the matrix Xy,m or its resampled variants, with
stress values falling between 0.179 and 0.212, However, the analyses
all showed similar patterns, with at most 2 or 3 polygons being
shifted more than one-tenth of the width of the whole plot. We have
reproduced in figure 8 the KYST plot and the ADDTREE clusters for the
matrix derived from the full set of 28 subjects, omitting the unstable
highest level clusters mentioned above. The stress for this plot is
0.186, indicating that it captures the relations in the matrix
moderately well but not completely. Using several random initial

conditions failed to produce a plot with lower stress.,
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The double, single and dotted lines in Plot 2 represent the
largest entries in the matrix Xpyp, These links confirm closely the
ADDTREE clusters and the two-dimensional geometry of the KYST plot.
The double lines represent mean response times longer than 500 msec,
the single lines response times from 475 to 500 msec and the dotted
lines response times from 465 to 475 msec, at which point we begin to
hit the main group in the histogram of response times (see Figure 6).
The response times indicated by the links were reliably slow in almost
all resamplings. The next slower group of response times, in the
range 459 msec — 465 msec, is not marked in Plot 2. In this group,
one finds a set of links between polygons which occur in almost all

resamplings but which are not so intuitively natural:

c—M
A -—K
C -1

The anti-symmetric part of the matrix Xy,, of response times is
more difficult to understand. These comparisons reflect the degree to
which it is easier to reject a polygon i as an instance of the
remembered polygon j than to reject j as an instance of i. The
simplest way to try to predict the non-symmetry in the matrix is to
seek a linear ordering of the polygons such that i is to the left of j

if and only entry (Xpyp)ij is greater than (Xpyp)ji. Such a
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prediction follows, for instance, from Tversky”s theory of human
similarity judgments (Tversky, 1977). The simplest way to derive such
an ordering is to associate to polygon i the single number
Zj [(Xhum)ij - (Xhum)jil

and to order the polygons using the magnitude of this sum. This
number can be thought of as an overall distinguishability factor for
each polygon. Doing this results in the ordering:

G,H,A,J,F,K,M,D,B,C,N,E, I, O0,L
This ordering was unstable when the bootstrap technique was used.
However, the partial ordering of the polygons:

G,H, A, {B,C,D,F,J,K,M,N} , {E,I} , {L,0}
was much more reliable and makes some sense intuitively. Thus, G is
the V-shaped crown which seems immediately distinguishable from all
the other stimulus polygons, and O and L are the mirror-image skew
quadrilaterals which are so alike that they are hard to keep in mind.
But why is the bottom-heavy diamond H easier to distinguish from the

other polygons than the triangle 1712
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SECTION IV: COMPUTER SIMULATIONS

As described in the Introduction, an integral part of this
investigation is a comparison of human and pigeon data with each other
and with similarity measures derived from various algorithms in the
computer vision literature. The classification of simple black and
white silhouette shapes has been studied for various applications,
including character recognition, automated blood cell and chromosome
classification, circuit board inspection, etc. The most extensive
work, however, has been done in character recognition, and here the
most active area in recent years has been “Kanji”, or Chinese ideogram
recognition. Given the several thousand common Kanji, as opposed to
26 roman letters, the problem of Kanji recognition requires
considerably more refined techniques than those for roman letters.
Research on the recognition of Kanji has been actively pursued at
several Japanese universities and industrial research laboratories.
An excellent survey of the work can be found in Mori, Yamamoto and
Yasuda (1984). Although there are many alternative algorithms in
this and other papers, we have taken two algorithms which are
characteristic of two of the major approaches to shape classification
discussed in the Introduction: template matching with two-dimensional
data structures and structural matching of combinatorial data
structures. These two algorithms seemed to exemplify the basic
principles of these two approaches, to be as powerful as any that we

have seen and to fit easily the type of data in our experiment.
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Although they are not the only potentially interesting algorithms,

they provide good initial points of departure for evaluating the data.
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A) TEMPLATE MATCHING

We follow the ideas of Maeda, Kurosawa, Asada, Sakai & Watanabe,
(1982) in a template scheme that has, in fact, been implemented
commercially by Toshiba., To make our terminology clear, suppose the
two shapes to be compared are both represented by patterms of dots in
a grid (e.g., as letters are represented on a computer bit-mapped
screen)., In other words, each shape is approximated by a set of
points in a large square grid in which each individual grid point has
coordinates given by a pair of integers i,j, and i and j are allowed
to be any integer between 1 and some upper bound like 256. We then
describe the two shapes S and T to be compared as images I(i,j) and
J(i,j). I(i,j) is defined to be 1 at points (i,j) in the first shape
S and to be 0 at points (i,j) outside S. J(i,j) is defined similarly
using the second shape T. In straightforward template matching, one
measures the '"distance" from an image I to an image J either by what
we may call the Euclidean distance between the multi-dimensional data

I and the multi-dimensional data J:
Zij [(1(1,3) - J(i,3))2]

or by the correlation:

PN [I(i,j)*J(i,j)]/‘\/iij (0¢1,1)21%045 [3¢4,5)2]. 13

Maeda et al (1982) introduced two further ideas to make these

template matching procedures more powerful. Both of these
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enhancements are motivated, in spirit if not in detail, by what is
known physiologically about the initial levels of visual processing in
many animals. The first is not merely to compare the raw images, but
to "smooth" the images first. Smoothing is achieved by convolving
I(i,j) and J(i,j) with a 2-dimensional Gaussian kernel, which has the
same effect as viewing the shapes through a blurry lens. After
blurring, the images are correlated (or the Euclidean distance is
computed).

If images are blurred too much, all shapes look like amorphous
blobs and the comparison is uninformative; if they are not blurred at
all, the comparison may be unduly influenced by irrelevant noise and
details (e.g. serifs on roman letters). Thus, the amount of blurring
must be tuned to the application at hand, just as an animal”s
attention may be focused on features of a particular size. If the
right amount of blurring is chosen, smoothing can be an effective tool
in increasing the power of template matching in making
discriminations.

The second improvement consists of comparing not only the
original images and their smoothings, but of comparing derived images
computed from the partial derivatives of the images I and J. What do
these derived images represent? The derivative in the i-direction,
given numerically by:

I(i+1,3j) - I(i-1,3)
will be zero away from edges, and near edges it will measure how
vertical the edge is, having peaks on each side of the edge with

opposite sign. The corresponding derivative in the j-direction is a
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similar horizontal edge detector. The neurophysiological analogue is
the response of the so-called simple cells with one excitatory and one
inhibitory band placed left-right or top-bottom within the receptive
field. There is evidence that birds as will as mammals possess such
specialized cells (Revzin, 1969).

