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1. Introduction

A computer vision system is a program that accepts as
input some class of 2-dimensional intensity arrays (or images
for short) and outputs a description of certain of the objects
present in the image, i.e. it picks out certain regions and
points in the image, organizes these in various ways depend-
ing on the type of object and gives them semantic labels
(e.g. chair, rib, wrench, airplane, etc.). To accomplish this,
it is often supposed that modules of something of the follow-
ing type will have to be present:

a) Some bottom-up low-level processing modules produc-
ing something like Marr's 2 1/2-D sketch (see Marr (1982)).

b) A knowledge base of prototype objects or object parts
(usually stored as a database, i.e. declaratively, but can be
stored either procedurally or via strength of connections in
connectionist models).

c) Some process of bringing the two together, which can
be largely bottom-up or top-down, can be local or global,
may involve constraint analysis, can be one step or an itera-
tive relaxation process, etc.

The subject of this paper is the nature of the stored descrip-
tion of the prototype objects. Even if the prototype is stored
procedurally or in connection strengths, the procedure or the
connections can usually be thought of as embodying some
collection of features or properties of the object being iden-
tified. The most low-level possibility, for instance, is to store
a template, a reference 2-dimensional array, which would be
matched 1-1 with some part of the image. At the other
extreme, one could imagine the prototype objects being lists
of high-level properties: e.g. the letter "A* would be a list
(made~up-of-thin-lines, sharp-point-at-top, two-feet-at-
bottom,...), a German shepherd would be (furry, four-footed,
pointy~eared,...). Both of these seem clearly inadequate for
the task of visual identification. The purpose of this paper is
to propose a new knowledge representation scheme for des-
cribing a restricted class of shapes, namely 2-dimensional,
black and white shapes with boundaries made up of curves
that are smooth, except possibly at corners. Such shapes
arise whenever some part of the image is singled out by a
surrounding contour, by homogeneous texture or by thres~
holding. Namely, a new image is formed with this part black,
the rest white, and the surrounding contour is smoothed if
necessary. We will call our data structures shape descriptors.
These shape descriptors can be used to represent prototype
objects in the database and as an intermediate-level, pre~
semantic representation of an image which can be matched
against shape descriptors in the knowledge base. We want
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our shape descriptors to have the following properties insofar
as possible:

a) The shape descriptor should contain enough data to
enable a program to reconstruct an image which looks to a
person generally similar to the original (different degrees of
detail may be called for in different contexts so the shape
descriptor has to allow refinements or simplifications and
omissions when necessary).

b) The shape descriptor should contain only information
which is invariant under all perturbations of the image leav-
ing the shape looking generally the same to a person. These
perturbations include nonlinear distortions and even ones
which do not preserve topology.

These seem to us to be essential features of a knowledge
representation scheme if it is to be efficient for the purposes
of shape identification. Note that these properties imply that
the shape descriptor is not an information preserving repre-
sentation of the image. The amount of information present
will vary from context to context, but it seems unlikely that
any context will require the shape descriptor to be so precise
as to allow complete reconstruction of the image. We are
designing a program to use the shape descriptors described
below to actually identify simple shapes of several different
categories: handwritten characters, leaves of trees, and sil-
houettes of common tools and of animals. This will be rep-
orted on elsewhere.

It might be objected that such 2-dimensional black and
white shapes with boundaries made up of smooth curves con-
stitute a wholly artificial toy world (like the blocks world)
which is irrelevant to object identification in the real world,
We do not think so. First of all, convolving an image with a
Gaussian and thresholding gives you such images on various
scales from a real image. Secondly, the essence of the com-
plexity of the perceptual quality *shape’ already seems to be
displayed by these 2-dimensional images. Thirdly, in a real-
life setting where a multiplicity of scales and textures are
present, and three dimensional objects are rotated and par-
tially obscured, it seems to us unrealistic to make identifica-
tions by a one-stage feature extraction plus database com-
parison process. We think the bigger problem is broken up
into several stages or levels and that our shape descriptors
can be used at several stages at each scale for different pur-
poses,

In §2, we will review previous work on the description
of shape. In &3, we will describe and motivate, partly on
psychological grounds, the ingredients of our shape descrip-
tors. In three appendices, we will illustrate the theory with
three nearly complete examples.



