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INTRODUCTION

A fundamental problem in both Computer Vision
and Artificial Intelligence is the transition from
events in the real world which are always des-
cribed by continuous data, to symbolic descrip-
tions of the sort that computers can readily
manipulate. There is a kind of mismatch between
these two aspects of reality, between the signals
of electrical engineers and the terms of symbolic
logic. Outside our minds lies what William James
termed the "blooming, buzzing world" when he
discussed the perceptions of a newborn infant,
Inside a computer, although perhaps not inside our
minds, lies a crisp, sanitized, predictable
environment. To deal with this mismatch, we must
take certain precautions.1

Thus, suppose we need to measure the length
of an object along a specific side., We take a
ruler, line up one end, and estimate the nearest
marking to the other end. Obviously we haven”t
found a the exact length; at best we have found an
interval within which the length falls. Thus 1f we
say the length 1s 13.53" we surely mean between
13.525" and 13.535". Actually this too cannot be
right, for suppose the length were 13.5350001":
then, unless we had very great accuracy, we might
estimate it as 13.53" instead of the closer number
13.54", We had better allow an overlap between the
intervals we use for our estimates or the border-
line cases will call for infinite accuracy on our
part. The best strategy is to say that a measure-
ment of 13.53" means the length is between
13.5225" and 13.5375" (or something like this), so
that 1f we are able to estimate accurately up to
+/-.0025", we can be sure of finding some asser-
tion which allows for this degree of error. Even
so, there is possibility for error: no one can
guarantee that they always have at least such and
such an accuracy. Even being very conservative,
there will always be instances when you or your
tools slip, break, or are subject to unforeseen
influences and, without your realizing it, your
measurement is further off, To deal with this
contingency, the program which subsequently
manipulates the measurement had better be robust
enough to handle occasional errors, i.e. to “know”
that 13.53" +/-.0075" might mean 13.52" or even
13.51".

The purpose of this paper is to apply the
same principles to the description of shape.
Shapes,
like lengths, also vary smoothly: a triangle can
be slowly smoothed and rounded by a process that
changes 1t without any sudden shifts into a

CH2465-3/87/0000/0602$01.00 © 1987 IEEE

602

circle. The main difference is that, intuitively
as well as mathematically, shapes vary not in a
finite number of independent ways, but in
infinitely many ways. We may say that the space
of shapes is infinite—dimensional. In fact, as we
shall see, it is not merely infinite-dimensional,
it is also very complicated, Miller & Johnson-
Laird, in their monumental study of the semantic
primitives of perception, were right on the mark
when they referred to "the extremely complex
attribute called the shape of a perceptual
object".?

Our first order of business is going to be
making the words "the space of shapes” precise,
What this means is that one must say first
exactly what a "shape" 1s and one must say
secondly when two shapes are similar. The best
way to say when they are similar is to define a
"distance" between two shapes., Once such a
definition 1s given, the totality of all our
shapes forms what 15 called mathematically a
metric space, i.e., we have constructed a set S
whose points are in 1-1 correspondence with
shapes, and within S we have defined how far
apart any 2 points are. (A weaker but sometimes
more satisfactory way is to merely define on S
the structure of topological space.)

If we want next to describe shapes, the
second order of business is to cover the space of
shapes by open sets U(i), determining not merely
the U(1)"s but thelr overlaps as well. It is then
a reasonable request to ask for a signal process-
ing front-end that observes shapes in the real
world, with all the uncertainty this entails, to
output statements like "the blue shape in front
of me belongs to the class of shapes u(i)”.
Otherwise said, the processor has assigned shape
descriptor 1 to a particular real shape. Knowing
the shape 18 in U(i) means we know that the shape
is roughly such-and-such, and it means knowing
that U(1)-shapes might sometimes be classified as
U(j)-shapes for a known set of “nearby” shape-
descriptors j. Without an explicit description of
nearby j“s, I believe a theory of shape-descrip-
tors can never be used successfully in a high-
level recognition or categorization.program.

It seems common-sense that this is what a
theory of shape-descriptors should deliver.
However, to my knowledge, no existing theory does
deliver this, and it does not seem simple to find
one that does (I will describe a solution to much
easier 1D shape description problem below).
Consider, for example, Marr“s theory of 3D-
models. He proposes an elegant and intuitive
tree-like data structure with nodes corresponding



to salient parts, and links corresponding to
"part-of" relations. He gives many examples of
objects and corresponding trees. But suppose you
start with an object O with descriptor M. If you
vary O gradually, altering proportions, size and
relations of parts, slant and tilt of its surface,
at some point the appropriate descriptor will
change - to M°, M"“,..., What are these “nearby”
descriptors? I suspect the answer to this is
rather complicated, and also contingent on how you
f111 in the “details” to make his theory really
precise.

