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BOUNDARY DETECTION BY MINIMIZING FUNCTIONALS, 1

D. Mumford
Department of Mathematics
Harvard University
Cambridge, MA 02138

Abstract:  One approach to segmenting an
image into nearly homogeneous regions,
separated by smooth boundaries, consists
in finding the minimum of a functional
which is formed by combining the length of
the hypothetical boundary, the gradient of
a smoothed version of the image and the
difference of the true and sinoothed
images.  We propose a method of finding
a pseudo-minimum by solving the Euler-
Lagrange equations for the boundaries,
under the asssumption that the boundaries
are not too curved or too close and then
using "hill-climbing". The method is
worked out here in the simpler case of
segmenting an interval into subintervals on
which a 1-dimensional signal is roughly
constant.

This paper studies a variational approach to locat-
ing boundaries in noisy signals. Our approach is a
modification of one due to S. and D. Geman [GG] and
subsequently developed by J. Marroquin [M]. All
these algorithms are closely related to the Ising inodel
of statistical mechanics (see for instance [G-J], §2.3).
We may explain these ideas in general as follows.
We are given an input signal

g: S—R

where
a) S is either an open region R in Euclidean d-
space RY or the set of integral vectors LMR in R
(R is usually a large box or the whole space, L is
the lattice of integral vectors),
b) the signal g may either take on any real value,
or may be restricted to a finite set of values such
as +1,
Thus if d = 2 and S = pixels in an image (or the cones
in the fovea), then g is the image itself. The goal is
to construct 2 things: a smoothed ideal signal®

f: S—»R

and a set of boundaries

*Yet another variant is where g is given on integral
vectors and f is to be reconstructed on all of R:  cf.
[PVY]
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Here,
c) the ideal signal f may have any real value or be
restricted to a finite set of values such as +1,
d) if S =R, then f is assumed differentiable on
R-8, but may have discontinuities across B,
e) if S = R, then B is a codimension 1, piecewise
stnooth (hyper)surface in R; if S = LMR, then B is
a union of small rectangular hyperplane pieces
running parallel to the coordinates and halfway
between the lattice points,

Example: d = 2

In the application to image processing, f is a rec-
onstructed clean signal and B is the set of edges in the
image.

In order to construct f and B, the procedure is to
minimize the energy functional E. If §$ = R, then E is:
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E(f,B) = u‘J[ (f-g)? + J[ Iv€12 + uv(volume of B)
R R-B
and if S = integral vectors in R, then

E(F,B) = w2 (fi-g)? +
ieS

Z (fi-fin* + uv(volume of B)

ii'es
_i,i'adjacent
ii' not separated by B

1 .
Here u and v are parameters, where — has the dimen-

sion of distance and v has the same dimension as f2,
The volume of B means the (d-1)-dimensional volume
of B, i.e. if d = 1, the number of points in B, if d = 2,
the length of B and if d = 3, the area of B. If we
specialize this to the case where f has values +1 and
assume that B is empty, then up to a constant C dep-
ending only on g and S, E reduces to:

E(f,9) = -2 uzzfigi + Z fifp| + C

ie$ {i,i'eS adjacent}

which is the energy in the Ising model with external
magnetic field g. In the study of the Ising model, one
often introduces the boundary B¢ consisting of all hyp-
erplane patches separating adjacent vectors i,i' where
fi#fi*«  Then with a constant C' depending only on g
and S, the last equation may be rewritten as:

E(f,0) = 'ZMZZfigi + 4(volume of Bg) + C'
ieS

The idea of D. and S. Geman was to introduce f
and B independently into the functional and minimize,
for suitable parameters, with respect to both at once.
They studied the case d =2, $ = LMNR, R a rectangle, f
with a small number (e.g. 4) of values and they also
added extra terms for endpoints, corners, "T" and "+"
crosssings in B.  Their method of solution was by a
modified Monte Carlo method, the annealing method of
Kirkpatrick [KGV]: it involves putting a probability
distribution

P(f,B) = 5 e“E(EB)/T where 7= Y e E(f,B)/T
f,B

on all choices of f and B, taking long random walks in
the space of (f,B)'s at each temperature T and slowly
letting T—-0. The Gemans prove that with a suffi-
ciently slow "annealing schedule", this method gives
the minimizing f and B with probability 1! J. Marro-
quin modified their set-up to allow f to have real
values, Then for each fixed B, E is a nice quadratic
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functional in f and it has a unique solution given by an
elliptic boundary value problem (differential equation
if S = R, difference equation if S = LMR). He could
then solve by a deterministic algorithm for f and do his
random walk purely in the space of B's.