2. Survey of Shape Representation Schemes

One can classify all shape representation schemes that

we have seen into the following groups:

a) Heavily numerical schemes

b) Chain coding schemes

c) Feature lists

d) Structural analyses
(a) and (b} are extensively used in the image processing and
pattern recognition community, (c) by psychologists, and (d)
by the Al community. Our proposal will be of type (d).

Let's consider the numerical schemes. It is clear that
*shape* is a global property of the image so one approach is
to take a double integral over x and y to extract some global
invariants. Two principle integrals have been used: the spa-
tial Fourier transform and the moments of the image (i.e.
FL(x,y)xMyMdxdy, cf. Hu (1962), Duda & Hart (1973),
§9.3.6.2)., There are several difficulties with these tech-
niques. Although the numerical description of the image
these integrals give changes in a simple way under rotations,
translations and dilations of the image, they do not change in
any simple way under non-linear distortions of the image,
even small ones which don't affect the subjective shape of
the image. Another problem is that the topology of the image
(e.g. a circle vs, an open "U" shape) is not mirrored in the
Fourier transform or the moments. For instance, consider a
normally drawn letter and one drawn to imitate a broad-
nibbed pen in which certain lines are thick, others thin
(figure 1a,1b). As far as double integrals are concerned,
figure 1b will be much closer to figure 1c than to figure 1a!
We think there is a possibility that certain global shape in-
variants can be detected from such integrals, but this seems
unproven, (Spatial band pass filters are another matter:
although these can be calculated by taking a spatial Fourier
transform, truncating, and taking the inverse transform, they
then provide modified input to further processing and cannot
be considered ways of representing shapes or extracting fea-
tures of shapes by themselves.)

Another numerical approach to shapes is by approximat-
ing elementary curves, Thus one can find points of maximum
curvature on the boundary of a 2-dimensional shape and use
these to form a polygonal approximation. Or if intermediate
values of the curvature of the boundary are important, one
can use splines to give a better approximation to the boun-
dary. Both of these have 3-dimensional versions used to
approximate surfaces. All representations of this type have
the following problem: they make explicit the relationship
between adjacent points along the contour but do not make
explicit where and in what ways the contour doubles back on
itself. This doubling back is immediately apparent to the
human eye and strongly affects our idea of the shape. More-
over, calculation of the geometry of the region enclosed by a
contour doubling back on itself from such a representation is
not numerically stable. Thus the two shapes in figures 1d and
Je can each be put together out of a dozen line segments
with almost identical slopes, i.e. locally corresponding pieces
of the two contours are very similar, But small changes of
the slopes greatly affect the area and shape of the whole,
due to the curve doubling back nearly perfectly as well as
the "jaws" nearly closing in figure 1e. One figure is an island
with a large bay, the other a ring with a small gap. This
problem arrises from the use of a one-dimensional data-
structure to represent shape, an inherently two-dimensional
attribute. A second problem is how to choose points on the
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FIGURE 1

contour to break it up. If the contour has small features as
well as large ones, the mesh size will have to be varied along
the contour or else a very large number of points will have
to be used. If a large number is used, the representation
contains many redundant bits; if a smaller number is used,
the problem is how to choose the "right" ones. If the mesh
size is varied, then one has to have a theory for it.