To take another example, consider the
description of shapes by moments. This theory
does, 1in a weak sense, tell you what nearby
descriptors are: they are ones whose moments are
near those of the given shape. I say “weak sense”
because the theory does not specify how to weight
the higher moments vs. the lower moments, This is
crucial since there are infinitely many moments,
and even in practice there are a huge number of
higher moments available and a variation in one of
the 100th moments 1s certainly not as important as
a similar variation in one of the lst momenta. The
major weakness of this approach to shape descrip-
tion, however, is whether closeness of moments in
any sense reflects accurately closeness of the
shapes. We shall see below that for one definition
of closeness of shapes, it does not. A common
rule-of-thumb is that higher order moments are too
unstable to be useful,3

In the first part of this paper, I will give
several examples of important ways to define the
distance between shapes. In the second half of the
paper, I will focus particularly on the case of 1-
dimensional shapes, and give a describe a particu-
lar covering by open sets U(1), showing how it
relates to a Marr-like hierarchical descriptor.

METRICS ON THE SPACE OF ALL SHAPES

What do we mean by the space of all shapes?
certainly want to include circles and triangles
special cases, so the smallest reasonable class
of shapes seems to be those whose boundary is made
up of a finite number of differentiable arcs,
meeting at a finite set of corners. In the 1D
case, the analogous cholce 1s to look at the
subsets of the 1line made up of a finite set of
disjoint intervals. On the other hand, other
shapes come with fine texture on their boundary,
e.g. the outline of a tree or furry animal.
Perhaps it is more reasonable to consider closed
sets in the plane with arbitrary simple closed
curves as boundaries. And maybe these shapes
should be allowed to have infinitely many holes in
them: think of the shape given by froth or a
section of the lungs. In 1D, a general closed set
is gotten by starting with an interval and
deleting a possibly infinite set of open subinter-
vals, getting smaller and smaller.

Which 1s the right choice really depends on
the application, and 1is linked also to the
question of when two shapes are close., For
example, consider the family of shapes obtained by
deleting a circle of radius a from the unit
circle: a2 <= x2+y2 <=1, As a goes to zero, do
these shapes approach the unit circle without a
hole? If the hole is considered to be “visible” or
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“gsalient” even when tiny, then it doesn”t; but if
the hole, when tiny, is considered to disappear,
then it does. We can make this precise by
recalling the concept of the Hausdorff metric.
This 18 a function which gives one notion of
distance between 2 shapes S and T. For this
definition, S and T may be subsets of the line,
the plane or any Euclidean space, but must be
bounded closed sets. First define the distance of
a point P from a set S by:

d({P},S) = MIN { |P - Q| | points Q in S}
Then define

d(s,T) = MAX { d(P,T)
MAX { d(s,Q)

points P in +

s}
points Q in T }.
This 19 the Hausdorff distance. It satisfies the
axioms for a metric:

1) d(s,T) = 0 if and only if § = T,
11) d(s,T) = d4(T,S),
111) d(R,T) <= d(R,S) + a(s,T).

In this distance, however, holes can disappear.
If holes are salient, one probably wants a
definition invariant under figure-ground rever-
sal, and then a natural choice 1is:

d-(s,T) = d(s,T) + d(cs,CT),

where CS (resp. CT) is the complement of S (resp.
T), With metric d°, a shape with a long thin
crack forinstance 18 not near the same shape
without the crack; but with metric d, it 1s near.

There are other “stronger” definitions of
nearness which would be appropriate in other
circumstances. For example, which is closer toa
circle C: an ellipse E which moves inside and
outside C a distance e, or a slightly smaller
circle Dwith one “tooth” extending abruptly
beyond C, but still within e/2 of C 4,

In some situations, E in isolation might seem
identical to C whereas D would be clearly
different. The natural way to modify the metric
to make D farther from C 18 to add a term
involving the maximum difference between the
slope of the boundary contour of C (resp. D) at a
point P and the slope of the contour of D (resp.



C) at the point Q nearest to P, giving a new
metric d .

Other choices of metric include the simple
template distance:

d¢(S,T) = area(S-T) + area(T-S),

and the Kantorowitz distance. To define this,
imagine S and T as being defined by unit quanti-
ties of pigment spread evenly on each set. Then
define the distance between S and T as the total
disstance pigment must be moved to change S into
T.