Finally one may use higher derivatives. The most useful of these
seems to be the Laplacian of the image, which is the sum of its second
derivatives in the i- and j- directions. It is given numerically by:

I(i+l,3) + I(di,j+1) + I(i-1,3) + I(i,j-1) - 4*I(i,j).
What the Laplacian detects depends on how much the image has been
blurred prior to computation. If the blurring is small, the Laplacian
has peak response at the cormers, being positive just inside convex
corners and negative just outside concave corners. If the blurring is
large, the Laplacian has peak positive response in the middle of the
figure itself or the convex blobs out of which the figure is built,
and has peak negative response in any "bays" (areas outside, but
nearly surrounded by, the shape). The Laplacian of a blurred derived
image is a computer simulation of the "center-surround" response of
many retinal ganglion cells.

The basic idea of Maeda et al (1982) is to combine correlations
or Euclidean distances of these various derived images with suitable
weights to give a number that expresses how well not only the
interiors of the shapes, but their edges, corners, centers and bays
all match up when they are superimposed. The weights are selected ad
hoc by what seems to make the categorizer work best: in character

recognition, this meant optimizing performance on a training set, but
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in our case, we use the weights to make the model match observed
behavior as well as possible.

Details of the algorithm can be found in Appendix I. The best
fit for the pigeon data was a mixture with 707 coming from
correlations of slightly blurred versions of the polygons and 30% from
correlations of heavily blurred derivative images. This computer-
generated correlation matrix has a correlation of 0.69 with the pigeon
error rates after monotone rescaling, hence accounts for 47% of the
variance, It has a correlation of only 0.56 with the human response
time data after monotone rescaling, hence accounts for 327% of the
variance. We denote this matrix by Xtem,pgn; it is reproduced in

Table 4.

Insert Table 4 about here

The best fit for the human data used Euclidean distances and was
a mixture of 707 distances between heavily blurred polygons and of 30%
distances between heavily blurred derivatives images. This mixture
has a correlation of 0,65 with the symmetrized human data after
monotone rescaling, hence accounts for 427 of the variance of the
data. It has a correlation of 0.65 with the symmetrized pigeon data
after monotone rescaling too. The matrix, which we denote Xtem,hum,

is presented in Table 5.
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.623

.612

«596

677

646

JI17

.708

.836

.792

.760

<749

.713

.945

749

.747

.706

.629

.740

.806

977

.708

.836

.803

.856

.839

915

.784

.839

.820 .681
.778 .650
.690 .597
.827 .676
.763 .696
.885 .811
.836 .792
.836 .803

* 847
847  *
.966 .826
.835 .650
<925 .797
.903 .823

.835 .965

.857

.804

.665

.827

.786

.898

.760

.856

.966

.826

.851
.965
.856

.851

T44
+703
617
772
776
.840
749
.839
.835
.650

.851

.830
.819

679

811

«756

.634

«789

771

.952

.713

915

.925

7197

.965

.830

.801

.828

771
. 7157
717
.809
.751
.801
.945
.784
.903
.823
.856
.819

.801

.818

.734
.699
.618
.715
.718
.840
.749
.839
.835
.965
.851
.679
.828

.818



Table 5

&tem.hum

* 12 133 81 162 235 969 317 267 528 172 363 213 463 369

12 * 94 87 141 260 934 338 281 525 207 380 254 449 387
133 94 * 110 135 261 621 309 249 380 291 328 350 281 332

81 87 110 * 131 186 720 248 188 406 168 240 216 302 310
162 141 135 131 * 139 574 152 175 309 170 169 200 243 254
235 260 261 186 139 * 504 21 74 189 68 124 49 193 124
969 934 621 720 574 504 * 420 364 189 608 361 683 129 361
317 338 309 248 152 21 420 * 103 158 117 108 97 164 108
267 281 249 188 175 74 364 103 * 127 50 121 94 103 121
528 525 380 406 309 189 189 158 127 * 242 252 291 85 48
171 207 291 168 170 68 608 117 50 242 * 159 25 239 159
363 380 328 240 169 124 361 108 121 252 159 * 192 139 244
213 254 350 216 200 49 683 97 94 291 25 192 * 308 193
463 449 281 302 243 193 129 164 103 85 239 139 308 * 139

369 387 332 310 254 124 361 108 121 48 159 244 193 139 *
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As in the analysis of the experimental matrices, we then obtained

a KYST plot of the matrices Xtem,pgn and Xtem,hum: these had stresses
of 0.116 and 0.084 respectively, hence are good representations of the
structure of Xtep, pgn and Xtem,hum. Moreover, ADDTREE cluster

analyses of Xtem,pgn and Xtem,hum resulted in quite similar clusters,

illustrated in Figures 9 and 10.

The KYST plots, as well as these clusters and the closest
neighbors, are depicted for the two matrices Xtem,pgn and Xtem,hum in
figures 11 and 12 in the same display used for the pigeon and human

experiments,

What are the characteristics of these matrices? First, the
clusters {A,B,C,D,E}, representing boxy shapes (i.e., shapes with
horizontals, verticals and right angles), {G,I1,J,0,N}, representing
more or less triangular shapes and {F,H,K,L,M}, representing more or
less the convex 4 and 5-sided figures, were present in each ADDTREE
analysis, The main exception to this pattern is with the mirror-image
shapes L and 0: O is a close template match to the triangle J, hence
is clustered with it, whereas L is not close to any triangle, hence is

clustered with the “nondescript” quadrilaterals,



{A,B,C,D,E,F,G,H,I,J,K,L,M,0}

L TR

{A,B,C,D,E} {G,1,J,N,0} {F,H,K,L,M}

{A,8,C,D} {G,J!N,O} {F,H,K,M}
e Wade shila
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Figure 9