Chain codes are fundamentally a discrete version of the
idea of approximation by elementary curves. The idea goes
back to Freeman (1961) of approximating a boundary contour
by sequences of horizontal, vertical and diagonal steps
(figure 1f). This gives an 8-letter alphabet which is then
processed by techniques from formal language theory (see
Ledley (1965), Shaw (1969), Pavlidis & Ali (1979), Fu
(1982)). Related ideas have been proposed in the psychologi-
cal literature, with special attention to the explicit repre-
sentation of whole or partial symmetries or repeated patterns
(see Leeuwenberg (1971), Simon (1972)). The objections
raised against other curve approximation schemes apply here
too; since the representation is one-dimensional, the shape of
the interior region is not made explicit. While it seems a
good idea on the basis of economy to use discrete represen-
tations rather than continuous ones, it is not clear that dis-
cretizing the curve so totally at such an early stage is a good
idea. We are very sensitive to the information in the curva-
ture of a contour and it seems better to compute this while a
continuous representation is available, before discretizing,
Another objection to the use of chain codes as a shape rep-
resentation is that if edges are present that form a graph
with nodes (e.g. the skeleton the the letter "A"), chain
coding such a graph requires one to pick out a maximal sub-
tree by some arbitrary choice. A final objection, not to
chain-codes themselves but to their use as ‘surface repre-
sentations” of a grammar, is that we have seen no convincing
example where a traditional context-free grammar seems to
be the most natural way to capture the constraints present in
semantically significant classes of images.



A representation by a feature list is the classical psy-
chological representation of a concept or category. One is
presented with an exemplar and one checks, one by one, a
list of features. If all are present, or enough are present to
bring some weighted sum over a threshold, then the exemplar
is declared to belong to the category (See for example Rosch
and Lloyd (1978), Smith and Medin (1981)), In the realm of
visual categories, this is the type of "deep representation"
hypothesized by Kosslyn (1980), Neurophysiologically the
analog of this idea is that the firing of each neuron detects
the presence or absence of a specific feature in the stimulus.
This approach is often joined to more numerical methods via
cluster analysis, i.e. if half a dozen numerical invariants of a
figure are chosen, then one can map images to points in Euc-
lidean 6-space and look for clusters of these points and the
simplest combinations of these features that distinguish these
clusters. However, we feel that the features that images
exhibit should not be just listed, they should be tightly
organized in a structure that incorporates their interdepen-
dence. Thus features along a curve or an axis come in a def-
inite order. Compare figure 2a vs. 2b or figure 2c vs. 2d.
Likewise proximity groups subsets of features together and
repetition and parallelism provide structural links between
features. It might be suggested that one should incorporate
interdependence relationships as features in their own right.
However, it is not clear how one would then avoid combina-
torial explosion in the dimension of the feature space.
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The last type of representation scheme is the one that
we favor. The essential idea is to decompose the object into
components or parts, each with various salient features, and
to build up a description of the whole by a frame or net that
expresses the links between these pieces. This idea has many
roots but it is made explicit in two important papers: Marr &
Nishihara (1978) and Minsky (1975). The origin of our project
was the attempt to make more explicit and apply the ideas in
Marr & Nishihara. Many of our ideas parallel ideas intro-
duced in the recent paper of Davis (1983), We discuss our
proposal in detail in the next section,
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3. What goes into a shape descriptor

Rather than writing out formally what the most general
shape descriptor is, we will introduce its aspects one at a
time, motivating each one in turn. Some of the references
and psychological data that we give as motivation refer to
3-dimensional shapes, but, we repeat, our shape descriptors
apply only to 2-dimensional black and white shapes,