The point is that there 18 a sequence of
“weaker” and “stronger” distance measures between
pairs of shapes, the stronger requiring that more
features of the shapes be similar before they are
close., Correspondingly, for these distances to
make sense, the shapes being compared must be more
and more restricted. Thus the Hausdorff distance d
is a well-defined distance measure on the space of
all bounded closed sets in the line or the plane:
we will call these spaces, in this metric, SH1 and
SH2. But for d(1) to be defined, the boundary of
the shape must be a differentiable arc, thus
excluding all fractal or textured contours - so
d(1) 1g a distance on a much smaller space of
shapes.

An important point to understand about these
spaces 1s that length i1s not a continuous function
on SH1, nor 1s area a continuous function on SH2
(although diameter, i1.e, the maximum separation of
two points on the shape, is continuous on both).
This is seen immediately from the example:

X, = Union of 2D intervals of length 1/(41)
centered at the points 1/(20), 1 <= 1 <= 21,
X = unit interval [0,1l].

Then Xp—> X in the Hausdorff metric, but
length(X,;) —> 0! For the same reason, the moments
are not continuous on SH1 or SH2.

The space of shapes also has interesting
topology as is seen in the following construction.
We will define a family of 2D shapes, i.e. sets in
the plane, one for each point on a 2-dimensional
sphere. It looks like this:

Fach shape is given by starting from the unit
circle x2+y2 <=1 and deleting a circle (x—a)2 +
(y-b)2 <= 0,25, To the north pole we assoclate
the ring shape gotten when the deleted circle is
also centered at the origin: a=b=0. To the
northern hemisphere we associate the shapes where
the deleted circle is still wholly within the
unit circle: a2+b2 <= 0,25, To the southern
hemisphere we assoclate the shapes gotten by
deleting circles overlappin% but partly outside
the unit circle: 0,25 <= a2+b2 <= 2,25, To the
south pole itself we associate the unit circle
without any deletion. It seems likely that with a
suitable metric on the space of bounded 2D
shapes, this 2-sphere of shapes 1s topologically
“non-trivial” in the sense that it cannot be
collapsed to a point.

DILATION ON THE SPACE OF ONE-DIMENSIONAL SHAPES

I want to focus in the rest of this paper on
the simplest case: the space SHI1 of all bounded
closed subsets of the 1ine with the Hausdorff
metric d. It might seem that SHl is an impossible
gpace to describe, This 1s not so. The process of
dilation from the theory of shape morphology
glives a nice way of visualizing SHl1. For any
positive e and shape X, define

X(e) = X @& [-e/2,+e/2]
= {x+y | xinX, -e/2 <=y <=e/2}

SHl1(e)= set of shapes X which are unions of
intervals of length at least e.

Then we define a map p(e) : X —> X(e) by

p(e)(X) =X(e). If e <= f, then the map p(f)
factors via p(e), i.es in the diagram:

p(f)
SHl ————————————> SHI(f)

ple) p(f-e)
SH1(e)

the map p(£f) is the composition p(f-e)op(e). The
following theorem is not hard to prove:

THEQREM: The topological space SH1 is homeomor-

phic to the inverse 11mit® of the spaces SH1(e):

A
SHI —> 1im SH1(e).
\CY

This 1s an abstract formulation of the idea
that any shape can be described hierarchically by
a sequence of finer and finer "up to size e"
descriptions. But even better, 1f we put a bound
on the shape, e.g+ X contained in [0,1] ~ call
these shapes SH1[g ]j(e) - then SHl[g 1](e) 15 a
finite-dimensional space. This is clear because
any X in SHl[g j](e) is made up of less than l/e
intervals, and describing any interval by its two
endpoints’ we have

dim SHlyp 1](e) <= 2%[1/e].

What do the spaces SHI [0,1](9) look 1like? These
are good finite approximations of SHl itself, so



we may expect that thelr structure gives some
insight into SH1. These spaces are quite interest-
ing and intricate - they are not “flat” spaces
({.e. manifolds with boundary), but they have
singular points and their dimension is different
near different points,

A SYSTEM OF 1D SHAPE DESCRIPTORS

The purpose of this section 1s to describe an
explicit set of 1D shape descriptors based on a
hierarchical structure of overlapping open sets
covering the space of compact subsets of the line.
The 1D case can be solved by a simple variant of
quad-trees, but nonetheless one which I think can
be used as the basis of much more robust scheme
for describing sets of intervals., We first present
the corresponding solution to the simpler problem
of describing points by a hierarchical structure
of overlapping open sets.,

Suppose a point in the interval [0,1] with
coordinate x 1s fixed., At first glance, with a
crude yardstick, we simply say x lies more or less
to the left, more or less in the middle or more or
less to the right., We might mean by this:

left if
middle 1if
right if

x 1s to the
x 1s in the
x 1s to the

x in [0,1/2),
x in (1/4,3/4)
x in (1/2,1].