{A,B8,C,D,E,F,G,H,1,J,K,L,M,0}

N

{A,B,C,D,E} {6,1,J,N,0} {F,H,K,L,M}

{A,B,IC,D} {G,Jl,N,o} {F,H,K,M}
{A,Bl,C} {G,!I,N} {F,H} {K,M}
{A,lB} {G,N}

Figure 10
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A striking difference between the two matrices, Xtem,pgn and
Xtem,hum, emerges, however, when looking at nearest neighbors. 1In the

case of Xtem,pgn, nearest neighbor analysis defines a chain of

polygons, each close in obvious template fashion:

bottom—heavy diamond H <---> symmetrical diamond F

{--=> top-heavy coffin M

{-—=> broad- and flat-topped trapezoid K

{=—=> flat-topped triangle I.
Note that this seems natural with template matching, but is different
from the clustering exhibited by the pigeon error rates: the pigeons
clustered quadrilaterals H,F and K with the other quadrilaterals O and
L, not with 3- and 5-sided figures like M and I. Similarly, from a
template point of view the lopsided quadrilateral 0, which stretches
up to the right, is close to the lopsided triangle J, which stretches
up to the right. But the pigeons clustered the two triangles J and I
together and clustered the quadrilateral O with the other skew
quadrilaterals, Thus, one aspect of the pigeon error rates that is
not captured by template matching is the pigeons” apparent use of the
number of sides of polygons in clustering.

The above chain of nearest neighbors does not appear in Xtem,hum-

In fact, close examination of the matrix reveals counter intuitive
distance measures, such as the greater proximity of the crown shaped
polygon N to the irregular triangle J than to the crown G with pointed
bottom; and the greater distance of quadrilateral L from the trapezoid

K with the same bottom half than from the triangle I. The most likely

explanation may rest on the fact that the human data was matched best
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by using template matching at the highest blurring level. At this
blurring, all the polygons are smooth blobs, with only slight
irregularities to indicate their original sharp differences. What

remains is thelr over-all brightness, which is determined by one

44

thing: the area of the original. In fact, the areas in square pixels

of the polygons is:

690
676
595
587
562
540
532
507
465
456
441
345
324
166

QO gHrFHEZHEMRORRO ® >
o

Tilting the KYST plot of X¢em, hum, one finds that one axis of this
KYST plot is almost exactly given by the area of the polygon. In
fact, if a “boxiness” feature is introduced by the following scale,
then the KYST plot is almost perfectly represented by the two

features, area and boxiness:

MOST BOXY
convex, right angles, horizontals+verticals
concave, right angles, horizontals+verticals
convex, horizontal edges, no angles < 450
convex, no angles < 450
convex, one angle < 450
concave, horizontal edges
convex, two angles < 450
concave, three angles < 459

LEAST BOXY
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In figure 12 the corresponding axes are drawn in. The axes are not
perpendicular because these two attributes are partially correlated,
due to the fact that the polygons were designed with equal perimeters.
The template matching scheme yielding Xtem,hum seems to capture that
part of the human performance which, under time pressure, seizes on
the most salient global large scale features of the polygons.

Template matching on a finer scale does not seem to capture any more
of the variance in the human response time data, and it totally fails
to model other aspects of human performance, such as mirror-image

confusion.

B) STRUCTURAL ANALYSIS

The idea behind structural analysis is to compare two figures, P
and Q, by attempting to match the parts of P with the parts of Q, then
quantifying the degree of match or nonmatch. The parts may be parts of
its interior (e.g. the head and trunk are parts of the body) or parts
of the boundary (e.g. a triangle has three edges and three vertices).
For each pair of parts x of P and y of Q, one needs a measure d(x,y)
of how different x and y are as isolated geometric objects.

In the simplest case, one looks at all matches of the parts of P
with the parts of Q that preserve adjacency relations between parts.
That is to say, if parts Xj and x2 of P are adjacent, then the
corresponding parts ¥y} and y2 of Q should be adjacent, and vice versa.
One assigns to each such match f a measure of how much it changes the

parts of P to fit them to the parts of Q by adding up the differences
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d(x,f(x)) of corresponding parts. Call this the cost of the match.
The difference between P and Q 1s then the least cost of all matches
between P and Q. The basic ideas behind this way of measuring the
similarity of two shapes can be found in Fischler & Elschlager
(1973), Rosenfeld, Hummel, & Zucker (1976), and Ullman (1979).
Although there is no neurophysiological evidence to date that animals
use structural matching algorithms, there is considerable
psychological evidence that humans use such procedures in some cases
(Reed, 1974 and 1975; Palmer, 1977).

However, this procedure 1s complicated by the fact that figures
do not usually come with an unambiguous set of parts. For instance,
the classic demonstration of Attneave (1959) suggested that a cat
silhouette 1s perceptually well approximated by a polygon with
appropriate vertices, hence one is led to consider the edges of this
polygon as the parts of the silhouette. But two people might look at
the same silhouette of a cat and describe it as a polygon in
different ways, one putting in more and the other putting in fewer
edges. If we are to treat polygons as idealizations of general
silhouettes, we must therefore allow matches between polygons with
unequal number of edges. In any structural matching algorithm, one
must allow for a refinement or restructuring of the parts of each
figure before requiring a perfect part—for-part match between them.

In the case of polygons, we have introduced two ways of refining
the parts of a polygon:

a) an edge of a polygon may be split by adding a corner somewhere
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in the middle. Thus, the edge is replaced by two edges and an

extra corner 1s added.

b) a corner of a polygon may be refined by being truncated.

Thus, a new, very short, edge appears where the corner was, and

two new corners are added connecting the new edge to the old

abutting edges.
If a polygon arises as an approximation to the shape of a figure with
curved boundary, then these two refinement operations describe the
simplest ways to refine the approximation with a polygon with one
more corner., For a different approach to handling refinements, see
A. Rosenfeld and K. Yamamoto (1982).

Details of the structural matching algorithm are presented in
Appendix II. In brief, the algorithm that best matched pigeon error
data defined the edges of a polygon to be its parts (allowing these to
be refined as above in a match with another polygon). Differences of
length and orientation of an edge are used to measure the difference
between edges. An extra cost term was introduced if a concave part of
one polygon was matched to a convex part of the other polygon.
Finally, mirror reversing matches were excluded. The matrix of
distances obtained from this algorithm will be called Xstr,pgn, which

is presented in Table 6.