A.Components: The idea that general shapes should be broken
up into more ‘components® is an old one. Pavlidis (1968)
proposed describing an arbitrary polygon in terms of the
maximal convex sub-polygons whose sides were all part of
lines extending the sides of the given polygon, Binford (1971)
proposed describing a 3~dimensional object as a union of
more elementary shapes called generalized cylinders. Alter-
nately, a spine or skeleton can be sought in a general shape
by the medial axis transform (Blum (1973)) or other thinning
algorithm, Then the shape can be represented as the union of
the pieces which thin to or surround the segments of the
skeleton. These ideas have been developed by many people,
especially Agin (1981), Brady (1983), Shapiro (1980) and
Shapiro et al (1980). Our descriptors are based on this idea
too, with one key extension: we distinguish 3 different types
of components which play very different roles. The first we
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call a blob and it is to be a roughly convex region (i.e.
convex except for details on its boundary and possibly small
holes in its interior) which is not extremely elongated. (We
will hot give numbers to define exactly "nearly’ or
"extremely®: this is a task which can only be done in the
context of a working program.) The second type of compo-
nent we call a stroke, It is a thin region bounded by nearly
parallel lines without sharp changes in direction and which
does not enclose or nearly enclose another region. The third
we call a bounding stroke, It is a thin region which may have
corners and which bounds or nearly bounds a blob.

It is our contention that any 2-dimensional shape with
boundary made up of smooth curves has at least one and at
most a small number of (not necessarily disjoint) decomposi-
tions into such components (with the proviso that most of the
boundary of each component is part of the boundary of the
original shape). The argument for these distinctions is that
natural forms tend, on a given scale, to be seen sometimes as
truly 2-dimensional shapes (thick regions) and sometimes as
essentially 1-dimensional (thin, extremely elongated regions).
Likewise, necks are natural break points for 2-dimensional
objects, and sharp corners are natural breakpoints for
1-dimensional objects (unless it is the boundary of an indivi-
sible 2-dimensional shape). A 2-dimensional shape without a
narrow neck must be nearly convex. Finally, strokes which
double back and cross themselves get extremely complicated
and a natural way to control this seems to be to organize
them in that case in terms of the regions they bound.

B.Hierarchy: Marr & Nishihara (1978) stressed that a decom-
position as above should be hierarchical. Their famous pic-
ture (figure 4) of a man as a hierarchical union of general-
ized cylinders makes their point immediately clear. We also
incorporate such a hierarchy based on physical scale (similar
to the "part-of" hierarchy used in the theory of semantic
nets) with the extra remark that components lower on the
hierarchy may vary from thick to thin and vice versa, and
may also be both positive and negative, i.e. holes in a bigger
shape are shapes in their own right after reversing figure and
ground.

Putting together the hierarchy and the decomposition
into components, we produce a concept of a shape descriptor
which is a tree. Its nodes represent parts of the shape which
are readily perceived as whole shapes in their own right, The
top or root node is the whole shape, Each node is either (a)
of compound type in which case the immediately lower nodes
are its components; or (b) it is a blob, stroke, or bounding
stroke, in which case the immediately lower nodes are either
detailed parts of the blob or stroke, or else they are islands,
bounded pieces of the complement of the shape. Several
examples are found in the appendices.
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C.Numbers and Coordinates: We do not feel that highly pre-
cise coordinates have any place in the shape descriptor, For
instance, given two prominent points in a figure, it is almost
always unimportant whether one is 2.1 or 1.9 times as far
from the x-axis as the other, The theory of "naive physics”
(Hayes (1979), deKleer (1983)) has shown how intuitive phy-
sical reasoning seems to be well captured in a world in which
all physical quantities take values in a set with only three
elements (-,0,+)! For this surprising conclusion to work, it is
essential to know sometimes not only the value of a quantity
to this precision, but also the value of the difference of 2
quantities if they are given in the same units, and the value
of the first and second derivatives of a quantity. The analog
in naive geometry seems to be to take 3x3 coordinates like a
tic-tac-toe board for position, a chain-code approach to
direction (i.e. N,NE,E,SE,..) and a 3-valued set of curvatures
(-,0,+) (see Figure 5). At first, it sounds like this is throwing
away too much information to hope to be able to reconstruct
a similar shape., But suppose we supplement these charts as
follows:

a) Lay out a separate 3x3 coordinate chart for each node,
small or large,

b) Relate the charts for lower nodes to the one above them
by a location, a scale factor, and an orientation (this is indi-
cated in the appendices by notations such as (loc SE, scale 2,
dir W).)