Our idea has been to study the case S = R in order
to be able to apply infinitesima! variations to B as well
as f and derive the corresponding Euler-Lagrange
equations. It seems to us that the discretization of B
in a lattice approximation makes it hard to choose a B-
terin in E with the right effect, e.g. for a sufficiently
fine lattice, the minimizing f,B should be approximately
rotationally invariant.  Although the new Euler-Lag-
range equations together with the old are now not pos-
sible to solve explicitly, there is a limiting case where
they can be solved: u~1 very small compared to the
scale on which B “doubles back" on itself.  Our idea
is then to approximately solve for minimizing f,B by (i)
solving for B for u very large, (ii) eliminating parts of
B corresponding to local extrema of E which are not
local minima, and then (iii) solving for nearly local
minima by straight "hill climbing", i.e. small modifica-
tions until a local minimum of E is found. In addition
to being faster, the method has the advantage that it
tells you something about the boundary B and allows
you to compare this type of edge detection scheme to
others.

This paper presents the case d = 1, which works
out cleanly and has been implemented by us. On Vax
11/750, it works very fast for an S consisting of 256
lattice points. Work is in progress on the much more
interesting case d = 2 which applies to images.

One of the inotivations of this research is the fai-
lure of existing local differential edge operators to

give perceptually reasonable edges in some quite
simple cases (see [D}). Thus if

:
BV = T

we get an image which, perceptually, is a blurry ellipt-

ical white blob on a black field, But if% = 2, the
zero-crossings of the Laplacian do not give a closed
contour surrounding the white blob. If Ta) = 4, the

zeroes of the second directional derivative along the
gradient (see [TP]), also do not give a closed contour
surrounding the white blob. This makes it seem very
worthwhile to investigate whether global approaches,
such as the present minimization formulation, will give
perceptually reasonable contours in more cases.

§1. The Variational Problem

Fix parameters 1 and v, Let g(x) be a given con-~
tinuous function defined for a < x < b.  For every k
and every sequence of points

a=a;<a <..<ag<agq=b

and every function f(x) continuously differentiable on



each interval a; < x < aj4q, let
b &[4
E(f,{aj}) = u‘j (f-g)2dx + L‘ (gx)“dx + uvk

a i=0 aj

We assume that f,{a;} minimize E and see what fol-

lows.  Fixing the a;, look at the first variation of E in
f. Replacing f by f+3f, where 8f(aj) = 0, we deduce

b k aj+1

1 \ "

0=E SE = uzj (f-g)éfdx - Z} f* sfdx
da i=0 a;

Hence, on each interval [aj,aj4q]:

(M f* = u?(f-g)

If §f has limits &f(a;*) and 6f(aj”) as x—-a; from
above and below, integration by parts gives us also

sf(at)f'(a*) = 0
Hence
(2) f'(a;*) =0

(1) and (2) are an elliptic boundary value problem,
The Green's function for equation (1) on (==, +=) js

3) Ku(x) =% el x|

Hence
[b

4) fu(x) =J Ku(x-y)g(y)dy
a

solves (1) on [a,b]. fy is a twice differentiable ver-

sion of the input function g, smoothed on a scale l.
The solution f to (1) and (2) is given on each interval
[aj,aj+1] by

(5) f(x) = fu(X) + C1,iKu("'ai) + CZ,iKu(ai""l—x)
where C1,i and C2,i must be set so that (2) holds.
This gives

(6) Cri= u‘_(ﬁ_aﬁ (f'(ai)-aif ' (aj4q))

2 1
Ca,i = wi(1-a;%) (-fi'(aje1)*aif ' (a)))
where aj = e~b(aj+q-aj),

Next vary one of the points aj. As a; varies, we ima-

gine f extended so as to be differentiable function on
each side of aj+6a;,
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aj aj+éa;

Then because f'(aj*) = 0, one sees immediately that

SE(f,{a;})

aj+8a
= ] H{fnew=8)2-(fo1g-g) *|dx

3
= [(f(aj*)~g(a))*-(f(a;")-g(a;))?|6a; + O(8a;?)

Thus
(7) {f(a*)-f(aj") Hf(a*)+f(a;7)-2g(aj)} = 0.
If f(a;j")=f(a;"), then we might as well omit the break-

point aj and reduce the value of E. Therefore the
variation in aj gives:

7)) = glap

This condition can be rewritten in a surprising way.,
Calculating f(a;t) from (5) and using (6), we get

—;{f(ai‘“)*‘f(ai')} - g(aj)

fu(ai)-g(aig z )
AL L
u [(ﬁz 1'°‘i-17) u'(a;)

% ' Gj-1 5
B m?fu (8j+q) + mfu (aj-1)]

Ezfu"(ai) i —1 O(Gi,ai-1)5up| fu'(x)|

Therefore as uy — = with fixed {a;},
uaj = neH(@j=aj4+1) —» ¢ and condition (7') reads:

7" fy'ap ~0

Thus the boundaries defined by minimizing E, for u suf=-
ficiently large, will be the zeroes of the second deri-
vative of the smoothed version f, of g These are the
same as the edges in most other treatments of
1-dimensional signals,



§2. Method of Computation

There are 2 ways to proceed if you want to find
minima of E numerically. One is to discretize E itself,
ise. study the functional E on a lattice in the interval
[a,b], replacing the integrals by sums and the deriva-
tives by differences as in the Introduction. The other
is to use the above analytic formulae for the minimiz-
ing function f, but evaluate them by numerical integra-
tion. The latter procedure seems to be easier in this
case.