This matrix has a correlation of 0.67 with the symmetrized pigeon

error rate, hence it accounts for 45% of the variance. It has a
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Table 6

&str .Pgn

1964 1338
2382 1884
2740 2586
2710 2292
2547 2509
1688 122

* 1925
1925 =
1317 1616
1362 732
1573 1853
1714 894
1838 882
335 2238

1714 894
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1617

1984
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1317
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339
1071
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1556
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correlation of 0.57 with the symmetrized human response time matrix,
hence it accounts for 337% of the variance.

In order to compare not only the fit with the pigeon data but to
gain some insight into which aspects of the pigeon data this algorithm
was, and was not, capturing, a KYST plot of Xstr,pgn was made. It had

stress 0,124 and is reproduced in figure 13.

Next, ADDTREE was applied to Xg¢r pon resulting in the clusters

given in Figure 14,

Insert Figure 14 about here

The second structural matching algorithm was optimized to account
for the human data. Details are again in Appendix II. In brief, this
algorithm defined the parts of a polygon to be both its edges and
corners., A match between two polygons must match the edges of the
first polygon, suitably refined, to the edges of the second polygon,
also refined, and it must match the corners to the corners. It
measured differences using only lengths of edges and angles at
corners, thus disregarding orientation., Mirror reversing matches were
also allowed. This means that two polygons that differ by a rotation
or reflection come out as having a perfect match. But the final cost
was computed by adding the cost of the best match so obtained and a

penalty for the net rotation or reflection used in this match. This
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{A’B’C)D,E’F’G’H,I,J’K’L,M’O}
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Figure 14
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resulted in a matrix Xgi, pyp of numbers representing the differences

d(P,Q) of all pairs of our 15 polygons, presented in Table 7.

The correlation of the human response time matrix and Xstr,hum,
after a monotone rescaling, was 0.80; or, equivalently, Xstr,hum
rescaled accounts for 64% of the variance in the human response times.

As above, in order to compare not only the fit with the human
data, but to gain some insight into particular aspects of the human
data that are, and are not, captured by this algorithm, a KYST plot of
Xstr,hum was made. It had stress 0.124 and is reproduced in figure

15.

Insert figure 15 about here
Next ADDTREE was applied to Xstr,hum resulting in the clusters

presented in Figure 16,

A striking result here is that for the first time the set of non-

convex polygons {C D,E,G,N} shows up as a cluster for the matrix
Xstr,hum- As one might expect, the global property of being either
convex or non—convex causes these two types of polygons to group

together following structural matches, especially if these matches can
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be made at any orientation with only a penalty for a difference in the
overall orientation of the two polygons. The same phenomenon brings C
and D even closer together in this algorithm: in this case a rotation
of about 450 ig neéde& to match them up. Note that the triple
{J,L,0}, consisting of the mirror image quadrilaterals L and O with
sharp tops and the triangle J with a sharp top similar to O, appears
in the clusterings for Xg¢r hume This triple is characteristic of the
human confusions. Again, it shows up because mirror-image matchings
with low cost are chosen by this algorithm with only a small penalty
at the end for the flip. The form of the function d(P,Q) was chosen
precisely to see if we could model mirror-image confusions in this
way.

Aside from these differences, the two structural algorithms
produce quite similar patterns: the top level grouping {F,H,J,L,M,0}
consisting of the set of convex polygons with pointed tops shows up in

both, and the top level grouping of polygons with flat tops also shows
up in both, except that for Xg¢r popn it includes the non-convex ones

and for Xg¢y hym it does not.

The structural matching algorithms show considerable differences
in detail from the template matchings. To give two examples, the top-
heavy symmetrical triangle I is closer to the coffin-shape M than to
the elongated asymmetrical triangle J in the template match Xtem,pgn
but vice versa for the Xg¢y pgn. And the trapezoid K is closer to the
diamond F than to the square B for the template match Xtem,pgns and
vice versa for the structural one Xg¢y pop. This illustrates how

shapes may be close pixel by pixel without the edges lining up well,
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and how the edges may line up nicely yet the shapes be fairly far

apart pixel by pixel,
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SECTION V: CONCLUSIONS

To put the results in perspective, consider first Table 8, which

contains the correlations of the following six matrices:

i) the normalized and symmetrized pigeon error rates,

ii) the symmetrized human response times,

iii-iv) the monotone functions of the two best-fitting computer
models of the pigeon data,

v-vi) the monotone functions of the two best-fitting computer

models of the human data.

In Table 8, the decimal figures are the product—moment
correlations and the percents below are their squares - the variance
accounted for. These results show that a) the human data and human
structural algorithm are similar; b) the two template algorithms are
similar; c¢) the template and structural algorithms matched to pigeon
data are fairly similar, and d) both of these are only moderately good
predictors of the pigeon data.

The small entry in this table for the correlation between human
and pigeon experimental data should not be directly compared with the
other entries. This is because all the other entries are correlations
between monotone functions of the computer generated data and the

experimental data. Correlation after a monotone rescaling is



pigeon

human

temp-pgn

str—pgn

temp—hum

Table

8

pigeon human
* A4
(19%)

*

temp-pgn str-pgn temp~hum str-hum
.69 .53 .67 .41
(47%) (28%) (457%) (16%)
43 .65 44 .80
(18%) (42%) (19%) (647%)
* .79 .75 .37
(62%) (57%) (14%)
* .61 .57
(38%) (33%)
* 47

(22%)
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naturally much better than without it. If a monotone rescaling of the

human or pigeon data is done, we get better fits as follows:

A) correlation of 0.56 (variance accounted for 31%Z) between human
data and monotone function of pigeon data.
B) correlation of 0.51 (variance accounted for 26%) between pigeon

data and monotone function of human data.

A correlation was also calculated for the skew-symmetric parts of
the human response time data and the normalized pigeon error rates.
This gave a correlation of .04, indicating again that it is hard to
make good sense of the asymmetry of these matrices.

Putting this story together, here are the main conclusions that

our analysis leads us to make:

i) Pigeons are capable of forming abstract categories of shapes,

such as those characterized by the number of vertices of a polygon,

and, in doing so, of disregarding the orientation and proportions of

the polygon as unimportant.

Clear evidence for this was the tight cluster formed by the five
skew quadrilaterals F,H,K,L and O, as well as the large confusion
between the very different triangles I and J. These clusters did not
appear in any of the computer simulations. We may speculate that a
form of “shape constancy” causes the pigeons to cluster these shapes.
More precisely, note that a rectangular shape on the ground seen from

the air is a skew quadrilateral, and hence it is possible to interpret
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all five skew quadrilaterals as aerial views of one and the same flat
rectangle seen from above from different positionsl4, For ecological
reasons, this might lead a bird to consider skew quadrilaterals as
similar shapes.