c) Orient each chart along the axis of the component in
question and allow the x- and the y-scales to differ by an
'aspect ratio® so as to fit the component. This aspect ratio
and the scale factor in (b) will have a higher degree of pre-
cision,

In (c), the axis of a component will be the direction in which
it is elongated (calculated for instance via the moments), or
the direction of a very prominent straight line, or the axis of
a complete or nearly complete symmetry of the component.
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FIGURE 5

Now if two points of a shape are nearby and have the
same 3x3 coordinates, you can find their relative position by
joining them by a virtual line and noting its direction. (In
some settings, such as the perception of faces, human beings
seem very sensitive to degrees of curvature in edges. One
possible way to incorporate this is to imagine a virtual circle
osculating the given edge: the relative position of the center

of this circle is a rather accurate way of describing the cur-
vature of the edge.)



D.Tours of edges: Coming down to specifics of how individual
components are described, the main data structure is an
analog of a chain code. For blobs, we make a clockwise tour
of the boundary. Strokes, we consider as one-dimensional
objects and make a lengthwise tour essentially along their
spine (not a circular tour, forward on one side and back on
the other side). To do this, we assign arbitrarily a direction
to each stroke. For bounding strokes, we consider the region
they bound and make a clockwise tour of the boundary, as
for blobs. Along these tours, we do not give a "turtle-
graphic® way of tracing the curve but rather we break the
curve up at curvature maxima, points of inflexion, singulari-
ties such as cusps, and T-, X-, fork and arrow junctions with
other strokes. The pieces of the curve between such distin-
guished points we call segments which are also assigned
types such as line, arc, loop, etc. In addition, we have a seg~
ment type called a virtual line which either marks the loca-
tion at which a component is connected to one of its neigh-
bors in a compound shape or marks a gap between the termi-
nators of a bounding stroke which must be filled to complete
the boundary. Segments are also given locations which may
be one or more of the 9 coordinates on the chart, directions
which may be one or more of the 8 cardinal directions and
curvature from the set (+,0,-).

E.Primitive Types: At the base of the whole data structure,
note that there is a small set of undefined types for points,
segments and components. These receive a procedural defini-
tion through the programs that “parse® images into shape
descriptors, that reproduce an image from a shape descriptor,
that merge two overlapping shape descriptors and that trans-
form a shape descriptor to allow for changes caused by arbi-
trary cut-offs and thresholds in the parsing program. (The
last is central part of the matching process to be described
in a later article.) There are many non-trivial choices to
make in deciding on a particular list of primitive types. For
example, hidden lines, axes of symmetry or special alignments
of features are incorporated as special types of virtual lines.
As another example, motivated by optical illusions which pro-
duce the appearance of spirals that are not actually present,
we decided to parse a spiral by inserting a virtual line that
makes its outer loop into a bounding stroke, and makes the
inner loops into lower nodes (see Figure 6). The examples in
the appendices will illustrate the primitive types that seem
most correct to us now: but this part of the structure may
well be modified by experience.

POSSIBILITY I
PRIMITIVE STROKE FROM
x TO y

F.Links: After all this structure, there still seem to be
further perceptually prominent aspects of shapes that have
to be incorporated. One of these is symmetry. A part or
whole of the shape may be bilaterally or centrally symmetric,
or symmetric under a rotation through an angle 21/n, for
some n>3. Or a partial symmetry may exist which inter-
changes the parts of the figure given by nodes (e.g. a detail
in one part of the shape is the mirror-image of a detail else-
where in the shape). Another situation is the presence of
prominent parallel lines in different parts of the shape. A
more mundane type of link is the one that indicates the iden-
tification of points and segments in different nodes, thereby
telling us how to glue components together or glue details
into the whole. Many of these links are illustrated in the
examples in the appendices.