A typical point to the left is 1/4, in the middle
18 1/2, to the right is 3/4. Taking a second
glance and measuring with a more accurate yard-
stick, we start with the typical values 1/4, 1/2
or 3/4. Then make a correction of -1/8, 0 or +1/8
and note whether x is actually a little to the
left, in the middle or to the right. This process
can continue infinitely or as far as your measur-
ing sticks allow., The result is a non-determin-
istic assignment of an infinite string of letters
L,Mor R to the point x, except that the string
should not end in all L“s or all R7s,
Making this precise is straightforward:

x 1s represented by an initial string
8 = ajaj...ap of letters L,M and R
if and only if
x in (s - ey, 8 + ey) (call this interval U(s))

where 1
s = 1/2+a/4+32/8+....+3n/(2“+ ),
en = 1/(2!1"‘1%’

L = -1, = 0, R = 1.

Some numbers have unique representations in this
system (e.g. 0,5 =MMMM,....), some have a finite
number (e.g. 0.375 = MLMMM,..0or LRMMM....) and
some have an infinite number (e.g. 1/3). The non-
uniqueness 1s forced on us by the necessity for
overlapping open sets. The overlapping may be
described as follows: let s and t be strings of
L,M,R of length n, then

U(e*)NU(t*) # ¢
if and only 1f
s may be transformed into t by a finite sequence
of steps:
*RL* &—> *MR#%
*LR* &——> *ML*
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plus one step affecting the last symbol only of
the form:

*R &> *M or

L —> *M,

This is easy to prove.

Now consider the more complicated problem of
describing 1D shapes X. We assume that by a
preliminary normalization of X using translation
and scaling, X is a closed subset of the interval
[0,1]. Let

X(e) = X & [-e/2,+e/2].
Our hierarchical description of X is based on
first examining X(1/4), then X(1/8), then
X(1/16), etc. The full infinite description
determines X itself, but partial descriptions
carried out to order n—-1 will define an open set
in SH1(1/21), the space of shapes X(1/2D),

We first describe the top level categories
for Y = X(1/4), Let I be a subset of {-
1,0,1,2,3,4,5} containing -1 and 5, and let

U(I) = the set of all Y=X(1/4) such that
i) for all 1 in I, 1/4 1is not in Y,
11) for all other 1“8, Y meets the open
interval (i/4 - 1/16, i/4 + 1/16).

It is immediate that these U(I)“s cover SH1(1/4).
Now consider each I as a union of “components”,
where 13 a component is just a set of comsecutive
integers {i,i+l,...,j} in I, with i-1 and j+l1 not
in I, If {1{,.¢,3} 18 such a set of consecutive
integers in I, and Y is in U(I), then the whole
closed interval [1/4,]/4) 18 disjoint from Y:
this 18 because Y is made up of intervals of
length at least 1/4, so there 1s no room for such
an interval between consecutive points 1/4, Thus
the first component of I defines an interval to
the left of Y, the last defines an Interval to
the right of I and the other components define
gaps in the closed set Y. Moreover, 1f Y 18 in
U(CIL), then any gap in Y of length at least 3/8
would have to be marked by an i in I with 1/4 in
the gap. So we divide up the I“s and Y“s into
qualitatively different categories as follows:

1) 1“8 1ike {-1,0,5} or {-1,3,4,5} whose only
components are the strings starting at -1 and the
one ending at 5; Y78 in the corresponding U(I)“s
are sald to have small gaps.

11) I°s with one middle component {2} or {2,3};
Y“s in the corresponding U(I) s are sald to have
gap left.

111i) I“9 with one middle component {3} or
{2,3,5}; Y78 in the corresponding U(I)“s are said
to have gap middle,

iv) I°s with one middle component {4} or {4,5};
Y"s in the corresponding U(I) s are said to have
gap right.

v) I8 with two middle components {2} and {4}:
Y“s in the corresponding U(I)“s are sald to have
gap left and right.