The ability to form such abstract categories argues against the
theory that an animal with as small a brain as a pigeon must be using
simple discrimination routines, such as perceptrons (Minsky and
Papert, 1969). Moreover, work in pattern recognition in the 19707s,
which was mostly based on perceptron-like discriminators, failed to
find robust algorithms capable of categorizing real-world stimuli.
Because pigeons are manifestly capable of such categorizing (viz,.
Herrnstein, 1984), this also argues against modelling pigeons by

perceptrons or other such elementary discrimination algorithms.

i1) Pigeons also have the orientation of the polygon available to

them, and, when the task demands it, will use this orlentation as a

clue.

The pigeons formed strong clusters out of the polygons
{A,B,C,D,E}, presumably on the basis of the presence of horizontal and
vertical lines, disregarding vertex number: the set includes figures
with 4, 5 and 6 vertices. One could speculate that figures with
vertical edges would not be clustered with the skew quadrilaterals
because such a retinal image is more likely to arise from a naturally
vertical object (such as a tree) seen from the ground than a flat
rectangle viewed from above. Much evidence suggests that birds can

pick and choose among various features in order to form the
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appropriate positive category (e.g., Hrycenko and Harwood, 1980;

Herrnstein, 1984).

i1i) The pigeon”s performance is strongly affected by the overall

task; i.e., they paid attention to the aspects of the shapes that were

most useful for distinguishing exactly among the members of the

stimulus set.

In other words, the polygons were not viewed in isolation, but
the features that most clearly distinguished each polygon from the
rest came to govern response., Thus the categories were strongly
affected by the context in which the categorization took place. For
example, the stimulus set contained only two polygons G and N with
concave tops, all the rest having flat or pointed convex tops.
Therefore, these figures could be distinguished from the other 13
polygons on the basis of this feature alone. But the negative side of
this is that G and N were strongly confused with each other because
other features such as thelr bottoms or their areas were not so useful
in most of the discriminations. Note, for instance, that the figures
I and K, which were essentially G and N with tops filled in, were
easily distinguished because they were classed with triangles and skew
quadrilaterals, respectively. The overriding significance of the
context was what determined whether the pigeon used number of vertices
(a global property) or presence of vertical edges (a local property)
in judging the stimulus. In fact, polygons similar by every computer

matching algorithm, such as J and O, were easily distinguished when



Human and Avian Categorization 56

context led the pigeon to pay attention to aspects in which they
clearly differed (here, vertex number).,

This selection of discriminating features based on the whole
stimulus set appears to be the fundamental reason why the pigeon error
rates were not well modelled by any of the computer algorithms. In
order to model their behavior better, one should probably look at
learning algorithms, such as those used in connectionist models

(Rumelhart and McClelland, 1986).

iv) Pigeons evidently vary in their ability to keep multiple

aspects of the shapes “in mind” while making judgments and not to

simplify the problem by focusing on only one or two main properties of

the shapes.

Thus the data of bird 4, like the human data, and unlike the
computer data from all algorithms used, did not have a good two-
dimensional scaling plot., If its discrimination had been based on a
small number of features, it is likely that its error rates would have

such a plot.

v) Humans, in a speeded response time task, access fastest the

large—scale features of shapes (e.g., their area) and do not use finer

scale aspects (e.g., vertices with angles close to 180 degrees) nor

global properties (e.g., the number of vertices).

This inference is supported by the best—-fitting template match,
The matrix of this algorithm was found by averaging 90% of template

distances using the top blur (7th out of 7) and a mere 10% of blur 5.
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The algorithm, as we saw, was essentially a two-feature algorithm,
based on area and “boxiness” (see section IV), Moreover, all of the
human clusters with more than 2 polygons contained polygons with
differing numbers of vertices. For example, the triangle I was much
harder to distinguish from the quadrilateral H than from the second
triangle J, indicating that the three vertices I and J had in common

did not distract humans from deciding they were different.

vi) Humans identify characteristic parts, or even the whole, of

the shape.

Evidence for this inference comes from the two-stage structure of
the best-fitting structural match, wherein the shapes of parts and
wholes were matched first disregarding the orientation, and then the
differing orientations of whole figures were taken note of. Evidence
also comes from the rather astonishing difficulty that humans had in
distinguishing the top-heavy (downward pointing) triangle I from the
bottom~heavy quadrilateral H, which it resembles only after a 180
degree flip. The same observation holds for E and F, which are box-
like shapes with a bite taken out of them - but where the bite is on
the bottom left for E and the top right for F. These were strongly
confused, but their characteristic features line up only after a 180
degree rotation., Still another example is the mirror-image shapes L
and O,

Everyone is familiar with the effort it takes to remember one of

two mirror-image shapes for some task (e.g., Nickerson and Adams,
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1971). This property places major constraints on theories of the
data structure used at least under some circumstances by the human
brain to store shapes: even crude template schemes would avoid this
sort of difficulty. The structural matching scheme used for humans
was, therefore, purposely crafted to yield close matches between
mirror image shapes. Humans may note orientation in many recognition
tasks, but, our results suggest, certain visual routines (to use

Ullman“s [1984] idea) seem to proceed without regard to orientation,

vii) People, like pigeons, are able to choose an effective

algorithm from among many available, thus alternating between template

comparison and a search for a single clear distinguishing feature if

one is available,

Consider, for example, the trapezoilid K versus the triangle I and
the coffin shaped figure M, K is close to both M and I from a
template standpoint. But I was rapidly distinguished from K by the
strong feature given by the characteristic sharp angle at the bottom
of I. M, however, has no such distinctive feature and was indeed hard

for the humans to distinguish from K,

- viii) Neither pigeon nor human seems to use template or

structural representations to the exclusion of the other. However the

human performance is significantly better modelled by the structural

matching algorithm.