m

POSSIBILITY II

HTIGHER NODE = BOUNDING STROKE

FROM x TO =z

(INCLUDING VIRTUAL LINE m);
LOWER NODE = ARC FROM z TO y

FIGURE 6
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|
@ ! APPENDIX A: THE SHAPE DESCRIPTOR
| OF A PARTICULAR HAMMAR

NODE 1: COMPOUND, 2:1
POINTS :

P, :CONCAVE CORNER,LOC N

P, :CONCAVE CORNER,LOC N
SEGMENTS :

S, :INTERNAL VIRTUAL LINE,LOC N,DIR E
COMPONENTS :
NODE 2:

(LoC N,SCALE 1:2,DIR E)

LINKS:P, ,8, ,P, — Pl,sh,PS
NODE k:

(Loc ¢,SCALE 1:1,DIR N)

LINKS:P, ,8),P,—-P S, ,P,

NODE 2: BLOB, 2:1 NODE k: BLOB, L4:1

POINTS:
P, :CONVEX CORNER,LOC NW
P,:CONVEX CORNER,LOC NE
ETC.
SEGMENTS :
S, :INT. VIRT. LINE,LOC N,DIR E
8,:ARC,LOC NE,DIR S,CURV -
SS:ARC,LOC (E,SE),DIR S,CURV +
ETC.
UR :

POINTS:
P, :STRAIGHT,LOC C
P;;CUSP,LOC SE
P, :CONCAVE CORNER,LOC NW
ETC.

DETAIL:

NODE 3:
(LOC N,SCALE 1:h4,DIR N)
LINKS:P3 ’P’J —» P
(SEGMENTS AS ABOVE)

5°F)
(Pl,sl,P2, 500 ’P6’SS’P1)
BILATERAL SYMMETRY:
(p,,P,)
(32,36)
(P3.P6)
wIC.

L

DETAT

NODE 3: BLOB, 1:2 H

(POINTS, SECMENTS AS ABOVE)
BILATERAL AND CENTRAL SYMMETRY

(N.B. The pictures are for human use only! They are not part of data structure)
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APPENDIX B: OUTLINE SHAPE DESCRIPTOR OF CARVING IN TREE

NODE 1: COMPOUND, 1:1
! POINTS
P,:T,LOC SW

1

P2:T,LOC NE

COMPONENTS :
NODE 2:
(Loc ¢,SCALE 1:1,DIR NE)
D
LINKS: 1,92-»132, 3
NODE 5:
(Loc C,SCALE 1:1,DIR N)

D P
LINKS:P, ,P, -—PS,

£

NODE 2: STROKE, m :1

~ "%, POINTS: NODE 5: BLOB, 1:1

’ B
Pl:ARROW,LOC s POINTS:
P2:STRAIGHT,LOC S Pl :CONCAVE CORNER,LOC N
P3:STRAIGHT,LOC N 2 :MAX.CURV. ,LOC NE
ﬁJH Ph:FORK,LOC N P3tSTRAIGHT,LOC SE
52 I SECGMENTS : Pu:CONVEX CORNER,LOC S
ETC.