The function fu(x) is independent of the breakpo-
ints {a;} and particularly easy to calculate in the
1-dimensional case. Let

X
fu-(x) = 2J Ku(x=y)g(y)dy
a
and
b
fua(x) = 2} Kyu(x-y)g(y)dy
X
so that
() = LX) + £ ()]
and

£ (%) = S (x) = fu(0)]
fu-(x) satisfies the differential equation
fu-'(x) = u[g(x)-fu-(x)]

with the boundary condition fu_(a) =0
while fu+(x) satisfies the equation

fue' () = = W[(X)~Fya(x)]

with the boundary condition fu+(b) = 0.
These first order differential equations may be solved
very rapidly by step-by-step integration.

We divide the interval [a,b] into n equal subinter-
vals.  (In our examples, n = 255,) This gives us a
lattice of n+1 points {xj} defined as xj=a+ jh where
0 <j<nand h = (b-a)/n. The breaks {aj} are
assumed to occur between lattice points and are tre-
ated as the entire open interval between 2 adjacent
lattice points rather than as specific points somewhere
in between.  Thus a set of breaks is defined by in-
tegers 0 < j; < ... <jg < n; the corresponding breaks
occur between the lattice point pairs {xh,xhﬂ}, vos
,{xjk,Xjk+1}. For each interval [xji*1'xii+1] we cal-
culate

(i) aj, C1,i: C2,i/ and f(Xj) for jj < j < jj+1 by set-
ting 3j=Xj .4 and aj+1=Xji44 in equations (5) and
(6) and

(ii) the value of the functional E restricted to
the interval using the trapezoidal rule.
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We solve for minimizing breaks by the following
interative procedure. Start with a set of breaks as
initial values, usually chosen from the zero-crossings
of fu"(x) or which are the same, zero-crossings of
fu=B.  During each iteration, calculate new values of
jj's by varying each j; in turn while keeping the others
fixed at their values from the last iteration and choose
a value for j; which gives maximal reduction in the
functional E.  We fix the size of maximum allowable
change in the integers {j;} during a single iteration.
We found this method more stable than solving equa-
tion (7') directly by some iterative procedure,

We give two examples of the above algorithm. In
both cases R is an interval with 256 pixels in it and p~1
is taken to be 6 pixels in length. We have not taken
any specific value of v, but have estimated the mini-
mum with various numbers of breakpoints.

The first example is a Gaussian curve with 4
breakpoints. Figure 1 shows the Gaussian g and the
minimizing f. This figure seems to give a good general
idea of what the minimizing f's tend to look like with
very smooth input 3.

The second example is a horizontal line through a
digitized image of a person, The image is shown in
figure 2 together with the chosen line which passes
through her eyes.  Figure 3 shows the graph of the
actual image along this line (this is the function g) and
the smoothed version f, of g.  Figure 4 shows our
program's estimate of the minimizing f with 10 break-
points, The breakpoints separate her hair from the
grey background and from her cheek, bracket her eye-
balls and bracket the specular highlight on her nose,
Because of the noise in the original image, especially
in the background, fy" has a great many zeroes in this
case. We first pruned these eliminating zeroes where
|fu'| did not have a strong maximum and then choosing

as initial breakpoints random sets of 10 from those that
remained.  The iterative scheme described above usu-
ally settles down to one of a small number of configu-
rations all of which have energy near each other.
However, these near-optimal breakpoint configurations
can look quite different from each other: for instance,
2 breakpoints may settle down on the 2 edges of a
steep hill or valley in f, but in different configurations,
they may settle down on different hills or valleys.
The possibility of several very distinct local minima
with almost the same near minimal energy is reminis~
cent of the non-uniqueness of the ground state in the
original Ising model.

To analyze the dependence on the number of
breakpoints, we repeated the above with the same
image but all breakpoint numbers between 1 and 10,
Figure 5 shows the graph of minimum energy found
against breakpoint number. The vertices of the
convex hull of this graph represent configurations
which, for a suitable choice of v, are optimal over all
sets of breakpoints of any cardinality.
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