Both schemes seem to be available to both species, with the task

requirements leading the subject to select one over the other. 1In
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fact, each scheme seems to capture some detalls of the data for
pigeons and humans not modelled by the other. For humans, the
structural matching scheme seems to model the data significantly

better than the template one, achieving a correlation of .80,

59
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-APPENDIX I: TEMPLATE MATCHING

In our implementation, we started from 64x64 pixel digitizations
of the stimulus polygons. Each polygon was translated so that its
centroid was at the center point (32,32), and then the functions that
were 1 inside the polygons and O outside were convolved with seven
Gaussian masks whose standard deviations were approximately
1,2,3,4,5,6 and 8 pixels. Including the unblurred polygon, this gives
eight images for each polygon. For each polygon and each of these
blurrings, three auxiliary images were computed next: one for the i-
derivative, one for the j-derivative and one for the Laplacian.
Finally, computing correlations and Euclidean distances, we took each

pair of polygons and compared:

i) each blurred version of the polygons,

ii) the gradients of each blurred version (i.e., we took the
i- and j-derivatives at each pixel, put these together into

a long vector with 64x64x2 components, and compared these),

iii) the Laplacian of each blurred image.

The result was a set of 8x3x2 symmetric 15x15 matrices, each of which
was a slightly different way to measure the template match of the 15
polygons. This came from the 8 possible blurring levels and the 3
derivative types and the two ways of comparing (correlation and

Euclidean distance).
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A reasonable way to find ome best template match matrix seemed to
be to choose three blurring levels, b0 for undifferentiated images, bl
for the gradient and b2 for the Laplacian, and three welghts wo,w] and
w2 and form the combination:

wo*Ch0,0 + w1*Cpl,1 + w2*Cp2,2.
where we have denoted by Cpgq the matrix of correlations with blurring
b and derivative type d (d = 0,1 or 2), The same thing can be done
- with Euclidean distances, which we denote by Lpq. To choose the best
w's and b”s, we used the regression of both the pigeon and human data
against the template data and attempted to maximize the variance
accounted for. We also had a choice as to whether to use ordinary
regression or monotone regression at this point.l5 In view of the
fact that there is no reason to expect a linear relation between
template matching and pigeon or human error rates, we chose monotone
regression. Note that this procedure involves matching 105 data
values by a model with six free continuous parameters (WO’ wl, w2, by,
b2, b3) and one binary parameter (correlation vs. Euclidean distance).
But using monotone rather than linear regression means that the
measure of goodness of match is lenient.

After some exploration, the mixture that best matched the pigeon
data obtained from all good trials used correlations as follows:

Xtem,pgn = 0.7 * C3,0 + 0.1 *Cg,1 + 0.2 * Cp,2.
Xtem,pgn expresses a large contribution from the correlations between
slightly blurred polygons themselves, added to a smaller contribution

from the correlations of heavily blurred differentiated images. The
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mixture that best matched the human data used Euclidean distances as
follows:

Xtem,hum = 0.7 * L7,0 + 0.2 * L7,1 + 0.1 * L5 2.

Xtem,hum expresses a large contribution from the Euclidean distances

of heavily blurred polygons, plus smaller contributions from

differentiated images emphasizing the edges and the vertices.
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APPENDIX II STRUCTURAL MATCHING

We considered two ways to implement a structural matching
algorithm between polygons: one defined the edges of a polygon to be
its parts, and the other defined both the edges and the corners to be
its parts (the “part” associated with a corner means a small
neighborhood of the corner, showing the orientation of the two
adjacent edges). In matching two polygons P and Q, the edges of P
must be matched to the edges of Q and, if corners are also used, the
corners of P to the corners of Q. Many different measures may be used
to describe the difference of two edges or two corners, considered as
fragments of a full geometric figure. We will describe below the
measures used in our programs.

If only edges are taken as parts, each edge is considered
adjacent to the previous and succeeding edges as the perimeter of the
polygon is traversed. Thus, an allowable match would be given by
starting at onme pair of matching edges, proceeding around the both
polygons in clockwise order and matching each successive edge as it is
reached. One way to model the susceptibility of human perception to
mirror image confusions 1s to also consider matches in which the
edges of P, taken in clockwise order, are matched to the edges of Q,
taken in counter—-clockwise order.

If both edges and corners are taken as parts, an edge is
considered adjacent to the two corners at its ends, and a corner is

considered adjacent to the two edges abutting it. Thus, an allowable
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match between two polygons would be given by matching all edges and
corners as the two polygons are circumambulated, as before. In both
cases, this would not, however, allow for any matches between polygons
with different numbers of vertices, as it would make them infinitely
different and therefore we also allow the polygons being matched to be

first “refined” by two procedures:

a) an edge of a polygon may be split by adding a corner somewhere
in the middle. Thus the edge 1s replaced by two edges and an
extra corner is added.

b) a corner of a polygon may be refined by being truncated. Thus
a new very short edge appears where the corner was, and two new
vertices are added connecting the new edge to the old abutting

edges.

Putting these ideas together, we measure the difference between
two polygons P and Q as follows: we first choose a refinement of P and
a refinement of Q and then a perfect matching between these
refinements., Each such match has a cost, and the difference between P
and Q is the minimum cost over all refinements and all matchings.

More precisely, a match is a sequence of matches of the parts of P and

Q, each of which is one of 6 types:

a) a match of an edge of P with an edge of Q,

b) a match of a corner of P with a corner of Q,
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¢) a match of two abutting edges of P and their common corner
with an edge of Q that is split into two edges and a corner in
the refinement of P,

d) the same with the roles of P and Q reversed,

e) a match of an edge of P plus the two corners at its ends with
a single corner of Q that is truncated to a short edge and two
corners 1n the refinement of Q,

f) the same with the roles of P and Q reversed.

The sequence of matches must go once around P and once around Q,
matching each edge and corner of each polygon exactly once. See

Figure 17 for some examples.

Insert Figure 17 about here

To compute the cost of a match, a function d(x,y) is needed.
In the first type of algorithm only edges are used as parts. Taken
out of the polygon containing it, an edge is just a directed line
segment (the direction is given by the rule that the polygon is on the
right when you traverse the edge from beginning to end). We measured
the difference between two directed line segments by considering the
difference in their lengths and their orientations.

The second algorithm used both edges and cormers as parts. A
corner, taken out of its polygon, is considered to be a vertex and two
half lines radiating from this vertex, one to the left of the figure,

one to the right. In these algorithms, we ignored the orientation of



Matching with refinement of bottom edge of left polygon

ate this vertex

Matching with truncation of bottom vertex of right polygon
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both the edges and corners and measured the difference between two
directed line segments using only the difference in their lengths and
the difference between two corners using only the difference in the
internal angles of the polygon at these corners. This allows a
perfect match between two polygons that differ only by a rotation or a
reflection. Of course, vision systems must perceive the difference
between the original and a rotated or reflected copy, so we added a
second term to the cost of the best match to penalize for how much the
match, overall, rotates or reflects P when matching it to Q.