Sl:LINE,LOC 5,DIR N

§,,+ INT.VIRT. LINE,LOC C,DIR N SEGMENTS , ISLANDS , BILATERAL

SYMMETRY ,TOUR, AS ABOVE

8,:LINE,LOC N,DIR 3 ?'i
. DETAIL: ) g
Al
! NODE 3: . .
! (LOC W,SCALE 4:1,DIR W) P NODE 9: COMPOUND, 1:1
LINKS:P) —-P) .5 ,F, NODE 6: COMPOUND, P 3 POINTS:
NODE & 3:2 & P, :RIGHT TURN,LOC NY
(Lo¢ 8,8CALE 4:1,DIR W) Post- :
2 LINGS 5, —m P, 15, ioc w P, :LEFT TURN,LOC C
P_:RIGHT TURN,LOC NE
) cor-fmr.mrrs 3 ’
NODE 7. T COMPONENTS :
5 HODE L: BLOB, 3:2 NODE 8, NODE 10,NODE 11,NODE 12,
B FOTHTS ¢ - a ETC. NODE 13, AS ABOVE
3/ sEoimns: - TOUR:
: TOUR; z § § _
BILATERAL SY!LETRY: Eo F 2 (NODE 10,P, ,NODE 11,P,,
A AS ABOVE 8 NODE 8: - NODE 12,P,NODE 13)
' STROKE, oco:1 I BILATERAL SYMMETRY:
postm £ (NODE 10,NODE 13)
B '?ggRMENLS o @ (NODE 11,NODE 12)
P, ,P
NODE 3: BLOB, 2:1 AS ABOVE 2 1° 3;
I P,,P
SIMILAR ® 2 272
5
NODE 7: STROKE, 3:2
SIMILAR
NODES_10,11,12,13: IDENTICAL
P, STROKE, o :1
s, POINTS :
P, :TERMINATOR,LOC S
Py P, :TERMINATOR,LOC N

2
SEGMENTS : SI:LINE,LOC C,DIR N

TOUR: (Pl,sl P2)
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NODE 1: BLOB, 3:2
POTNTS

P_ :RIGHT CONVEX

P2:STRAIGHT,L0C

P3:STRAIGHT,LOC
:RIGHT CONVEX
P_:RIGHT CONVEX
:STRAIGHT ,LOC
P_ :STRAIGHT ,LOC
:RIGHT CONVEX

P9:STRAIGHT,LOC
Pl

0

NODE 2: BLOB, 3:2

POINTS:
PlzRIGHT CONVEX
P2:STRAIGHT,LOC

P_:5TRAINHT,TOC N

NW

Ph:RlGHT Conav
ETC.
SEGMENTS :
Sl:LINE,LOC IiW,DIR E
S,:LINE,LOC NE,DIR E

3
TOUR:(Pl,Sl,PQ,...,P

SZ:INT.VIRT.LINE,LOC N,DIR E

APPENDIX C:

THE SHAPE DESCRIPTOR OF A HOUSE-PLAN

SEGMENTS :

CORNER,LOC NE
NE

‘E

CORNER,LOC SE
CORNER,LOC SW
SwW
v
CORNER,LOC NW
N

:STRAIGHT,LOC N

TOUR: (P, ,S
TISLANDS :

NODE 2:

NODE 3:

LINKS:

S, ~,P,)

10°710°71

191

(PS¢, Fg)

8, :LINE,LOC NE,DIR S
§,,:EXT.VIRT.LINE,LOC NE,DIR §

S, :LINE,LOC (E,SE),DIR S
:LINE,LOC S,DIR W

S.:LINE,LOC SW,DIR N
:EXT.VIRT.LINE,LOC SW,DIR N

S, :LINE,LOC (W,NW),DIR N
:LINE,LOC NW,DIR E
Sg:EXT.VIRT.LINE,LOC (NW,N),DIR E
S, .:LINE,LOC (N,NE),DIR E

10
P »
P2,S2,-3,S3,...,P9,89,P10,S10,_1)

(LOC N,SCALE 2:1,DIR W)
LINKS :

,8,,P.,P_,8 —=~7P_,S_,P,P ,S_,P

D P
T2’t2’ 3’79’97 10 2°72°°37°9°79°° 10

(LOC S,SCALE 2:1,DIR W)
LINKS: P6,86,P7 —~P),5),P

5

— (PB,S7,P )

node 2 T’'node 3

NODE 3: BLOB, 3:2

POINTS :
& P, :RIGHT CONVEX CORNER,LOC NW
: P, :RICHT CONVEX CORNER,LOC NE

2

P3:RIGHT CONVEX CORWER,T.N" SE

SEGMENTS :

- Sl:LINE,LOC N,DIR E
SE:LINE,LOC E,DIR S
Sa:LINE,LOC SE,DIR W
ETC.

TOUR: (P ,8, P, -+ 557,Pg.8g,Fy