The same covering can readily be extended to
finer levels., It should be noted beforehand that
as one looks at an arbitrary closed set X at
finer and finer scales, one of two things can
happen: either X has a small number of clear and
distinct “features” at each level, or else at



some scale, X becomes “textured”, 1.e. many gaps
of roughly the same size appear in an interval
which has been unbroken by gaps over a long series
of coarser scales. Let me give examples:

Ex.l: NO TEXTURE - A Cantor set or a finite
approximation thereof: one big gap (1/8,7/8) 1is
taken out of [0,1] leaving [0,1/8] [7/8,1]. Then
from each subinterval smaller gaps (1/64,7/64) and
(57/64,63/64) are removed and so on recursively,

Ex.2: TEXTURE: [0,1] appears whole until the scale
of 1/128 is reached. Then 20 random subintervals
(1/128,(1+1)/128) are removed.

In the former case, a recursive tree-like data
structure with a small number of qualitative
choices at each node will describe the shape; in
the latter case, there will be some nodes where
many bits are needed to describe the texture fully
and where, for most purposes, a statistical
summary would be preferred,

Here are the details, Let N = 20, let e =
1/N, and let I be any subseet of {-1, 0, 1, 2,...,
N-1,N,N+1} containing -1 and N+l. Let
U(I,e) = the set of all Y = X(e) such that
1) for all 1 in I, i%*e is not in Y,

11) for all other 1“8, Y meets the open
interval (i%*e - e/4, i%e + e/4).

As before, the U(I,e) s cover SHl(e). Moreover,
each sequence I can be broken up into “components”
{1,i+1,...,3}, and for each such component the
closed interval [i*e,j*e] is disjoint from Y. Thus
the set of components of I mirrors the set of
components of the complement CY of Y, except that
small gaps in Y of length less than 3%*e/2 may
gsometimes be ignored.

This covering {U(I,e)} of SH1(e) refines the
analogous covering {U(I”,2%e)} of SH1(2*e). Thus
if 1 ie a subset of { -1, 0,.., N/2, N/2+1 } and
p : SHl(e) —> SH1(2%e) 1s the map taking Y to
Y ? [-e/2,+e/2], then p'l(U(I’,Z*e)) is covered by
the sets U(I) where I runs over the subsets of
{-1,0,...,N,N+1} such that:

for each component {1°,1"+1,...,3"} of I, I has
one of the sequences {i,i+l,...,j} as a component,
where

1 = 2%{°, 2%{°-]1 or 2*1°-2,

J = 2%§7, 2%]°+]1 or 2% +2,

We can now put together a full description of
a closed set X by an infinite tree, whose struc-—
ture down to level n corresponds to the choice of
an open set U(I,,1/20)) containing X(1/2R), At
level n, we imagine X(1/2%) divided up by the gaps
identified in I, and make one node for each
resulting plece. Between levels, we link a pilece Z
of X(1/20) to the piece of X(1/¢2n"1)) containing
z o [-1/(20+1) +1/(2n+1)], At each node, we must
record 2 things. The first are the rough locations
of the left and right endpoints of the correspond-
ing plece Z of X(1/2M), i.,e. the integers 1 and j
in I, such that 1/2™ and j/2™ bracket Z. Given the
rough locatione of the higher node Z is linked to,
we have seen that there are three choices for 1
and three for j. In fact, going down the tree, we
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read off from which of the three choices L,M or R
18 made at each level, precisely a ternary
expansion of the endpoints of part of X in the
system explained at the beginning of the section.
The other thing that must be recorded at each
node are the rough locations of new gaps at which
Z is broken up at the next level, These are
simply given by giving the corresponding inter-
vals {1,..,3} of I,. For each new gap, the node
defined by Z splits off an extra child node.

We omit a formal description (1) of these
trees and the open sets in SH1 defined by the top
n levels of such a tree, (1i1) of when two such
open sets overlap and (iii) of the way the trees
are transformed when passing from one open set to
an overlapping one. Full details will appear
elsewhere.

! The discussion which follows has been strongly
influenced by the penetrating paper "One the
expression of synchronized motion in mathematical
logic", by H.Madjid and J,Myers (preprint, Div.of
Applied Sci., Harvard Univ., 1986).

2 g,Miller & P.Johnson-Laird, Language and
Perception, Harvard Univ. Press, 1976, p.46.

3 See also comments in A.,Latto, D.Mumford and
J.Shah, The Representation of Shape, Proc. of
IEEE Workshop on Computer Vision, Annapolis,
1984,

4 This example was discussed by T.Pavlidis in a
lecture at Harvard in 1984,

5 The 1dea of using this interesting metric is
due to P.Diaconnis,

6 1.e. (1) the maps p(e) are continuous, (ii) for
any family of shapes Xg such that p(f-e)(Xy) =
Xg, there 1s a shape X with Xg = p(e)(X), and
(1i1) we can guarantee d(X,Y) < e by requiring
d(X(ej),¥(e1)) < ey (e.g., e} = ex = e).