We experimented with various choices of d(x,y) both for directed
line segments and corners, as well as how to extend the definition of
d to the cases where P or Q is refined. We also considered extra
terms in the cost of a match f that matches a concave corner of P with
a convex corner of Q or vice versa, or that matches parallel edges of
P with non-parallel edges of Q or vice versa. Inasmuch as these
experiments were driven by the goal of providing the best match to the
pigeon and human data, we will not describe in detail all the
variants that were tried, but only the best fitting structural
matching algorithms.

In matching the pigeon data, the best fit was found using only
edges as parts and measuring the difference of two directed line
segments x and y by a formula that emphasizes the similarity of
horizontal lines with each other and the similarity of vertical lines
with each other. If we write x as a vector from the origin to (Xl,XZ)

and y as a vector from the origin to (yj,yp), we then set:

d(x,y) = (x1-yD)2/(|x1]+|y1]) + (x2-y2)2/(x2]+]y2]).
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Note that d = 0 if and only if x = y (l.e., x and y have the same
length and orientation). This formula was extended to allow
refinements as follows. If an edge x was matched with a truncated
corner of the other polygon, then the cost used was
Ccollapse*d(x,(O,O)), (Ccollapse is a constant). If two abutting
edges x and x” were matched with a split edge y of the other polygon,
then the cost used was Cgp1it*(d(x,u) + d(x7,v)), where Cgplit is a

constant and the directed line segment y was split into two pieces u

and v:
w = projection of the vector x-—x” onto the line through vy,
u=0,5%(y +w), (vector addition of y and w),
v = 0.5 * (y - w), (vector subtraction of y and w).

Finally, if a concave corner a of P or Q is matched to a non-concave
corner of Q or P, an extra penalty Cext * d(x,(0,0)) is added, where x
is the directed line segment spanning the “mouth” of the concavity of
P or Q, i.e. from the corner before a to the corner after a.

Note that we have introduced three parameters Ccollapse, Csplit
and Cgyxt into the algorithm, which weight the various components of
the cost. However, after some experimentation, the best fit found was
obtained by setting all three parameters to 1.0.

In matching the human data, the best fit was obtained by using
edges and corners as parts, and measuring d from lengths and internal
angles of the polygon without regard to orientation., Thus if x and y

are edges,

d(x,y) = | length(x) -~ length(y)

If x and y are corners,
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d(x,y) = | cos( angle(x)/2 ) - cos( angle(y)/2 ) |.
We chose cos(angle(x)/2), instead of using simply angle(x), because of
evidence that human observers are more sensitive to angle variation
near the angle 1800 than near smaller angles (Foster, 1982). The
extensions of these measures when P or Q is refined are shown in
Figure 18,

Insert Figure 18 about here

In this algorithm, the final measure of the difference of two

polygons P and Q was computed as follows:

a) First find the match of least cost, allowing refinements and a
rotation, measured by the d”s described above, between P and Q
and between P and the mirror-image Q° of Q (with respect to a
vertical line). In the cost function, the penalties for angle
discrepancies are multiplied by a constant, Cangle, before being
added to the penalties for length discrepancies,
b) Second, find the angle of rotation that best fits the matches
of the individual parts of P and Q in the best matches of a).
¢) Third, combine this data via the formula:
d(P,Q) = min [-(cost of best match of P,Q) +
Crot * (1.0 — cos(angle of this match))),
(cost of best match of P,Q7) + Cfy14p +

Crot * (1,0 - cos(angle of this match))).].
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Note that this whole procedure has three constants in it, which
welght the various terms in the cost function: Cangle, Crot and Cfl1ps
although, of course, the form of the cost function involves a number
of binary choices. After some experimentation, the best fit found was
the choice of constants:

Cangle = 3.6

Crot = 5.2

Cf1ip = 0.5
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Figure Legends

Figure 1. Fifteen shapes used in the study, for discrimination by
pigeons, recognition by people and classification by computer.
The shapes have equal perimeters, and fall into three classes, as

described in the text,

Figure 2, Histogram of error percentages of the entries in Table 1,

for pigeons discriminating among the fifteen shapes.

Figure 3, KYST plot for pigeon learning error data, with clusters and

nearest neighbors.

Figure 4, ADDTREE clusters for the matrix ngn of pigeon error rates.

Figure 5. Pattern of greatest confuslons in responses of avian subject

4, exhibiting exceptionally fast learning.

Figure 6., Histogram of response times of the entries in Table 2, for

people performing the recognition task with the fifteen shapes.

Figure 7. ADDTREE clusters for the matrix Xp,m of human response

times.
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Figure 8, KYST plot for human response time data, with clusters and

nearest neighbors.

Figure 9. ADDTREE clusters for the matrix Xiep pgn.

Figure 10, ADDTREE clusters for the matrix Xtem,hume

Figure 11. KYST plot for

matches, parameters

Figure 12, KYST plot for

matches, parameters

Figure 13. KYST plot for

structural matches,

differences of polygons measured via template

optimized to fit pigeon data.

differences of polygons measured via template

optimized to fit human data.

differences of polygons measured via

parameters optimized to fit pigeon data.

Figure 14, ADDTREE clusters for the matrix Xstr,pgn-

Figure 15, KYST plot for

structural matches,

differences of polygons measured via

parameters optimized to fit human data.

Figure 16. ADDTREE clusters for the matrix Xgty hup.

Figure 17, Illustrations

of the polygon matching scheme with

refinement and truncation.
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Figure 18. The expressions used to define the difference of two

polygons when they are matched with refinement or truncation.
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Endnotes

1. The authors gratefully acknowledge the support of the National
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assistance of Lynn Hilger in the human experiments and James
Herrnstein in programming the template algorithm. Reprint requests may

be addressed to any of the authors.

2. In mathematical jargon, we can, for instance, consider the set of
open subsets in the plane R2 which are the interior of their closures
and whose boundary consists in a finite set of simple closed piecewise

infinitely differentiable curves in R2,

3. Again, we may make this precise by using a variant of the so-called
Hausdorff metric. To compare two shapes A and B, we want to say that A
and B are close if every point of A is near some point of B, every
point of B is near some point of A, every point of the boundary of A
1s near some point of the boundary of B with approximately the same
orientation and, finally, every point of the boundary of B is near
some point of the boundary of A with approximately the same
orientation. More precisely, we can measure the “difference” of points
P on the boundary of A and Q on the boundary of B by the sum of the
distance between P and Q and the angle between the tangent lines to A
at P and to B at Q. Then the distance between two shapes A and B is

defined to be the sum of the four numbers:
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a) the maximum distance d of any point in A from the shape B

(so that d equals 0 if A is a subset of B),

b) the maximum distance e of any point in B from the shape

c) the maximum difference f, as defined above, of any point

on the boundary of A from the boundary of B,

d) the maximum difference g of any point on the boundary of

B from the boundary of A,

Note that this is zero 1f and only if A is exactly the same shape as
B. This definition makes S into a metric space. Thus the concept of a

real-valued function on S being continuous or not can be defined.

4, One way to see this is to consider a particular family of shapes as
follows: let A be the circle in the plane with center equal to the
origin and with radius 2. For each point (x,y) in the plane, let
B(x,y) be the circle with center (x,y) and with radius 1. Consider

the family of crescent moon-like shapes:

A - B(x,y)

(the points in A but not in B(x,y)). Each shape A - B(x,y) determines
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a point P(x,y) in S. But note that if (x,y) is farther than 3 from
the origin, then A and B(x,y) don”t overlap, so then A - B(x,y) equals

A. Thus:

A - B(x,y) = A - B(u,v)

if both (x,y) and (u,v) are farther than 3 from the origin. P(x,y)
therefore equals P(u,v) in this case. Now think of the family of
points P(x,y) as defining a map of the x,y-plane into S. In this map,
all points (x,y) farther than 3 from the origin are mapped to the same
point (the shape A). This means that the points P(x,y) don"t form a
flat plane inside S but instead roll up into a 2-dimensional sphere in
S! 1In the space S, with the topology defined above, there does not
seem to be any way to fill in this sphere with a 2-dimensional ball of
further shapes: this is what we mean by saying that S is not a flat

space.

5. The outputs of a set of "Gabor" filters (Daugman, 1987) are one
possibility for coordinates, but these do not make topological
properties of shapes, such as connectedness, explicit and it 1is not
clear whether the nearness of these coordinates implies the similarity

of the corresponding shapes.

6. The use of the term dimensions may be a bit misleading. Thus Marr”s
2 1/2-D sketch is a special kind of two-dimensional structure, namely
one in which distance to the nearest surface and the slope of the

surface at that point are recorded for all directions in a two-
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dimensional array. Marr”s 3D model, on the other hand, is a special

type of structured network,

7. It 1s important to realize that KYST does not guarantee that it
finds the best possible configuration, because it works by “hill-
climbing”, but one can start it either with an initial guess derived
from factor analysis, or with a random initial guess, or one can start
with a high-dimensional fit and reduce the dimension one at a time.

We have played with its options in each case, seeking what seemed to
work best in terms of “stress.” All runs are based on the Fortran
program, KYST-2, distributed by AT&T in the "2nd Multidimensional

Scaling Program Package."

8. To compute rho, rank all slides in a trial by numbers of pecks.
Then rho is the average rank of the slides that are positive, but
scaled so that rho = 1.0 if all positive slides were ranked at the

top, and rho = 0.0 1f all positive slides were ranked at the bottom.

9. As noted earlier, rho is the probability of ranking a positive
\ ,
stimulus above a negative stimulus., See Herrnstein, Loveland, and

Cable (1976) for further discussion of its characteristics.

10. This follows from the theory of finite Markov chains. Consider the
confusion matrix Ajj with diagonal entries set to O. Then A is the
matrix of a Markov chain, and if every stimulus i can be confused with
every stimulus j, A is certainly an irreducible Markov chain. If 14

is the stationary distribution of A, then the new matrix Bij =14 *

Aij has row sums equal to its column sums.
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11, The mean response time for different subjects varied from 334 msec
to 600 msec and 10% of the responses from one subject were under 200

msec (all were correct),

12, Unfortunately, it is not clear how to perform a similar analysis
on the pigeon data because of the difficulty, mentioned above, of
comparing responses to different positive stimuli. In particular, the
procedure used to normalize the rows made the rows and columns equal

and so precludes an ordering such as that for the human data.

13. Note that these template measures are defined for any images I and
J, not just those that arise from the silhouettes of two shapes S and
T. The two formulas are closely related, one being computable from
the other if the "size" of the images I and J —— the two terms in the
denominator of the correlation —— are known. If the images I and J
are silhouettes arising from figures S and T respectively, then the

Euclidear-
"size" of I and J are simply the areas of S and T and the :4 distance
is simply the sum of the area of S-T plus the area of T-S, whereas the
correlation is the ratio of the area of overlap to the geometric mean
of the areas of S and T.

The basic difference between these two forms of template
matching, at least for the case of silhouettes, is this: when the
scale of the image is changed (e.g., both S and T are expanded), then
the correlation remains unchanged, but thgfjthg??gance between the two
images is increased. Correlation should therefore be used if what is
wanted is a measure of difference that disregards the absolute size of

Enchdean
S and T (but not their relative size), whereas .Avdistance should be
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used if larger size is supposed to make the differences between S and
T more pronounced., Another way of describing the difference is to
imagine putting a bump of fixed size on the side of a large and a
Euclidean
small box. Then the A'distance between the large box without the bump
and the large box with the bump is just the area of the bump. This is
the same as the distance between the small box without the bump and
the small box with the bump. But the large box with and without the

bump are more highly correlated with each other than the small box

with and without the bump.

14, Mathematically, the point is that, given any flat rectangle on the
ground and any skew quadrilateral on a screen, there will be viewing
positions in the air or in front of the screen for which these two

quadrilaterals generate the same retinal stimulus,.

15. To fix notation, ordinary regression of data aj against data bi

chooses a linear function 1(x) which minimizes:

P [( ai - 1(bi) )2],

and monotone rescaling chooses a monotone increasing or decreasing
function 1 to minimize the same sum. We also used a mixture, monotone
cublc regression, where 1 is required to be a cubic polynomial which
is monotone increasing or decreasing in the interval spanned by the

smallest and largest bj,



